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The space vector of an output voltage can be rotated smoothly in a matrix converter. However, a zero-
sequence component appears causing problems in the load, such as a motor. A quaternion is a four-dimensional
hypercomplex number with an imaginary part that can simultaneously represent and deal with three-phase volt-
ages. In addition, the quaternion is expressed in the exponential form; thus, it can easily represent the space
vector rotation. Two zero configurations were used to optimize the ripple characteristics in fictitious pulse-width-
modulated voltage-source inverter. The two zero configurations are used to remove the zero-sequence component
from the matrix converter. The quaternion can be differentiated in time as well as rotate in space. Therefore, it is
used to analyze transient phenomena in the matrix converter’s rise-up and rise-down phases, and the switching’s
transition phase.
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1. Introduction
A matrix converter can convert commercial AC volt-

age to another arbitrary-frequency AC voltage, as well as
the power factor, with high efficiency [1]. Therefore, the
converter can be used to the power supply for a resonant
magnetic perturbation coil [2], increasing the efficiency of
a fusion reactor.

The space vector of an output voltage can be ro-
tated smoothly in a matrix converter [3]. Particularly, the
space vector of a positive-sequence component draws a cir-
cle. However, a zero-sequence component appears, caus-
ing problems in the load, such as a motor. For example,
the alternating neutral voltage may cause current leakage
in the rotating machine structural case. A quaternion is
a four-dimensional hypercomplex number with a three-
dimensional vector part that can simultaneously represent
and deal with three-phase voltages. In addition, the quater-
nion is expressed in the exponential form [4]; thus, it can
easily represent the space-vector rotation as seen in com-
puter graphics [5]. We analyze a matrix converter in detail
using these quaternion capabilities.

In a conventional matrix converter, eighteen active
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configurations and three zero configurations are used
among twenty-seven configurations composed of nine
switches. All six active configurations and two zero con-
figurations are used in a fictitious pulse-width-modulated
voltage-source inverter, and the two zero configurations
were used to optimize the ripple characteristics [6]. How-
ever, the two zero configurations are used to eliminate the
zero-sequence component not only in an indirect matrix
converter [7] but also in a direct matrix converter.

The quaternion can be differentiated in time as well as
rotated in space. Therefore, it is used to analyze transient
phenomena in matrix converter rise-up and rise-down, and
commutation in switching.

2. Quaternion and the Differentiation
We introduce the quaternion (four-dimensional hyper-

complex number), which is extended from a complex num-
ber [8] to express three-phase AC in three dimensions:

q = a + v = a + (ivx + jvy + kvz), (1)

i2 = j2 = k2 = −1, (2)

i j = − ji = k, jk = −k j = i, ki = −ik = j. (3)

Quaternion is divided into a real part (scalar part) and an
imaginary part (vector part). The imaginary part has a
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vector property, where the imaginary numbers behave as
unit base vectors, but they also have hypercomplex number
property. To assign three-phase AC voltages or currents to
the vector part, let us consider the exponential representa-
tion of the quaternion:

q = a + n̂‖v‖ = ‖q‖(cos θ + n̂ sin θ) = ‖q‖ε n̂θ, (4)

n̂ = (ivx + jvy + kvz)/‖v‖, (5)

‖q‖2 = a2 + ‖v‖2, (6)

‖v‖2 = (vx)2 + (vy)2 + (vz)
2. (7)

Let us assign three-phase AC phase (line-to-neutral) volt-
ages to the vector part of the quaternion:

e =
√

2E

{
+i cos(ωt − 0π/3) + j cos(ωt − 2π/3)

+k cos(ωt − 4π/3)

}
,

= ε n̂ωt
√

3Ee0, (8)

n̂ = (+i + j + k)/
√

3, (9)

e0 =

{
+i cos(−0π/3) + j cos(−2π/3)

+k cos(−4π/3)

}/ √
3
2
. (10)

It denotes that the initial three-phase (positive phase) AC
voltage vector rotates counterclockwise with unit vector
axis n̂. In this case, the locus of the rotating vector is a cir-
cle on the plane, which is perpendicular to n̂ and includes
the origin.

