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The relations among turbulent amplitude, zonal-flow amplitude, and transport level are discussed for the time
series data of nonlinear gyrokinetic simulations for magnetized toroidal plasmas. Since it was shown that the
transport coefficient can be expressed as a function of the time-averaged turbulent fluctuation level and the zonal
flow amplitude [M. Nunami et al., Phys. Plasmas 20, 092307 (2013)], we apply the results to a model function for
the turbulent plasma transport coefficient to extend to a functional relation which includes not the time-averaged
data but the time-series data of gyrokinetic simulations. We obtain a new functional relation to the turbulent
fluctuations, the zonal-flow amplitudes, and the transport coefficients as a function of the input parameters of the
gyrokinetic simulations such as plasma temperature gradients. It is also confirmed that the obtained functional
relation can reduce relative error which is compared with the original function with time-averages.
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1. Introduction
Anomalous transport plays an important role in fu-

sion reactor plasmas. Therefore, it is necessary to under-
stand the physical mechanisms of anomalous transport in
magnetically confined fusion plasmas. Numerical simu-
lations based on a gyrokinetic model for drift wave tur-
bulence caused by microinstability, such as the ion tem-
perature gradient (ITG) mode [1], have been performed
with the aim of understanding anomalous transport mecha-
nisms. Although quantitative evaluations of transport need
simulation results under various conditions, the nonlin-
ear gyrokinetic simulations of turbulent transport [2] en-
tail huge computational costs, so that it is not practical
to perform the simulations many times over. It has been
tried to represent the transport level in terms of a simpli-
fied model to predict the level. For tokamak plasmas, some
transport models such as the GLF23 [3], TGLF [4–6], and
QuaLiKiz [7] have been proposed, but these models did
not adapt to helical plasmas. For helical plasmas, a model
function which predicts the ion heat diffusivity of nonlin-
ear gyrokinetic simulation for Large Helical Device (LHD)
plasmas was developed [8] by including the effect of zonal
flows from a phenomenological viewpoint. In the model,
using time-averages of turbulent amplitude T and zonal
flow amplitudeZ, the normalized ion transport coefficients
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χ̃i was represented by the function,

〈χ̃Model1i 〉 = C1〈T 〉α

1 +C2
√
〈Z〉/〈T 〉

, (1)

where T and Z are defined by using the squared potential
fluctuation,

T ≡ 1
2

∑
kx,ky�0

〈〈∣∣∣δφkx,ky

∣∣∣2〉〉 , (2)

Z ≡ 1
2

∑
kx

〈〈∣∣∣δφkx,ky=0

∣∣∣2〉〉 , (3)

and (C1,C2, α) are determined by the nonlinear fitting . For
the particle species of s, the electrostatic potential fluctu-
ation is normalized as δφ = φ/(Tsρs/eR0) with the tem-
perature Ts, the Larmor radius ρs, and major radius R0.
The Larmor radius is given by ρs = vT s/Ωs by using the
thermal velocity vT s =

√
Ts/ms and the gyrofrequency Ωs.

The time-average and flux-average are denoted by 〈· · · 〉
and 〈〈· · · 〉〉, respectively, and

(
kx, ky

)
represent the radial

and poloidal wavenumbers.
The work presented here is the structure of time se-

ries data of gyrokinetic simulations and a time-dependent
functional relation, based on 〈χ̃Model1i 〉 for time series data
of χ̃i, T , and Z. After the verification of nonlinear fitting,
the new functional relation is compared with the previous
function, 〈χ̃Model1i 〉 in order to examine its validity. Fur-
thermore, we discuss an underestimation caused in the new
functional relation.
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This paper is organized as follows. Details about the
simulations performed this work are described in section 2.
The results are presented in section 3, followed by a discus-
sion in section 4 and a conclusion in section 5.

