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If a boundary-value problem is discretized with the extended Element-Free Galerkin (EFG) method, an
asymmetric EFG-type Saddle-Point (EFG-SP) problem is obtained. Although the improved Variable-Reduction
Method (iVRM) was originally developed as a solver for symmetric EFG-SP problems, it is extended so as to
be applicable to asymmetric EFG-SP problems. As a result, not only the Asymmetric-version iVRM (AiVRM)
but also its variant AiVRM2 is developed. A numerical code is developed for solving an asymmetric EFG-SP
problem with the AiIVRM/AiVRM?2 and, by means of the code, performances of the two methods are investigated
numerically. Consequently, it is found that, especially for a large-scale asymmetric EFG-SP problem, both the
AiVRM and the AiVRM2 are more effective than the preconditioned Krylov subspace method.
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1. Introduction

As meshless approaches for solving a boundary-value
problem, the Element-Free Galerkin (EFG) method [1] and
the eXtended Element-Free Galerkin (X-EFG) method [2]
were developed. If a boundary-value problem of a certain
class of partial differential equations such as the general-
ized Poisson equation and the Grad-Shafranov equation
is discretized with the EFG method, we get a symmet-
ric EFG-type Saddle-Point (EFG-SP) problem [1, 3] that
is among symmetric saddle-point problems. However, it
is difficult to solve a symmetric EFG-SP problem numeri-
cally. Although the null-space method [4,5] was proposed
for solving a symmetric saddle-point problem, it requires
the costly QR decomposition [6,7].

In order to resolve this problem, the authors formu-
lated the improved Variable Reduction Method (iVRM)
[3] without using any QR decompositions. In addition,
they applied it to a symmetric EFG-SP problem originat-
ing from a two-dimensional (2D) Poisson problem. Con-
sequently, it is found that, from the standpoint of both con-
vergence property and computational cost, the iVRM is su-
perior to ICCG and that the iVRM is applicable even to a
large-scale problem for which ICCG does not yield a con-
vergence solution.

On the other hand, if the X-EFG method is applied to
a boundary-value problem, we obtain the following linear
system [2, 8]:

author’s e-mail: kamitani@yz.yamagata-u.ac.jp
*) This article is based on the presentation at the 31st International Toki
Conference on Plasma and Fusion Research (ITC31).

2403039-1

o ol =[ef »

where B € RN and C,D € RV*X are given matrices.
Also, ¢ € RV and d € RX are both given vectors, whereas
u € RY and 1 € RX are both unknown vectors. Here, N
and K are two natural numbers satisfying K < N, and R de-
notes a set of all real numbers. Furthermore, submatrices,
B, C and D, fulfill the following 6 conditions:

1) A submatrix B is singular.

ii) Both C and D have full-column ranks and satisfy
Im C N Ker DT = {0}.

iii) The coefficient matrix in (1) is invertible.

iv) There exists a real number ¢ such that 0 < g < 1 and
K = O(NY).

v) Both C and D have the same nonzero-element pattern.

vi) If the numbers of nonzero elements in B, C and D
are denoted by [, Ic and Ip, respectively, they are
estimated as [ = O(N) and I = Ip = O(K).

Throughout the present study, (1) is called an asym-
metric EFG-SP problem. Since the iVRM was originally
proposed as a solver for symmetric EFG-SP problems, it
cannot be applied to asymmetric EFG-SP problems as it
is. Moreover, any numerical methods have not been so far
proposed for solving this type of a linear system.

The purpose of the present study is to develop linear-
system solvers for asymmetric EFG-SP problems by ex-
tending the basic idea of the iVRM. Moreover, we numer-
ically investigate performances of the resulting solvers.

© 2023 The Japan Society of Plasma
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2. Direct Application of
Preconditioned Krylov Subspace
Method

In general, an asymmetric EFG-SP problem is diffi-
cult to solve numerically like a symmetric EFG-SP prob-
lem. For the purpose of investigating this tendency, we
apply the preconditioned Krylov subspace method directly
to an asymmetric EFG-SP problem. In the present study,
an Incomplete LDU (ILDU) decomposition' is adopted as
a preconditioner, whereas either BICGSTAB or GMRES
is used as the Krylov subspace method. In the following,
BiCGSTAB and GMRES with an ILDU preconditioner are
abbreviated as ILDU-BiCGSTAB and ILDU-GMRES, re-
spectively.