Next, let us consider Ohm’s law of three-phase AC
circuit, where the load is inductive and the mutual induc-
tances exist as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ea

eb

ec

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
√

2E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ωt + φ − 0π/3)
cos(ωt + φ − 2π/3)
cos(ωt + φ − 4π/3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
L + LN M M

M L + LN M
M M L + LN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ p
√

2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ωt − 0π/3)
cos(ωt − 2π/3)
cos(ωt − 4π/3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(11)

where p (= d/dt) is a differential operator. Because the
neutral inductance (grounding inductance) does not affect
symmetrical (positive phase) AC, the quaternion represen-
tation is as follows [9]:

e = ε n̂(ωt+φ)
√

3Ee0 = (L − M)p i,

= (L − M)p ε n̂ωt
√

3Ii0 = n̂ω(L − M) i, (12)

where the phase φ is π/2. Three-phase current can be
expressed in the exponential form of a quaternion. The
quaternion can be easily differentiated in time. Thus, the
reactance of an inductance, L, can be simply expressed as
n̂ωL.

Consequently, the quaternion representation of gen-
eral Ohm’s law can be presented as follows:

[R][i] + [L]
d
dt

[i] = [e], (13)

Fig. 1 Quaternion of three-phase AC phase voltage in a voltage-
source inverter.

e = ε n̂ωt
√

3Ee0 = {R + (L − M)p} i,
= {R + (L − M)p} ε n̂ωt

√
3Ii0,

= {R + n̂ω(L − M)} i. (14)

When the initial current quaternion is 0 (origin), the quater-
nion spirally approaches the final steady-state circular lo-
cus as follows:

i =
1
|Z|ε n̂φ

(
ε n̂ωt − ε−t/τ

) √
3Ee0, (15)

Z = R + n̂ω(L − M) = |Z|ε n̂φ, (16)

τ = (L − M)/R. (17)

3. Zero-Sequence Component in
Matrix Converter
First, let us consider an indirect-type matrix converter

composed of a voltage-source rectifier and voltage-source
inverter. In the voltage-source rectifier, the input current
phase is controlled by a switching configuration. In the
voltage-source inverter, the output voltage phase is con-
trolled by a switching configuration. A quaternion vec-
tor (1) [+1,−1,−1] is output by a switching configuration
(Fig. 1).

In this quaternion vector space, the i-axis points to the
near side, the j-axis is in the horizontal direction, and the
k-axis is in the vertical direction. Each switching configu-
ration generates the base active phase-voltage quaternions
(1) to (6). By switching between (1) and (2) quaternions,
arbitrary quaternion can be produced inside the first trian-
gular sector O-(1)-(2). However, (1) is under the hexan-
gular plane (broken line) perpendicular to the [1, 1, 1] axis,
whereas (2) is above it. Notably, the zero-sequence com-
ponent appears in the output voltage quaternion. This ap-
pearance is a problem.

Alternatively, let us effectively consider zero-
switching quaternions (7) and (8). Base active phase-
voltage quaternions (1) to (8) are produced by each switch-
ing configuration. An arbitrary quaternion can be produced
by switching between the (1), (2), (7), and (8) quater-
nions inside the first four-sided pyramid (1)-(2)-(7)-O-(8).

2405025-2



Plasma and Fusion Research: Regular Articles Volume 17, 2405025 (2022)

Fig. 2 Direct-type matrix converter. Switches S 11, S 22 and S 32

are on. The on switches are connected by the red line,
corresponding to the switching configuration (+1) or (1,
2, 2).

Therefore, the zero-sequence component disappears from
the output phase voltage quaternion. However, the voltage
conversion ratio decreases by

√
3/2 times in exchange for

eliminating the zero-sequence component.
Second, let us consider the direct matrix converter

(Fig. 2). In a switching configuration (+1), switches
S11,S22, and S32 are on. In (−3), S11,S23, and S33 are on.
In (−7), S11,S21, and S32 are on. In (+9), S11,S21, and S33

are on. Switching configurations (+1) and (−3) constitute
a quaternion on a plane containing [2,−1,−1] and [1, 1, 1]
(Fig. 3). Further, switching configurations (−7) and (+9)
constitute a quaternion on a plane containing [1, 1,−2] and
[1, 1, 1]. The duty factor ratio between (+1) and (−3), and
that between (−7) and (+9) is determined to change the in-
put current amplitude and phase. In addition, the duty fac-
tor ratio between (+1) and (−7), and that between (−3) and
(+9) is determined to change the output voltage amplitude
and phase.

