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Time evolution of plasma vertical position is estimated by using long-short term memory networks (LSTM)
with Time2Vec technique which incorporates temporal information into a neural network. Since many tokamak
devices have elongated cross-section in achieving high performance whereas accurate vertical position feedback
control is required in order to avoid vertical displacement events (VDEs). Our data-driven model, using exper-
imental data obtained from a small tokamak device PHiX in Tokyo Institute of Technology, can estimate the
plasma vertical displacement by incorporating operational scenario coils current data. The model achieved high
performance by combining Time2Vec with LSTM. We can also interpret the weights extracted from a trained,
data-driven model by comparing the model’s predictions.
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1. Introduction
Although tokamak is one of the leading a candidate

for a fusion power reactor, there remain many problems
to be solved for commercial application. Since tokamak
plasma with a elongated cross-section have demonstrated
high performance [1, 2], many tokamak devices use elon-
gated plasma. The vulnerability of elongated plasmas to
vertical instability emphasizes the importance of estima-
tion to minimize and analyze the occurrence of vertical
displacement events (VDEs) [3]. Estimating plasma verti-
cal position using operational data is crucial for safely con-
trolling elongated plasma and mitigating disruptions linked
to VDEs, which lead to the influx of impurities and wall
damage due to plasma interactions with the wall. In or-
der to solve this problem, we utilized machine learning
techniques to develop models which can estimate plasma
vertical position. So, we create a data-driven model for
multivariable regression of VDEs by utilizing the neu-
ral network [4]. Plasma discharge experimental data are
obtained as time series data such as densities, tempera-
ture and magnetic field, etc. These data are important re-
sources for solving the many problems, but there are limi-
tations as humans cannot analyze the enormous time series
data. However, the neural network can easily deal with the
enormous amount of data. The recent works have shown
the effectiveness of using machine learning for analyzing
radiation collapse [5] and plasma vertical position [6] us-
ing support vector machines (SVM). These SVM mod-
els, specifically designed to distinguish between ‘disrup-
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tive’ and ‘non-disruptive’ states, showed excellent predic-
tive performance. However, SVM has the disadvantage of
being sensitive to noise, and it also requires trying mul-
tiple combinations of parameters. Previous studies show
that classification models can distinguish between true and
false, but they cannot demonstrate how the values change.
Conversely, we developed a deep learning-based regres-
sion model using noisy data and used this model to predict
the vertical position of the plasma in real time. The re-
current neural network (RNN)-based models [7] such as
long short-term memory (LSTM) [8] have been conven-
tionally used to estimate plasma disruptions [9–11] using
time-series data. In contrast to standard feedforward neu-
ral networks, RNNs have an internal loop, a kind of mem-
ory function, which allows them to retain and apply in-
formation through a series of data points. The results of
these RNN-based models suggest that data-driven models
for plasma disruption can be utilized to mitigate and pre-
vent such disruptions. Despite the advancements, they face
limitations such as frequent false alarms, compounded by
the challenge of interpreting LSTM networks due to their
complexity and non-linearity. Therefore, LSTM alone falls
short in delivering sufficient performance. Hence, there’s
a necessity for an some approach to supplement the LSTM
and improve its efficacy.

In this study, we apply the LSTM, which is an ad-
vanced version of the RNN model, and the Time2Vec [12]
is a novel approach that incorporates time-related features
for multivariate regression to estimate VDEs using plasma
discharge experimental data from PHiX at Tokyo Insti-
tute of Technology. By utilizing Time2Vec, we are able

c⃝ 2024 The Japan Society of Plasma
Science and Nuclear Fusion Research

1403023-1



Plasma and Fusion Research: Regular Articles Volume 19, 1403023 (2024)

to interpret the model by extracting the weight parame-
ters of the neural networks from the data-driven model.
Time2Vec is advantageous in its flexibility, easily integrat-
ing with various time series datasets for machine learning
without altering existing models. Combining the strengths
of LSTM and Time2Vec, we can also enhance the model’s
regression ability than conventional LSTM model. This ar-
ticle is organized as follows. First, we present LSTM with
Time2Vec model in Sec. 2. We present the result of its ap-
plication and discuss the evaluation in Sec. 3. Finally, our
conclusions are presented in Sec. 4.

