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An advanced tomography method based on Bayesian probability theory is presented in this article. In the
method, Gaussian Process (GP) prior is adopted as an effective approach to smoothness regularization which can
be optimized based on the balance between model complexity and data constraint. In particular, to address the
problem of varying smoothness in space, a non-stationary version of the GP has been developed and resolved
via Bayesian hierarchical algorithm to implement locally adaptive smoothness regularization such that the ac-
curacy of the reconstruction can be improve significantly. The Bayesian formulism allows the reliability of the
reconstruction result to be examined by the confidence interval of a posterior probability. Through a wide range
of applications, this tomography method is proved to be a robust tool for the study of magnetohydrodynamics
(MHD) activity and impurity transport during HL-2A experimental campaigns.
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1. Introduction
In nuclear fusion research, a variety of diagnostic sys-

tems have been devised to measure the continuum radi-
ation in specific energy ranges, typically including the
soft/hard X-ray emission as well as the line radiation emit-
ted by impurity particles. In practice, the detector arrays of
a diagnostic system have to be located outside the plasma
and collect photons/particles along the viewing chords. As
a consequence, only line-integrated measurements can be
carried out. In order to extract local information of the
measured radiation, tomography algorithms have to be de-
veloped for such diagnostics for the reconstruction of a
2D emission distribution from a limited number of line-
integrated data. The difficulty of solving the tomography
problem, which is essentially an ill-posed inversion prob-
lem, mainly arises from the sparse coverage of viewing
chords and the error subjected to the measured data.

To date, a large number of tomography methods have
been developed and applied especially for fusion diagnos-
tics with both advantages and disadvantages on specific
circumstance. In the early stage, Abel inversion [1] is
one of the most used method with an assumption of cir-
cular symmetry which imposes a beneficial constraint on
the reconstruction when the diagnostic system has mul-
tiple lines-of-sight (LOS) from a single direction, which
however would be invalid for the configuration with a non-
circular plasma cross-section. Since the plasma radiation
mainly depends on the temperature and density, which are
constant on equilibrium flux surfaces in normal plasma
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conditions, it means that iso-emissivity contours are con-
sistent with the flux surfaces and such a physical-based
symmetry can be incorporated in a straightforward way in
mathematical inversion methods. A typical method adopt-
ing such an assumption is Equilibrium-Based-Iterative-
Tomography-Algorithm (EBITA) [2] which uses the equi-
librium flux surfaces derived at the same measurement
time as the starting point for the search of solution with
more reasonableness in physics. Other successful meth-
ods such as Minimum Fisher Regularization (MFR) [3]
and the Maximum Entropy (MaxEnt) [4] are based on nu-
merical iterative algorithms with the intrinsic drawback of
high computational time cost. By contrast, a Bayesian to-
mography method using a GP prior developed within Min-
erva Bayesian inference framework [5] has the potential
for real-time application under an approximate optimiza-
tion state, in particular with an enhanced capability for un-
certainty analysis in the probability form [6].

2. Method
2.1 Tomography problem

In the HL-2A tokamak a Bayesian tomography
method has been applied to the soft X-ray (SXR) sys-
tem that constitutes two detector arrays and each one
has 20 LOS, yielding full coverage of the plasma in the
poloidal cross-section (see Fig. 1). The aim of the tomog-
raphy problem is to compute the emissivity distribution ex-
pressed as f (R,Z) from the line-integrated data,

dl = cl

∫
S l

ds f (R,Z), l = 1, 2, . . . ,M, (1)

where M is the number of line-integrated data and the in-

c© 2022 The Japan Society of Plasma
Science and Nuclear Fusion Research

2402028-1



Plasma and Fusion Research: Regular Articles Volume 17, 2402028 (2022)

Fig. 1 (a) The coverage of 40 LOS from the SXR diagnostic on
HL-2A and (b) finite-element discretization of the recon-
structed region adopted in the method.

tegral is along the path of the viewing chord indexed by
l. Mathematically, equation (1) is referred to as the Fred-
holm equation of the first kind, which concerns the solu-
tion of f (R,Z) from its known integral values with fixed
integration limits.