2. Gyrokinetic Simulation
In this work, we perform gyrokinetic Vlasov simula-

tions of ITG turbulent transport with kinetic electrons by
using the GKV code [9], which is one of the local flux-
tube codes. The GKV code solves the electromagnetic gy-
rokinetic equation of the perturbed gyrocenter distribution
function δ fsk [9–11],(
∂

∂t
− μ

ms
b · ∇B

∂

∂v‖

)
δ fsk

+
(
v‖b · ∇ + ivds · k⊥

) (
δ fsk +

qsFMs

Ts
δφJ0sk

)

+
qsFMs

Ts

{
∂

∂t
J0skδA‖k − iv∗s · k⊥J0sk

(
δφk −

v‖
c
δA‖k

)}

− c
B0

∑
k′⊥+k′′⊥=k⊥

b · (k′⊥ × k′′⊥
)

J0sk

(
δφk −

v‖
c
δA‖k

)

×
(
δ fsk +

qsFMs

Ts
δφJ0sk

)
= Csk, (4)

and Poisson-Ampère equations,⎧⎪⎪⎨⎪⎪⎩k2
⊥ +

1
ε0

∑
s

q2
sns

Ts
(1 − Γ0sk)

⎫⎪⎪⎬⎪⎪⎭ δφk

=
1
ε0

∑
s

qs

∫
dv3J0skδ fsk, (5)

k2
⊥δA⊥k = μ0

∑
s

qs
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dv3J0skv‖δ fsk, (6)

where J0sk = J0(ρsk⊥) and Γ0sk = I0(k2
⊥ρ

2
s)e−k2

⊥ρ
2
s with

zeroth-order Bessel function J0 and zeroth-order modi-
fied Bessel function I0. In equation (5) and (6), B0, c,
qs are magnetic field strength on the magnetic axis, the
speed of light, and the electric charge. The parallel ve-
locity, v‖, and the magnetic moment, μ = msv2

⊥/2B, are
used as the velocity-space coordinates. The Maxwell dis-
tribution functions with density ns are denoted by FMs =

ns(ms/2πTs)3/2 exp(−msv2
‖/2Ts −μB/Ts), and the collision

term is Cs. The magnetic and diamagnetic drift velocities
are represented by vds = cb/qsB× (μ∇B+msv2

‖ b · ∇b) and
v∗s = cTsb/qsB × ∇ ln FMs. In this work, we assume that
the ion and the electron temperatures are equal, Ti = Te.

In order to obtain as much simulation data as possi-
ble, we have performed twenty-four nonlinear simulations
totally with the parameters shown in Table 1. The grid
sizes of 5D phase space are employed (nx, ny, nz, nv, nm) =
(111, 30, 96, 64, 16) for kx, ky, z, v‖, and μ.

Figure 1 shows the ky spectrum of growth rates and
real frequencies by assuming δφk(t) ∝ exp {−i(ωr + iγ)t}.
The real frequencies indicate an ion diamagnetic direction
for negative and an electron diamagnetic direction for pos-

Table 1 Parameters used in the simulations. Here, the safety
factor, the magnetic shear, the beta value, and the tem-
perature and density scale length are represented by
q, ŝ, β, LTs , and Lns , respectively.

q ŝ β R0/LTi R0/LTe R0/Lni R0/Lne

1.4 0.8 5 × 10−4 6.0 to 20.0 15.0 2.22 2.22

Fig. 1 The growth rate (a) and real frequency (b) against
poloidal wavenumber for R0/LTi = 10.0 and 15.0. Here,
kx = 0.

itive. From Fig. 1, it is found that the ITG mode is a dom-
inant instability of this simulation, and the TEM mode is
developed in a low ion temperature gradient.

