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A Method to Analyze Plasma Images
Using Modified Fourier-Bessel Functions
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A new method is proposed to analyze plasma image of tomography using modified Fourier-Bessel Functions
(FBF) instead of the original FBF analysis. The application of the method to an assumed plasma image shows that
the difference between the original and the fitting image is improved considerably to that of FBF, owing to giving
a better fitting inside the plasma and eliminating the ghost values outside the plasma, without any disadvantages
in analysis of plasma structures and patterns.
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The entire cross-section image of local plasma emis-
sion is successfully reconstructed for turbulence studies
in PANTA (Plasma Assembly for Nonlinear Turbulence
Analysis), using tomography with an algorithm, Maximum
Likelihood Expectation Maximization [1]. The Fourier-
Bessel functions (FBF) expansions, amongst various meth-
ods [2], are used to characterize global structure of steady
state and coherent fluctuation patterns [3, 4]. However, the
FBF images often show ghost values outside of the plasma,
giving a wrong and deceptive impression where no emis-
sion is expected. Moreover, the internal values of plasma,
which are practically accurate, may be affected in the fit-
ting procedure to try to eliminate the external value with
a finite number of the bases. The paper proposes a sim-
ple method using modified FBFs to give a better fitting to
solve the problem.

In the analysis of structure and pattern, the tomogra-
phy image of plasma is expanded or fitted with FBFs as
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where ϕc
m,n(r, θ) and ϕs

m,n(r, θ) are basis functions and
ϕc

m,n(r, θ) = Jm(kmnr)cos(mθ), ϕs
m,n(r, θ) = Jm(kmnr)sin(mθ),

with Jm(r), kmn, and m being the m-th order Bessel func-
tion, n-th value to satisfy Jm(kmnL) = 0 and azimuthal
mode number, respectively. The ghost values emerge out-
side the plasma in the fitting of a finite number of FBF
bases.
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The modified bases are defined as

ψM−FBF
m,n (r, θ) = M(r)ϕFBF

m,n (r, θ), (2)

where the modification function M(r) is written as

M(r) =
1
2

{
1 − tanh

( r − r0

∆r

)}
, (3)

where r0 and ∆r represent the modification parameters (po-
sition and width), respectively. The fitting using the mod-
ified functions is expected to keep the inside value almost
the same, however, eliminates the outside values of the
plasma or remove the ghost values. In addition, the modi-
fication should provide the same advantageous if the orig-
inal function is Zernike polynomials used in the Cormack
inversion [2], although the modified functions lose the or-
thogonal and complete properties that the original func-
tions possess. Both expansion coefficients of FBF and M-
FBF expansion are determined by minimizing the follow-
ing residual using the least square fitting,

χ2 =
∑

j

{
ϵobs(r j, θ j) − ϵFIT (r j, θ j)

}2
, (4)

where ϵobs(r j, θ j) is the tomography image of plasma emis-
sion, with ϵFIT (r j, θ j) being the one expanded with FBF or
M-FBF. In the case of M-FBF expansion, an extra process
is necessary to determine the position r0 and width ∆r.

A comparison between the fittings of FBF and M-
FBF is made for an assumed plasma image of tomography
(or original image) shown in Fig. 1 (a). The radius of the
plasma image and the square region that the tomography
covers are assumed to be 5 cm, similarly in PANTA, and
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Fig. 1 (a) An assumed plasma image of tomography, (b) the dif-
ferences along the white line in (a), (c) difference be-
tween the original and FBF images, and (d) difference
between the original and M-FBF. The circles in figures
indicate the plasma region.

Fig. 2 The residuals as a function of the width for the three cases
of the position r0 = 3.6, 4.0 and 4.4 cm, with the residuals
of (A) FBF and (B) simply tanh-multiplied FBF.

16 cm × 16 cm. Here, the image is assumed to have no
emission outside of the plasma since no significant emis-
sion is observed there in standard operations. The other
figures show the differences between the original and the
fitted images using both 43 bases of FBFs and M-FBFs :
the number of the bases is selected to give the minimum to
the Akaike information criterion [3, 4]. The figures show
that the difference of M-FBF is much smaller than that of
FBF, and the ghost values in FBF are eliminated in the M-
FBF. In addition, the oscillations seen in plasma edge of
FBF case disappear and turn smooth in the case of M-FBF.

In the presented M-FBF fitting in Fig. 1, the modi-
fication parameters are selected to minimize the residual,
Eq. (4): the parameters are r0 = 4.0 cm and ∆r = 0.8 cm.
Figure 2 shows the residuals as a function of the width for
three positions, r0 = 3.6, 4.0 and 4.4 cm. The comparison
indicates that the residuals are much smaller than those of
FBF. For reference, the dashed line shows the residual be-
tween the original and the FBF image simply multiplied by

Fig. 3 (a) Comparison in radial integrated difference, (b) dif-
ference and similarity of azimuthal modal structure ob-
tained with FBF and M-FBF, and the inset shows the re-
constructed azimuthal patterns of m = 3 with FBFs and
M-FBFs.

M(r) with the position set as r0 = 5.0 cm. Even in this case,
the residual is smaller than the original when the width is
sufficiently small (∆r < 0.65 cm) since it eliminates the
ghost values outside.

Figure 3 shows the details of the radially integrated
difference between the original and the fitting profiles us-
ing the FBF and M-FBF. Here, the radially integrated dif-
ference is defined as

D(r) =
√∫
{ϵobs(r, θ) − ϵFIT (r, θ)}2 dS . (5)

It is obvious that the radially integrated difference for M-
FBF is roughly a few times smaller than that of FBF, even
inside of the plasma. Although it is a matter of course,
in addition, the difference increases monotonically in the
FBF case due to the ghost values, while that in the M-FBF
becomes constant outside the plasma. On the other hand,
Fig. 3 (b) shows the modal difference and the pattern simi-
larity between FBF and M-FBF for each azimuthal mode.
The modal difference δ, and similarity Cm, are defined as

δ =

√√∫
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inside
ϵ2
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As shown in Fig. 3 (b), the azimuthal mode patterns are al-
most the same; the modal difference is less than 1.4 % to
the maximum values of the modes until m = 3 and the sim-
ilarity is almost 1 for every mode. Thus, in the analysis of
the modal pattern, both expansions should give the same
results within experimental errors.

Finally, a method is proposed to analyze plasma im-
ages using M-FBFs. The results demonstrate the advan-
tages of the method: the residual of M-FBF case is im-
proved considerably to that of FBF, owing to giving a bet-
ter fitting inside the plasma and eliminating the ghost val-
ues outside the plasma, although both methods provide the
same capability for structure and modal pattern analysis.
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