In Fig. 1 the region to be reconstructed is discretized
into a grid of N = 900 square pixels. The size of the pixels
is small enough to justify the assumption of constant emis-
sion within each pixel. The extension of the reconstructed
region is chosen to cover the whole plasma cross-section
within the Last Closed Flux Surface (LCFS). In our case,
the choice of the dimension number N = 900 is a trade-off
between computational efficiency and requirement of spa-
tial resolution. For the boundary condition, the emission
around the LCFS is set to be zero according to the fact that
SXR emission is impossible in the temperature range of
plasma edge. As a result, the equation (1) can be converted
to a matrix form,

dM = RM×N · f N , (2)

where RM×N is the mapping matrix derived from a forward
model based on the geometry of LOS. The task of the cal-
culation is to infer the most probable values of the free pa-
rameters f N from a limited number of line-integrated data
dM under the condition of N � M.

2.2 Bayes’ theorem and Gaussian Process
Bayesian probability theory provides an important

guidance for the data analysis problems in different sci-
entific fields as expounded in [7]. According to the Bayes’
theorem, a posterior probability over the quantity of inter-
est, i.e. the emission values f in equation (1), is equal to
the product of a prior and a likelihood, divided by an evi-
dence term,

p ( f |d, θ) = p (d| f , θ) p ( f |θ)
p (d|θ) , (3)

where the prior p( f |θ) represents our knowledge about f
before obtaining any data. This prior is modified by the

measurements through the likelihood p(d| f , θ), represent-
ing our state of knowledge about f in the light of data d.
Hyperparameter θ are parameters of the prior and need to
be optimized through maximization of the evidence term
p(d|θ).

As described above, a prior is required to be specified
for the emission values f in the Bayesian formalism. The
specification of the prior is important, because it governs
the properties (e.g. smoothness and continuity etc.) of the
functions considered for the inference of f . Based on the
nature of the tomography problem under study, a Gaussian
process (GP) [8] is chosen as a prior to impose an effective
smoothness regularization on the reconstruction. Since GP
is a generalization of the Gaussian probability distribution
to the function space, a GP prior enables the discrete val-
ues of emission f (denoted as a vector) to be modeled as
a Gaussian distribution centered at the mean μprior with a

covariance matrix Σprior,

p
(

f |θ̄
)
∝ exp

(
−1

2

(
f − μprior

)T
Σ
−1

prior

(
f − μprior

))
.

(4)

In general, the covariance matrix Σprior can be derived
from a variety of stationary covariance functions. One of
them is the squared-exponential (SE) covariance function,
which defines the covariance of any two random variables
at positions r̄ and r̄′,

KS E(d) = σ2 exp

(
− d2

2l2

)
, d =

∥∥∥r̄ − r̄′
∥∥∥ , (5)

where σ determines the magnitude of the function to be
modeled; d denotes the distance between any pair of po-
sitions r̄ and r̄′, which is scaled by a constant length-scale
l. Therefore, the GP using a stationary covariance function
can only produce constant smoothness everywhere. To ad-
dress the problem of varying smoothness among different
regions, a non-stationary covariance function has been de-
veloped as the following,

KNS (
r̄, r̄′

)
= σ2

∣∣∣∣∣Σ(r̄)
∣∣∣∣∣
1/4 ∣∣∣∣∣Σ (

r̄′
)∣∣∣∣∣

1/4
∣∣∣∣∣∣∣∣
Σ (r̄) + Σ (r̄′)

2

∣∣∣∣∣∣∣∣
−1/2

exp

(
−(r̄ − r̄′)T

((
Σ(r̄) + Σ(r̄′)