Let us investigate a convergence property of ILDU-
BiCGSTAB and ILDU-GMRES. To this end, both solvers
are applied to asymmetric EFG-SP problems originating
from a 2D Poisson problem. Their residual histories
are depicted in Figs. 1(a) and 1(b). Apparently, ILDU-
BiCGSTAB does not show a convergence behavior for any
values of the number N of nodes. On the other hand,
ILDU-GMRES is such a robust method that it can al-
ways yield a convergence solution regardless of values of
N. However, its convergence property is considerably de-
graded with an increase in N. These results indicate that
both ILDU-GMRES and ILDU-BiCGSTAB are inappro-
priate as solvers for large-scale asymmetric EFG-SP prob-
lems. For this reason, a high-performance solver has been
desired for an asymmetric EFG-SP problem.

3. Asymmetric-Version iVRM

The iVRM is a linear-system solver for symmetric
EFG-SP problems. Its basic idea is to eliminate a vector
corresponding to the Lagrange multiplier from a saddle-
point problem by means of orthogonal projectors [3]. In
this section, we apply the basic idea to the development
of the Asymmetric-version iVRM (AiVRM). To this end,
vector A is eliminated from (1) by using projectors. Such
projectors are hereafter referred to as A-eliminators. In the
present study, we use two types of A-eliminators so that
two different solvers, AiVRM and AiVRM2, are obtained
depending on the adopted A-eliminators.

3.1 AiVRM and AiVRM2

If two projection matrices, F = C(DTC)'DT and U =
I — F, are employed as A-eliminators, we get the following
linear system:

Blu=c, 2)

where Bf € RV and ¢' € RY are defined by

ILet GA) = {(, je N2 . a;j # 0} be a nonzero-element pattern in a
square matrix A of order n. Here, N denotes a set of all natural numbers.
For the case where the Incomplete LU (ILU) decomposition is applied to
a sparsity pattern S = G(A) U {(i,i) : i = 1,2,---,n}, the preconditioner
is called an incomplete LDU decomposition.
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Fig. 1 Residual histories of (a) ILDU-BiCGSTAB and (b)
ILDU-GMRES for asymmetric EFG-SP problems ob-
tained from a 2D Poisson problem. Both the parameters
used in the X-EFG method and the details of the Poisson
problem are described in Section 4.1.

B'=UBU+F, 3)
¢ =U(c-BdH)+d, 4
d =c’'o)'a. (5)

Here, F and U are projection matrices onto Im C along
(Im D)* and onto (Im D)* along Im C, respectively. Note
that neither F nor U is a symmetric matrix.

On the other hand, if four orthogonal projection matri-
ces, Fe = C(CTO)Y'CT,Uc = I-F¢, Fp = DIDTD)' DT
and Up = I - Fp, are adopted as A-eliminators, the follow-
ing linear system is obtained:

Biu =c, (6)
where B¥ € RV and ¢* € R are defined by

B =UcBUp + Fp, 7)
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¢t = Uc(c - Bd) + d*, (8)
d=DMD"'D)'d. 9)

Here, F¢ and U are orthogonal projection matrices onto
ImC and (Im C)*, respectively, whereas Fp and Up are
orthogonal projection matrices onto Im D and (Im D)+, re-
spectively.

Throughout the present study, the numerical methods
for solving (2) and (6) are called AiVRM and AiVRM2,
respectively. In the actual calculation of both methods, af-
ter calculating ¢’ and ¢*, (2) and (6) are solved for u with
the Krylov subspace method. Note that, not only in cal-
culating d' and d* but also in evaluating the product of
A-eliminators and a vector, linear systems must be solved
for K unknowns. For example, a linear system (D7 C)z = v
needs to be solved for z € RX in the AiVRM, whereas
linear systems, (CTC)z = v and (D" D)z = v, have to be
solved for z € RX in the AiVRM2. In the following, such
linear systems are called inner linear systems, whereas (2)
and (6) are called outer linear systems. In addition, the
Krylov subspace method for solving inner and outer lin-
ear systems are called inner and outer solvers, respectively.
Besides, the numerical determination of ¢’ and ¢* is re-
ferred to as an overhead.

