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The conjugate gradient (CG) method with the acceleration technique of using bothH-matrix arithmetic and
H-matrix-based preconditioning is applied to the linear system that appeared in the shielding current analysis
of the uncracked high-temperature superconducting film and its performance is investigated numerically. The
computational results show that the proposed acceleration technique is extremely effective for improving the
speed of the CG method.
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1. Introduction
For the development of superconducting applications,

it is important to analyze the shielding current density in
a high-temperature superconductor (HTS). To this end,
an initial-boundary-value problem of the shielding cur-
rent density must be solved numerically. Some numeri-
cal methods based on the current-vector-potential method
have been proposed [1–3].

By discretizing with respect to both time and space
and further applying Newton method, the initial-boundary-
value problem of the shielding current density can be re-
duced to the problem in which the linear system is solved
at each time step and iteration cycle of the Newton method.
In this study, the iteration cycle of the Newton method is
called the Newton cycle. A direct method has been adopted
as the linear-system solver since the resulting linear system
has a symmetric dense coefficient matrix [1, 2].

On the other hand, when the Krylov subspace method,
such as the conjugate gradient (CG) method, is applied to
a linear system with the symmetric dense matrix, a matrix-
vector product must be calculated at each iteration for the
linear-system solver. The operation count required for the
matrix-vector product becomes O(N2), where N indicates
the number of unknowns in the linear system. Therefore,
the large operation count of the matrix-vector product is a
disadvantage when the Krylov subspace method is used.

In order to resolve the above difficulty, the H-matrix
method [4–6] was proposed and has yielded excellent re-
sults [7, 8]. By using the H-matrix method, the matrix-
vector product can be calculated at a high speed. A high-
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speed shielding current analysis might be executed if an ac-
celeration technique based on the H-matrix method were
incorporated into the linear-system solver.

The purpose of the present study is to apply the H-
matrix-based acceleration technique to the linear-system
solver in the shielding current analysis of an uncracked
HTS film and to investigate its performance numerically.

2. Shielding Current Analysis
2.1 Governing equation

In this study, we assume that an uncracked HTS film
with a rectangle cross section Ω over the thickness is ex-
posed to a time-varying magnetic field. In addition, we
adopt the Cartesian coordinate system 〈O : ex, ey, ez〉 in
which the z-axis is taken as the thickness direction. Fur-
thermore, the origin is the centroid of the HTS film and x
is a position vector of two points in the xy plate.

Under the thin-plate approximation, the time evolu-
tion of the shielding current density is governed by the fol-
lowing integro-differential equation:

μ0
∂

∂t
(ŴT ) + (∇ × E) · ez = − ∂

∂t
〈B · ez〉, (1)

where E, B, μ0 and b are the electric field, the applied mag-
netic flux density, the permeability of vacuum and the HTS
film thickness, respectively. In addition, a scalar function
T (x, t) is the z-component of the current vector potential
and 〈 〉 is an average operator over the HTS film thickness.
Moreover, Ŵ is the operator corresponding to the magnetic
flux density that is generated by the shielding current den-
sity j and its explicit form is expressed in Ref. [1].

In the HTS film, the shielding current density and the
electric field are closely related to each other. As the J-
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E constitutive relation, the power law is employed [1–3].
The initial and boundary conditions are assumed as T = 0
at t = 0 and j · n = 0 on ∂Ω, respectively. Here, n denotes
an outward normal unit vector on the boundary ∂Ω of Ω.

2.2 Discretization
In this section, let n be a value at the nth time step

t = nΔt, where Δt is the time-step size. First, by using the
backward Euler method, the initial-boundary-value prob-
lem of Eq. (1) is reduced to the problem in which the so-
lution T (x, nΔt) of the nonlinear boundary-value problem
at each time step is obtained. Next, the linear boundary-
value problem at each Newton cycle is obtained when the
Newton method is applied to its nonlinear boundary-value
problem. Finally, the above linear boundary-value prob-
lem can be discretized as the following linear system using
the finite element method:

A δT = b, (2)

where δT and b are N-dimensional unknown and given
vectors, respectively.

On the other hand, the coefficient matrix A is given
by A = UT (W+δEN)U + F, where U ≡ I − F. More-
over, I and F denote an identity matrix and the matrix de-
termined by the boundary condition, respectively. In ad-
dition, W ∈ RN×N denotes the symmetric dense matrix
obtained by discretizing with respect to space, whereas
δEN ∈ RN×N indicates the symmetric sparse matrix that
changes depending on the time step and the Newton cycle.

By solving Eq. (2) at every time step and Newton cy-
cle, we can analyze the time evolution of the shielding
current density in the uncracked HTS film. Throughout
the present study, the shielding current analysis is applied
to the scanning permanent magnet method [3]. The val-
ues of physical and geometric parameters are described in
Ref. [3].