2. LSTM with Time2Vec
In this work, we enhanced LSTM by integrating

Time2Vec as shown in Fig. 1. The LSTM, an advanced
type of RNN designed to mitigate the vanishing gradient
problem, is commonly employed for handling time-series
data. The LSTM system consists of four gates and two
internal states as shown in Fig. 2 and Eqs. (1)-(6),

f t = σ(Wf[ht−1, x̄t] + Bf), (1)

it = σ(Wi[ht−1, x̄t] + Bi), (2)

ot = σ(Wo[ht−1, x̄t] + Bo), (3)

gt = tanh(Wg[ht−1, x̄t] + Bg), (4)

Ct = f t ∗ Ct−1 + it ∗ gt, (5)

Fig. 1 The model architecture of LSTM with Time2Vec.

Fig. 2 The input gate it, output gate ot, forget gate f t, cell gate gt, hidden state ht and cell state Ct in LSTM systems with Time2Vec,
where ⊕ represents the sum operation and ⊛ represents the Hadamard product operation.

ht = ot ∗ tanh(Ct). (6)

At a time step t, the vectors f t, it, ot and gt represent the
activations of the forget, input, output, and cell gates, re-
spectively, while ht−1 and Ct−1 signifies the hidden state
and cell state from the previous time step (t − 1); Wf , Wi,
Wo and Wg are the respective weight matrices for the gates,
and Bf , Bi, Bo and Bg are the bias vectors associated with
the gates; σ stands for the sigmoid activation function, [ ]
and ∗ represent concatenation of vectors and Hadamard
product; x̄t represents the input data at the current time
step. The forget gate’s decision process, involving values
ranging from 0 (forget) to 1 (remember), determines the
transfer rate to the next cell, impacting memory retention.
In an LSTM network, the output at time step t is computed
considering the information stored in its internal states Ct−1

and ht−1 from previous time steps. In our implementation,
we set h0 and C0 as random values that follow a normal
distribution with mean of 0 and standard deviation of 1.
Passing the prior hidden state and current input through the
sigmoid function computes the forget gate’s values, which
directly influence the cell state ,the output gate is the re-
sult of the LSTM block. We can set the dimension of the
LSTM vectors including gate to dLSTM. The output ht from
the LSTM is fed into a dense layer without activation as is
shown in Fig. 1,

ŷt =Wdense · ht + bdense, (7)
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Table 1 The parameters of the LSTM+Time2Vec model.

Parameter Explanation Value
T Number of time steps 750
n Number of input parameters 8
k Number of Frequencies in Time2Vec 200
dLSTM Dimension of LSTM gates and states 128

where Wdense and bdense are learnable parameters and ŷt is
the predicted value. We utilized the loss function, which is
mean squear error,

Loss =
1
T

T∑
t=1

(yt − ŷt)
2, (8)

where yt is the actual experimental data.
Original LSTM models do not treat time itself as a

feature assuming that inputs are synchronous. When time
is known to be a relevant feature, it is fed in as yet another
input dimension. Time2Vec [12] is a learnable vector rep-
resentation which is embeded in stead of the time τ,

vτ[0] = w0τ + b0, (9)

vτ[i] = sin(wiτ + bi) 1 ≤ i ≤ k. (10)

Here the parameters i and k represent a index and the num-
ber of frequency used in machine learning respectively,
while wi and bi are learnable parameters trained through
backpropagation based on the loss (8). The time τ is re-
lated to the time index t as shown in

τ = τ0 + (t − 1)∆τ, (11)

where τ0 is the initial value of τ at t = 0 and ∆τ repre-
sents the change in τ for each unit time increment. The
result of the Time2Vec function vτ is combined with other
inputs xτ in the LSTM model to determine the network’s
behavior at each time τ. In the LSTM, the input x̄t is
originally equal to xt, but in the Time2Vec process, it has
transformed to x̄t = [xt, vt] as is shown in Fig. 1. The
advantages of using Time2Vec include capturing tempo-
ral patterns and handling irregular time intervals. It helps
the neural network understand time-related data by provid-
ing vectors with learnable parameters. The parameters for
dLSTM and k were chosen as listed in Table 1. We employed
the Adam optimizer [13] to guide the training process and
the code in this work was developed using the PyTorch
framework [14].