)/
2
)−1

(r̄ − r̄′)
)
,

(6)

where the local kernel matrix Σ(r̄) is a function of spatial
position, rather than a constant as applied in the station-
ary covariance functions. Computation of the local ker-
nels at many positions is solved by a hierarchical model
as detailed in [6]. For the practical application of this
non-stationary GP tomography method, locally adaptive
smoothness can be achieved to distinguish the different
smoothness between plasma center and edge. As a conse-
quence, the reconstruction accuracy can be improved sig-
nificantly.
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Under the assumption that the noise associated with
the measured experimental data are normally distributed,
the likelihood can be modeled as a Gaussian distribution
centered at the measured data dmeas with a covariance ma-

trix Σd,

p
(
d
∣∣∣ f̄ , θ̄) ∝ exp

(
−1

2

(
R f − dmeas

)T
Σ
−1

d

(
R f − dmeas

))
.

(7)

The diagonal elements of Σd defines the data variance
based on an error analysis of the measured data.

The combination of a GP prior with a Gaussian like-
lihood gives rise to a posterior which is again a Gaussian
distribution with a posterior mean,

mpost = mprior +

(
R

T
Σ
−1

d R + Σ
−1

prior

)

×R
T
Σ
−1

d

(
dmeas − Rmprior

)
, (8)

and a posterior covariance matrix,

Σpost =

(
R

T
Σ
−1

d R + Σ
−1

prior

)−1

. (9)

After optimization of the hyper-parameters embedded
in the prior, mpost yields maximum a posteriori (MAP) es-
timate which is considered as the most likely solution of f
in the sense that it is nearest to the prior point μprior, and
meanwhile, a satisfactory fitting of the measured data can
be achieved by the predicted data through the functional re-

lationship Rmpost. In addition, uncertainty of the solution is
represented by the posterior covariance in equation (9). In
this way, the result is completely analytic without any iter-
ative algorithms, enabling it to be a fast approach to resolv-
ing the inverse problems. In the case when the assumption
of normal distribution is strongly violated, a non-Gaussian
prior needs to be taken into account for the prior. The com-
bination of a non-Gaussian prior with the Gaussian likeli-
hood will lead to a posterior probability distribution whose
best estimate is more difficult to find. In this situation, the
properties of the posterior probability needs be analyzed
by drawing many samples from it through the computa-
tionally expensive Markov chain Monte Carlo (MCMC)
method.

2.3 Singular-Value Decomposition (SVD)
As a powerful mathematical technique, the SVD is

routinely used to explore the spatio-temporal features of
the perturbations in emission distribution induced by MHD
activity [3, 9, 10]. If the data to be analyzed is acquired in
the form of time series from P channels and the selected
time window comprises Q time points with a time interval
Δt, then the data set can be represented as a matrix,

X =
[
x(0), x(Δt), . . . , x((Q − 1)Δt)

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(0) · · · x1 ((Q − 1)Δt)
...

. . .
...

xP(0) · · · xP ((Q − 1)Δt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(10)

The data set X can be either raw or processed data
subjected to specific treatment. For instance, the raw data
could be the line-integrated data while the processed data
could be the spatially resolved emission distribution ex-
pressed by the emission quantities from a number of pixels.
In practice, the SVD can be employed to the raw data for
the discovery of the hidden phenomena such as sawtooth
and snake-like perturbations, or to a time series of recon-
structions for the MHD mode analysis [11]. It’s worthy
to note that only if the spatial/temporal measure preserves

in the rows/columns of the data set X and the condition
M > N are satisfied, can the SVD be applied for its spec-
trum analysis.