3. The Structure of Time Series Data
In the previous work [8], the time-average of trans-

port coefficients for each simulation condition were con-
sidered, and Model1 defined by Eq. (1) depended on the
time-averages of, T and Z. Here, in order to clarify the
time evolutions in the simulations, we focus on the struc-
tures of the time series data of the simulations in the space
of the parameters, (T ,Z, χ̃i). As shown in Fig. 2 (a), it is
found that the spatial structure varies only in a subspace for
a condition. Therefore, we consider not only time-averages
but also the time series to obtain the functional relation.

We examine the time-dependent functional relation
for time series data of χ̃i, T , and Z with the functional
relation defined by

χ̃Model2i (t) =
C(2)

1 T (t)α
(2)

1 +C(2)
2

√
Z(t)/T (t)

. (7)

The fitting parameters
(
C(2)

1 ,C
(2)
2 , α

(2)
)

are determined by
the Nelder-Mead simplex method [12] which does not re-
quire a derivative function. The objective function used for
nonlinear fitting is g(C(2)

1 ,C
(2)
2 , α

(2)), defined by

g(C(2)
1 ,C

(2)
2 , α

(2)) =

√√√
1
N

N∑
j=1

⎛⎜⎜⎜⎜⎝ χ̃Model2i (t j)

χ̃GKVi (t j)
− 1

⎞⎟⎟⎟⎟⎠2

.

(8)
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Fig. 2 The spatial structure of time series data of gyrokinetic
simulation and function χ̃Model2i (t) surface. (a) Red line
is time series data with R0/LTi = 15.0, and blue curved
surface indicates fitted function. (b) Surfaces for each
simulation condition of R0/LTi exist.

Here, the numbers j and N are the index number and
the total number of the time-series data. The time series
data obtained from gyrokinetic simulation is represented
by χ̃GKVi (t).

Since the function g(C(2)
1 ,C

(2)
2 , α

(2)) may have local
minimum points, and the results of the concrete numeri-
cal optimization techniques depend on an initial set of sev-
eral parameters, it is necessary to perform techniques for
wide ranges of the initial parameters. Figure 3 shows the
contours of the function g(C(2)

1 ,C
(2)
2 , α

(2)) on (a) C(2)
2 -α(2)

plane at C(2)
1 = 6.0 × 10−2, (b) the C(2)

1 -α(2) plane at
C(2)

2 = 6.0, and (c) the C(2)
1 -C(2)

2 plane at α(2) = 9.9 × 10−1

for the case of R0/LTi = 15.0, obtained by calculating
g(C(2)

1 ,C
(2)
2 , α

(2)) directly. In the figures it is confirmed
that the optimization result by the Nelder-Mead simplex
method,(C(2)

1 ,C
(2)
2 , α

(2)) = (6.0 × 10−2, 6.0, 9.9 × 10−1),
can exist in the global minimum point, (a) (C(2)

2 , α
(2)) =

(6.0, 9.9 × 10−1), (b)(C(2)
1 , α

(2)) = (6.1 × 10−2, 9.9 × 10−1),
and (c) (C(2)

1 ,C
(2)
2 ) = (6.0 × 10−2, 6.0). The nontrivial rela-

tionship between C(2)
1 and α(2) is observed in Fig. 3 (b).

Figure 2 (b) shows that we obtain a different surface
for each simulation condition of the ion temperature
gradient R0/LTi . The coefficients depend on the ion tem-
perature gradient for Model2 defined in Eq. (7), namely
(C(2)

1 ,C
(2)
2 ,α

(2))=(C(2)
1 [R0/LTi ],C

(2)
2 [R0/LTi ], α

(2)[R0/LTi ]).
It is also confirmed that the curved surface of Model1
intersects with each surface of Model2 around the average
values of χ̃i.