3. Application to Small Tokamak
The PHiX [15,16] is a small tokamak device in Tokyo

Institute of Technology. It is designed to research the
plasma vertical stability by helical magnetic field [17, 18]
created by saddle coils [15, 19]. We extracted data from
PHiX to create a data-driven model, as shown in Table 2

Table 2 Experimental data of PHiX used in this work. Units in
parentheses are those used in the experimental data.

Parameter
Input xt

Plasma Current (A)
Loop Voltage (V)
Poloidal Field Coils Currents (PF16, PF25) (A)
Ohmic Heating Coil Current (A)
Saddle coil current (A)
Output yt

Plasma Vertical Position (m) whose spatial resolution is
1 mm.
Time interval (10−5s) ∆τ

and Fig. 3. Figure 3 shows typical discharges used in this
work, where the vertical position of the plasma is deter-
mined using the modified correlation coefficient method
[15, 20]. The dataset listed in Table 2 includes measured
plasma parameters, control actuator values as inputs in-
cluding currents of poloidal field coils whose positions
are shown in Fig. 4. PHiX features a non-axisymmetric
magnetic field, supported by saddle coils (SCs) that are
installed along the upper, lower, and outer peripheries of
the torus, which helps in maintaining the stability of the
plasma’s vertical position. The coils of PF1 and PF6 are
connected in series in same directions to create a vertical
magnetic field, while the coils of PF2 and PF5 are con-
nected in seriesin opposite directions to create a horizon-
tal magnetic field. Although the coil currents PF1 and PF6
(PF16), PF2 and PF5 (PF25) are not independent as is indi-
cated previous sentences, they were used as independent in
this work. Despite the series connection, the values of PF1
and PF2 currents are smooth, while those of PF5 and PF6
have fast oscillations. The reason for this is that the mea-
surements of PF1 and PF2 were done via an analog filter.
In these experiments, PF25 currents are pre-programed as
is shown in Fig. 3 (f). Since the plasma is vertically unsta-
ble in these magnetic field configurations, plasma moves
downward without feedback control.

In the model, all training data are scaled to a range
with a minimum value of 0 and a maximum value of 1.
We have created a dataset where the training data con-
sists of 55 shots, and the test data consists of 4 shots. Us-
ing these data, the model performs multivariate regression
to estimate plasma vertical displacement. All the data in
the dataset, except for the plasma vertical displacement, is
used as input data, with the plasma vertical displacement
as the output as is shown in Table 2. Used data in this work
satisfy that the plasma current exceeds 1 kA.

In our study, we evaluated the performance of the
LSTM model against the Time2Vec+LSTM model in es-
timating plasma vertical displacement. All the trainable
parameters were determined to minimize loss of Eq. (8) on
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Fig. 3 Typical temporal evolutions in PHiX experiments. (a) Plasma current Ip, (b) Ohmic coil current Ioh and Loop voltage Vloop, (c)
Saddle coil current ISC, (d) Vertical position of the plasmas Zp, (e) and (f) Poloidal field coil currents.

Table 3 Comparison of Training Loss and Test Loss.

Model Training Loss Test Loss
LSTM 0.101 0.103
LSTM+Time2Vec 0.027 0.042

the training and test data.
The integration of Time2Vec with the LSTM model

demonstrated better performance over the standard LSTM
model, as evidenced by the reduced loss evaluated by
Eq. (8), detailed in Table 3 and depicted in Fig. 5 in which
observed data change stepwise because the resolution of
the correlation method is chosen to be 1 mm. Table 4 fur-
ther reveals that Time2Vec achieved a lower test loss com-
pared to LSTM without Time2Vec.