Accordingly, the SVD can be used to extract infor-
mation about the spatio-temporal features of the perturba-

tions. Here each column of X constitutes the emissivity
from all the different pixels (position indices form one di-
mension) at the same time point and the rows correspond
to the time series (time indices form another dimension).
The spatial and temporal eigenvectors are contained in the

columns of U,V . The spatial eigenvectors or “topos” rep-

resent the spatial spectrum of X, and the temporal eigen-
vectors or “chronos” represents the temporal spectrum.
The total weight of one data set can be given by,

WX =

M∑
i=1

N∑
j=1

X2
mn. (11)

It is also known that the following relationship exists ac-
cording to the property of SVD,

WX =

K∑
i=1

S 2
k , K = min(M,N). (12)

The relative weight of each component S k can be calcu-
lated by,

Rk =
S 2

k

WX
, (13)

which is a useful quantity to indicate the significance of the
different components coupled in the reconstructed emis-
sion distribution. If there is a pair of identical singular
values, namely the degeneration of solution exists, it sug-
gests the existence of dynamic components such as rotat-
ing MHD modes. Therefore, the temporal evolution of the
rotating modes can be revealed by taking into account their
corresponding “chronos”. The method developed in this
work uses a GP prior to model the emission distribution
such that the final solution is expressed in a probabilistic
form, i.e. a posterior probability from which many sam-
ples of the reconstruction can be generated. The spread of
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these samples can be taken as an effective way to visualize
the uncertainty of the result.

3. Application
3.1 MHD mode analysis

In experiments of HL-2A, different kinds of MHD in-
stabilities are often observed during neutral beam injec-
tion (NBI) heating [12–14]. Among them, the Long-lived
mode (LLM) and fishbone mode are a typical internal kink
instabilities induced by the resonance between the toroidal
wave velocity of the modes and the toroidal precession fre-
quency of trapped energetic particles from NBI injected
beam. This instability mode would cause a radial displace-
ment of the equilibrium flux surface and the rotation of this
mode within laboratory frame transfers the spatial varia-
tion due to the mode to a temporal oscillation which can
be recorded by the high frequency signals of SXR detec-
tor and Mirnov magnetic coils as shown in Fig. 2. Here
the rotating mode at a flux surface with q = m/n can be
described in the following form [15, 16],

(
mθ − nφ + 2π f(m,n)t

)
= const, (14)

where f(m,n) is the mode frequency in the laboratory frame.
Due to the helical structure of the instability mode, both
toroidal (ωφ) and poloidal (ωθ) rotation components con-
tribute to f(m,n),

2π f(m,n) = nωφ − mωθ, (15)

where m, n and f(m,n) are the physical parameters to be an-
alyzed. According to the torque input by NBI, the toroidal
plasma rotation is estimated to be in the order of several
kHz. By contrast, the poloidal plasma rotation is negligi-
ble as it is strongly damped in the plasma core. In Fig. 3 the
mode structure are visualized through the perturbed emis-
sion distribution which are decoupled from the equilibrium
component by means of the SVD analysis on 100 consec-
utive reconstructions within a time window of 1 ms. As
shown, the mode rotates in the counter-clockwise direc-
tion at the m/n = 1/1 surface and completes one cycle in
less than 0.1 ms in correspondence to the 12 kHz from the
spectrogram of Mirnov signal as displayed in Fig. 2.

3.2 Analysis of impurity transport
The study of impurity transport has been conducted

in HL-2A experiments with the aid of the Laser-Blow-
Off (LBO) technique. In experiments with the injection
of trace aluminum (Al) impurity by LBO, besides the
bremsstrahlung emission emitted arising from electrons
the line radiation from Al ions will also contribute strongly
or even dominate the measured radiation in the SXR range.
Therefore, the impurity density nAl can be derived from the
increment in emission after the injection based on a sim-
plified emission model εsxr

Al = nAlneLsxr
Al [17], where Lsxr

Al
is the radiation coefficient with the dependence only on
the electron temperature which is almost constant in time

Fig. 2 Observation of an m/n = 1/1 internal kink mode in the
phase of 0.8 MW NBI heating from shot #22493: (a) time
trace of the SXR data from a channel passing through the
plasma center and (b) frequency spectrum of the Mirnov
coil signal.