In the AiVRM, BiCGSTAB is used for both the in-
ner and outer solvers. On the other hand, two different
methods are applied to the inner and outer solvers in the
AiVRM2. Specifically, BICGSTAB is used as an outer
solver, whereas the conjugate gradient (CG) method is
adopted as an inner solver. The choice of the CG method
as an inner solver is based on the fact that inner linear sys-
tems of the AiVRM2 have symmetric coefficient matrices,
CTC and D' D. Incidentally, zero vectors are always as-
sumed as initial guesses for solutions in both the inner and
outer solvers.

3.2 Computational cost for inner solvers

Since an inner solver is the Krylov subspace method
for solving a linear system with K unknowns, the number
myy, of iterations required for its convergence can be written
as my, = O(K"), where 0 < r < 1. If this fact is taken into
consideration, operation counts for the AiVRM/AiVRM2
are estimated in a similar way to Appendix A in [3]. Op-
eration counts for an overhead and for each iteration in the
outer solver are both given by O(N™*40+D:11) " Egpecially
for the case with an asymmetric EFG-SP problem originat-
ing from a 2D Poisson problem, we have g = 1/2. Hence,
operation counts both for an overhead and for each itera-
tion in the outer solver are estimated as O(N) for this case.
This estimation suggests that, in the AiVRM/AiVRM?2, in-
ner solvers hardly affect the total computational cost for a
sufficiently large value of N.

Let us quantitatively investigate the influence of in-
ner solvers on the total computational cost. As the mea-
sure of the influence, we use the CPU-time ratio defined by
Rcpy = 1in/7. Here, 13, denotes an accumulated CPU time
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Fig. 2 Dependences of the CPU-time ratio Rcpy on the number
N of nodes. Here, the same EFG-SP problems as in Fig. 1
are solved with the AiVRM/AiVRM?2.

for solving inner linear systems, whereas 7 is a CPU time
for solving (2) and (6) with the AiVRM and the AiVRM2,
respectively. Dependences of Rcpy on N are numerically
determined for the AiVRM and for the AiVRM2, and they
are depicted in Fig. 2. The CPU-time ratio Rcpy decreases
monotonously with an increase in N until it amounts down
to about 35% for N = 1,050, 625. This result indicates that
an increase in N will weaken the influence of inner solvers
on the total computational cost.

4. Numerical Experiments
4.1 Test problem

As a test problem, we consider the following 2D Pois-
son problem on the domain € bounded by a simple closed
curve 0Q: —V?u = pin Q and u = @ on 0Q, where p and i
are given functions in Q and on 0Q, respectively.

In this section, two kinds of inner products are defined
by

(f.8)a = f fg f(x)g(x) d*x, (10)
e 95 L(s)n(s) ds. (11)
oQ

Here, x denotes a position vector of a point in 2, whereas
s is an arc length along 0Q. In addition, the boundary 6
is specified by x = x(s) (@ < s < 8), where @ and 8 are
both constants.

After discretizing the above Poisson problem by using
the X-EFG method with N nodes including K boundary
nodes, we get (1). If the (i, j)th entry of matrix A and the
ith component of vector a are denoted by (A); ; and (a);,
respectively, entries of submatrices, B, C and D, and com-
ponents of vectors, ¢ and d, are given by

(B)ij = (1,Vy; - V¢ )a,
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(Oix = [¥i, Nrloas
(©)i = Wi, pa,

Here, {;(x)}Y, and {¢;(x)}Y, are weight functions and
shape functions of the MLS approximation [1, 2], respec-
tively, and {Nk(s)}lIf:1 are shape functions of the boundary

element method.

(D)ix = [¢i, Nrloas
(d)i = [Ny, iloq.