In order to investigate the superiority of Time2Vec,
we applied power spectrum analysis to validate that the
Time2Vec layer is capable of capturing temporal informa-

Table 4 Comparison of Test Loss.

LSTM LSTM+Time2Vec
#21518 0.068 0.046
#21519 0.090 0.018
#21521 0.028 0.011
#21525 0.22 0.09

tion. Since the output from Time2Vec described in Eqs. (9)
and (10) is fed into an LSTM in my model, the output u of
Time2Vec is assigned to the sigmoid and hyperbolic tan-
gent functions as arguments in the form Wv+B as is shown
in Eqs. (1)-(4). According to Eq. (10), the argument in-
cludes a term of W sin(wτ + b) which is similar to that of
discrete Fourier transform. Although the output ŷ in Eq. (7)
is a nonlinear function of u, the temporal characteristic of ŷ
is captured to the weight parameters W and w after training.
Before the training, the initial weights in Eqs. (1)-(4) are
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Fig. 4 The positioning of multiple coils in the PHiX [19]. (a) Configuration of Saddle Coils on PHiX. (b) Poloidal cross section and coils
positions of PHiX . The brown square is the TF coil, and OH coils are wound on an iron core (grass green).

Fig. 5 The estimation results from model LSTM and LSTM+Time2Vec using test data. The start time is set at 106.5 milliseconds after
the discharge.

randomly set within the range of −0.1 to 0.1 and the initial
weights w0 and bias bi are set with random values between
±0.05, while the frequency wi of 1 ≤ i ≤ k are configured
to have a distribution ranging from 0 to 50 kHz which is
the maximum frequency determined by the sampling time
∆τ in Table 2. After the training, W2’s of sin(wτ + b) are
obtained as a function of w as depicted in Fig. 6. These
figures show large weights at a low frequency region. In

order to check the efficiency of Time2Vec, we compared
the distribution of W2 in Fig. 6 and the power spectra of
plasma vertical positions, PF5 currents, and loop voltage
in the training data are depicted in Fig. 7. It shows signif-
icant weight changes at 10 kHz and 24 kHz. When com-
paring the power spectra of multiple inputs and output, no
special frequencies were found. Regarding the reasons for
this phenomenon, it is currently under investigation and
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Fig. 6 Learned weights and frequencies of Time2Vec model. The axis of abscissas represents the frequency wi in Eq. (10), while the axes
of ordinates represent the squared weights W2

f , W2
i , W2

o and W2
g in Eqs. (1)-(4). corresponding to the frequency wi.

Fig. 7 A comparison of the power spectra of the experimental data and the learned parameters in Time2Vec. The solid lines represent
the average power spectra, which are normalized to have a value of unity at frequency =0, of the plasma vertical position, PF5
currents, and loop voltage in the training data. The dots, which are chosen from Fig. 6, are squared weights of the trained model in
Eqs. (1)-(4) as functions of wi in Eq. (10).

remains unknown. The original paper on Time2Vec [12]
demonstrates the extraction of characteristic frequencies.
However, the experimental data used in this study do not
have inherent characteristic frequencies according to the
power spectra.

4. Conclusions
This study aims to analyze plasma VDEs by estimat-

ing the plasma vertical displacement. This data-driven
model with accumulated data from a specific tokamak
demonstrates the capability to estimate plasma movements
thereby enabling us to design a operational scenario. We
observed that the model employing Time2Vec yielded bet-
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ter performance in terms of test loss compared to LSTM
without Time2Vec. Additionally, we attempted to confirm
how Time2Vec affects the model’s predictions by extract-
ing weight parameters from Time2Vec, and two special
frequencies are identified. However the experimental data
used in this study do not have corresponding frequency
components. Further research is, therefore, needed regard-
ing the significant changes in weight at specific frequen-
cies.
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