Although the output voltage quaternion is adjusted on
the cylindrical surface containing the circle, it cannot be
adjusted on the circle [10]. In a zero switching config-
uration (01), switches S11,S21, and S31 are on. In (02),
S12,S22, and S32 are on. In (03), S13,S23, and S33 are on.
The duty factor ratio between these three zero configura-
tions can be adjusted to annihilate the zero-sequence com-
ponent. The switching configurations must be in the order
(03)− (−3)− (+9)− (01)− (−7)− (+1)− (02) or the inverse,
so that just one switch commutates between adjacent con-
figurations once.

4. Transient Phenomena in
Matrix Converter
First, transient phenomena in the output current are

governed by the differential Equation (13). At the begin-
ning phase, the initial current quaternion is 0 (origin), and
the quaternion spirally approaches the final steady-state
circular locus as expressed by Equation (15). In the end-
ing phase, the initial current quaternion is a steady-state,
and the quaternion attenuates radially to the final current 0
(origin) (Fig. 4).

Second, let us consider a transition in the switching

Fig. 3 Output phase voltage quaternion in the direct matrix con-
verter. The output line voltage quaternion (a circle) is
also displayed.

Fig. 4 Time evolution of three-phase AC output phase current
quaternion in matrix converter.

configuration (1, 2, 2), where outputs A, B, and C are con-
nected to inputs a, b, and b (Fig. 2). Particularly, the B-
and C-phase voltages are equal. In the transition phase,
the final voltage quaternion includes negative- and zero-
sequence components.

e =
√

2E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+i cos(ωt − 0π/3)
+ j cos(ωt − 2π/3)
+k cos(ωt − 2π/3)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= e0 + e1 + e2

=
√

2E0n̂ + ε+n̂ωt
√

3E1e0 + ε
−n̂ωt
√

3E2e0

= cos(ωt − π/2)
√

2En̂

+ (1/
√

3)ε+n̂ωt
√

3Eε+n̂π/6e0

+ (1/
√

3)ε−n̂ωt
√

3Eε−n̂π/6e0. (18)

Zero-sequence current quaternion oscillates along
the [1, 1, 1] axis. Positive-sequence quaternion rotates
counter-clockwise starting from the initial point, and
negative-sequence quaternion rotates clockwise starting
from the origin (Fig. 5).

The sum of the positive-sequence and negative-
sequence quaternions oscillates almost linearly in the di-
rections displayed by red lines. The sum of all quaternions
rotates on the plane including the [1, 1, 1] axis (Fig. 6).
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Fig. 5 Output phase current quaternion in a transition phase to
switching configuration (+1) or (1, 2, 2). Blue line: zero-
sequence current quaternion; red line: positive-sequence
current quaternion; black curve: negative-sequence cur-
rent quaternion.

Fig. 6 Output phase current quaternion in a transition phase
to switching configuration (+1) or (1, 2, 2). Blue line:
zero-sequence current quaternion; red line: positive- and
negative-sequence current quaternion; black curve: the
sum of zero-, positive-, and negative-sequence current
quaternion.

5. Summary
A quaternion is a four-dimensional hypercomplex

number with a three-dimensional vector part that can si-
multaneously represent and deal with three-phase voltages.
In addition, the quaternion is expressed in the exponential
form. Therefore the quaternion can represent the rotation
of the space vector easily. We analyzed the zero-sequence
component of the output voltage and the transient phenom-
ena of a matrix converter in detail using these quaternion
capabilities.

In a conventional matrix converter, eighteen active
configurations are used to adjust the output voltage and
input current space vectors. Four active configurations
are switched in one phase sector to simultaneously mod-
ify the output voltage and input current space vectors.
The four duty ratios cannot eliminate the zero-sequence
component. The two zero configurations were used to
eliminate the zero-sequence component in fictitious pulse-
width-modulated voltage-source inverter of the indirect
matrix converter. However, the voltage conversion ratio
decreases by

√
3/2 times compared with the optimized ma-

trix converter. In the case of a direct matrix converter, the
three zero configurations could be used to eliminlate the
zero-sequence component. However, the three duty ratios
are not equal and must be controlled according to the cor-
responding switching sector.

The quaternion can be rotated in space and differen-
tiated in time. Therefore, it was used to analyze transient
phenomena in the matrix converter’s rise-up and rise-down
phases and the switching’s commutation transition phase
directly without any transformation.
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