4.2 Performance evaluation

First of all, we briefly explain the analysis conditions
of numerical experiments. A domain Q of the 2D Poisson
problem is assumed to be Q = (0, 1) X (0, 1). Furthermore,
parameters in the X-EFG method are assumed as follows.
All nodes are homogeneously distributed in  and on 9Q.
Also, a support radius R of weight functions {w,-(x)}fi | s
assumed as R = 1.5 h, where h denotes a distance between
the nearest two nodes. Moreover, exponential weight func-
tions [1] are adopted as {lﬁi(x)}f\i ;- In the numerical exper-
iments, ¢ and d are not calculated by using the formula
described in Section 4.1. Instead, they are chosen so that
the ith component of a solution of (1) may be given by
mod(i, 5)/5.

All numerical computations were performed on a
Linux (Ubuntu ver. 20.04.4 LTS) machine with Intel Core
i7-11700KF CPU (3.60 GHz) and 64 GB RAM. Further-
more, GNU Fortran (gfortran) ver. 9.4.0 was employed as
a compiler and “-02” was set as its option.

Let us first compare a convergence property of the
AiVRM and the AiVRM2 with that of ILDU-GMRES. To
this end, residual histories for the three methods are nu-
merically determined and are depicted in Fig.3. We see
from this figure that both the AiVRM and the AiVRM?2 are
even superior to ILDU-GMRES in terms of a convergence
property.

Next, we investigate the computational cost for the
three methods. For this purpose, CPU times for the meth-
ods are measured as functions of the number N of nodes
and they are depicted in Fig.4. For N < 10% ILDU-
GMRES is the fastest among the three methods. On the
other hand, for N > 10%, the AiVRM2 becomes the fastest.
Especially for the case with N = 1,050, 625, the AiVRM2
is around 175 times faster than ILDU-GMRES. Moreover,
the CPU time for the AiVRM/AiVRM2 is roughly propor-
tional to N'-3.

As is apparent from Fig. 3, the number of iterations re-
quired for convergence of the AiVRM is almost the same
as that of the AiVRM2. However, Fig.4 indicates that
the CPU time for the AiVRM2 is always less than that
for the AiVRM. The reason for this can be explained in
terms of numbers of matrix-vector products in the inner
solvers. As explained in Sec. 3.1, BICGSTAB and the CG
method are used as the inner solvers in the AiVRM and the
AiVRM?2, respectively. On the other hand, in each iteration
of BICGSTAB and the CG method, matrix-vector products
are performed twice and once, respectively. Hence, op-
eration counts in each iteration of the inner solver in the
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Fig. 3 Residual histories of ILDU-GMRES, AiVRM and
AiVRM?2 for the case with N = 1,050,625.
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Fig.4 Dependences of the CPU time 7 on the number N of
nodes.

AiVRM?2 are about half of those in the AiVRM. This is
why the CPU time for the AiVRM2 is less than that for the
AiVRM.

Finally, we investigate the accuracy of the three meth-
ods. As a measure of the accuracy, we adopt the relative
error defined by € = |lux — ual|/lluall. Here, ua and uy are
analytic and numerical solutions of an asymmetric EFG-SP
problem corresponding the test problem, respectively. Fur-
thermore, || || denotes the Euclidean norm of a vector. The
dependence of the relative error on the number N of nodes
is shown in Fig. 5. We see from this figure that there is no
significant difference in the accuracy of the three methods.

The above results indicate that both the AiVRM and
the AiVRM2 are suitable for solving large-scale asymmet-
ric EFG-SP problems.

5. Conclusion
In the present study, we have developed not only the
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Fig. 5 Dependences of the relative error € on the number N of
nodes.

AiVRM but also the AiVRM?2 as linear-system solvers
for asymmetric EFG-SP problems. Furthermore, perfor-
mances of the two methods are investigated numerically.
As a result, the AiVRM and the AiVRM?2 show the fol-
lowing two properties:

e From the standpoint of a convergence property, the
two methods are even superior to ILDU-GMRES.

e From the standpoint of a computational speed, both
of the methods are much faster than ILDU-GMRES
in solving a large-scale problem.

From these results, we can conclude that both the
AiVRM and the AiVRM2 are particularly effective in solv-
ing large-scale asymmetric EFG-SP problems.
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