We apply the results of Model2 to construct a model
function for the ITG turbulent plasma transport. Assuming
the error, σ as

σ =

√√√
1
n

n∑
l=1

⎛⎜⎜⎜⎜⎝ 〈χ̃Modeli 〉l
〈χ̃GKVi 〉l

− 1

⎞⎟⎟⎟⎟⎠2

. (9)

Here, the numbers l and n are the index number and the
total number of the simulation conditions. The errors

Fig. 3 Contours of g(C(2)
1 ,C

(2)
2 , α

(2)) at (a) C(2)
1 = 6.0 × 10−2, (b)

C(2)
2 = 6.0, and (c) α(2) = 9.9 × 10−1 for R0/LTi = 15.0.

The blue squares indicate the global minimum.

are for Model1, σModel1 = 1.7 × 10−2 and for Model2,
σModel2 = 1.0 × 10−2. Therefore, as also shown in Fig. 4,
the functional relation for time series data by Model2
achieves a higher reproduction accuracy than for time-
averaged data by Model1.

4. Discussion
In Model2, Fig. 4 (b) shows a monotonically decreas-

ing trend with increasing χ̃GKVi which is an unnatural trend.
The objective function g(C(2)

1 ,C
(2)
2 , α

(2)) defined in Eq. (8)
is a major cause of the trend. If we define Δχ̃i(t) as
Δχ̃i(t) = χ̃Model2i (t) − χ̃GKVi (t), we obtain following formula-
tion from Eq. (8),

g(C(2)
1 ,C

(2)
2 , α

(2)) =

√√√
1
N

N∑
j=1

(
Δχ̃i(t j)/χ̃GKVi (t j)

)2
.

Here, for a bigger denominator, the value of Δχ̃i(t j)/
χ̃GKVi (t j) is estimated smaller. Since we consider the satu-

2403030-3



Plasma and Fusion Research: Regular Articles Volume 17, 2403030 (2022)

Fig. 4 Comparison of functional relation for (a) time averages
and (b) time series data.

Fig. 5 Comparison of the value of the fitted results of (a)
g(C(2)

1 ,C
(2)
2 , α

(2)) and (b)
〈
χ̃Model2i

〉
/
〈
χ̃GKVi

〉
for the case us-

ing g(C(2)
1 ,C

(2)
2 , α

(2)) and G(C(2)
1 ,C

(2)
2 , α

(2)).

rated part of the time series for each condition in this work,
the fluctuation level is the same extent for each ion tem-
perature gradient. Therefore, irrespective of χ̃GKVi (t), it is
necessary to evaluate Δχ̃i(t) at the same level for each sim-
ulation condition.

We introduce new objective function G(C(2)
1 ,C

(2)
2 , α

(2))
defined by,

G(C(2)
1 ,C

(2)
2 , α

(2))

=

√√√
1
N

N∑
j=1

(
χ̃Model2i (t j) − χ̃GKVi (t j)

)2
. (10)

Figure 5 shows the results with two different objective
functions. For every ion temperature gradient, the value
of g(C(2)

1 ,C
(2)
2 , α

(2)) obtained by using itself as the objec-
tive function are below the case using G(C(2)

1 ,C
(2)
2 , α

(2)),
as shown in Fig. 5 (a). However, for the function G case,
the reproduction of time-averages of χ̃i is better than for

the function g case in Fig. 5 (b), σG = 5.2 × 10−4 and
σg = σModel2 = 1.0 × 10−2, respectively.

5. Conclusion
In this paper, we reported the existence of the struc-

ture of the time series data of gyrokinetic simulations in
the parameter space of turbulences, zonal flows, and trans-
port coefficients, and the application of the structures to
transport modeling. Considering the functional relation
for time series data of the turbulent amplitude, zonal flow
amplitude, and transport coefficient, we obtain the time-
dependent functional relation χ̃Model2i (t) for each simula-
tion condition. The functional relation can reduce rela-
tive error which is compared with the previous function
obtained by taking the time-averages. By examining the
objective function, the new functional relation gets even
better reproduction. The functional relation for the elec-
tron transport coefficients and the modeling in considera-
tion of the electron temperature gradient, and the density
gradient is also of interest, and will be investigated in the
future.
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