Fig. 3 Evolution of the m/n = 1/1 internal kink mode structure
during a rotation cycle resolved by the SVD analysis of
100 consecutive SXR reconstructions in the time window
of 1 ms (marked by the red rectangle in Fig. 2). The red
circles indicate q = 1 surface.

during the time window of interest. It is thus reasonable
to assume that there is an approximately linear relation-
ship between nAl and εsxr

Al , provided that the variation of ne

is also small. The time evolution of Al impurity density
nAl(r, t) after the injection can be derived from the increase
in emission. Therefore, the emission after subtracting the
background contribution prior to the Al injection can be
used to study the impurity transport. As shown in Fig. 4
both the increase in electron temperature induced by cen-
tral Electron Cyclotron Resonance Heating (ECRH) and
the injection of Al trace impurity at 600 ms can lead to an
dramatic increase in the line-integrated SXR emission.

More precise information on the impurity density pro-
file can be acquired from the 2D SXR emission reconstruc-
tion displayed in Fig. 5. In addition, the uncertainty of the
reconstruction, which accounts for both the sparsity and
the error of the line-integrated data, can be derived from
the variance of a posterior probability (see equation (9)) as
shown by the shaded area. At the maximum emission after
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Fig. 4 Profiles of the line-integrated data from two SXR detector
arrays at three representative time points: before central
ECRH (t1, green squares), during central ECRH (t2, blue
stars), and at the maximum of emission after trace Al in-
jection (t3, red circles).

Fig. 5 SXR reconstruction after the injection of trace Al impu-
rity during the phase of central ECRH and (b) the pro-
files of total emission (red solid line) with its uncertainty
marked by the shaded area, background emission (green
dashed line) and background-subtracted emission (ma-
genta dotted line).

Al injection, the background-subtracted SXR reconstruc-
tion appears to be deeply hollow indicating that most of
the Al impurity accumulates within the q = 1 surface (ra-
dial position ρ ∼ 0.3), and only very few penetrates into the
plasma center due to the strong expulsion of impurity by
the core MHD instability [18]. For circular plasma cross-
section of HL-2A, the radial transport equation in cylin-
drical coordinate can be used to calculate the Al impurity
particle flux at different radial positions [19, 20],

∂nAl(r, t)
∂t

= −1
r
∂

∂r
(rΓAl(r, t)) + QAl(r, t), (16)

with the radial coordinate r =
√

Vf lux/(2π2Raxis) where
Vf lux is the volume within the flux surface and Raxis is the
major radius of the plasma axis. In the plasma core the

source term QAl(r, t) = 0, thus equation (16) can be used to
evaluate the total impurity flux,

ΓAl(r, t) = −1
r

∫ r

0

∂nAl(r′, t)
∂t

r′dr′. (17)

In our analysis the SXR reconstructions at 601 ms and
602 ms are used to calculate the time derivative in equation
(17). The relative values of the Al impurity flux are cal-
culated to be 3.6 and 8.6 at two different radial positions
ρ = 0.2 and ρ = 0.4, respectively, suggesting that the latter
has a strong inward impurity flux than the former.

4. Summary
In this work a Bayesian tomography method using a

GP prior for smoothness regularization has been devel-
oped and applied to the SXR diagnostic on HL-2A. The
improved accuracy of the reconstructions by this method
allows one to obtain accurate information about the spatio-
temporal features of the internal kind modes in terms of
shape, location and rotation. In addition, impurity trans-
port has been studied based on the emission model of im-
purity radiation and the radial transport equation. Exper-
imental evidence shows that impurity density profiles ap-
pear to be deeply hollow in plasmas with central ECRH,
which is postulated to arise from a combined effect of the
expulsion of impurity by core MHD in the plasma center
and an inward impurity convection driven by turbulence in
the confinement region.
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