3. Linear-System Solver
As mentioned above, W becomes the symmetric dense

matrix. Therefore, Eq. (2) has so far been solved by using
the direct method. Kamitani et al. applied the Bunch-
Kaufman (B-K) factorization method to Eq. (2) because
it has half the operation count as the Gaussian elimina-
tion [1].

In the present study, we apply an iterative method
to Eq. (2). When the standard CG method, i.e., the CG
method without any acceleration technique, is adopted as
the iterative method, its operation count becomes O(K N2),
where K denotes the iteration number required for the con-
vergence. In the following, the iteration number required
for the convergence is called the convergent iteration num-
ber. If the inequality, K < N/6, is satisfied, the speed of
the standard CG method is faster than that of the B-K fac-
torization method.

As is well known, a preconditioning is an acceleration

technique of the standard CG method. In particular, the
preconditioning is to equivalently convert Eq. (2) into the
following linear system:

(
C−1 A C−T

) (
CT δT

)
= C−1 b, (3)

where the preconditioner C is the N × N regular matrix.
In order to rapidly solve Eq. (3), it is crucial to choose

the preconditioner appropriately. The suitable conditions
for the preconditioner C are as follows:

1. The regular matrix M which can be transformed into
C CT is easily generated.

2. CCT ≈ A.
3. C is the sparse matrix.

Several methods have been proposed to determine the pre-
conditioner. The renowned method is to compose the pre-
conditioner C by applying an incomplete Cholesky (IC)
factorization to the coefficient matrix. Because A in Eq. (2)
is a symmetric dense matrix, the operation count required
to generate the preconditioner becomes O(N3/3) by using
the IC factorization. This implies that the speed of the
preconditioning almost matches with that of the Gaussian
elimination. For quickly solving Eq. (3), an appropriate
preconditioner must be selected.

4. H-Matrix-Based Acceleration
Technique
This section explains two techniques for accelerating

the speed of the linear-system solver. One technique is the
H-matrix arithmetic, whereas the other is the H-matrix-
based preconditioning.

4.1 H-matrix arithmetic
When Eq. (2) is solved by using the standard CG

method, a matrix-vector product must be calculated at each
iteration for the linear-system solver. For the case with the
matrix W, the operation count of the matrix-vector product
Wv is O(N2), where v denotes an arbitrary N-dimensional
vector.

In order to resolve the above difficulty, the H-matrix
method [4] with the adaptive cross approximation [5, 6]
was proposed. In this method, a cluster tree based on node
information is first created. Next, the target matrix is con-
verted into some submatrices by using the cluster tree. Fi-
nally, the low-rank approximation is executed if and only if
the submatrix fulfills the admissibility condition. Through-
out the present study, the submatrix to which the low-rank
approximation is applied is called the low-rank block. In
contrast, the submatrix that remains as the original matrix
is called the full-rank block.

By executing the above procedure, a hierarchical ma-
trix H (≡ HF + HL) is obtained from the target matrix.
Here, HF and HL denote the matrix extracted full-rank and
low-rank blocks, respectively. Note that the number of ele-
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ments in HF is much lower than that in HL. Therefore, the
matrix-vector product can be executed at a high speed.

When the H-matrix method is applied to the matrix
W, Eq. (2) is transformed into the following linear system:

AH δT = b. (4)

Here, AH ≡ UT (H + δEN) U + F.

4.2 H-matrix based preconditioning
To further accelerate the speed of the linear-system

solver, the preconditioning is applied to Eq. (4). By using
the preconditioner C, Eq. (4) is equivalently transformed
into the following linear system:

(
C−1 AH C−T

) (
CT δT

)
= C−1 b. (5)

In this section, C is determined by using the following
three steps:

Step 1 M is given by M = UT (HF + δEN) U + F.
Step 2 M is approximated as LDLT using the IC factoriza-

tion, where L and D denote the lower triangular and
diagonal matrices, respectively.

Step 3 LD1/2 is adopted as C, where D1/2 denotes the
square root of the elements of D.

Throughout the present study, the above preconditioning
is called the H-matrix-based preconditioning. By solving
Eq. (5) instead of Eq. (4), a numerical solution may be ob-
tained at a high speed.

4.3 Performance evaluation
Let us investigate the influence of theH-matrix-based

acceleration technique on the solver speed of the linear
system. As the experimental parameters, the judgement
of convergence εCG and the initial guess δT0 are given by
εCG = 10−9 and δT0 = 0, respectively. In addition, the
value of N is fixed as N = 25056. In this study, the com-
puter environment is shown as follows: (OS: Linux version
3.10.0-1160.el7.x86_64, CPU: Xeon Gold 6252 Processor
× 2, memory: 512GB, compiler: gfortran -O3).

First, we examine the influence of theH-matrix arith-
metic on the performance of the matrix-vector product. As
measures of the accuracy and the speed, the relative error
eH = ||Wv−Hv||/||Wv|| and the speedup ratio S H = τW/τH,
respectively. Here, τW and τH are the CPU times of matrix-
vector products for W and H, respectively. In addition, the
ratio of the number of elements in HF to that in H is called
the full-rank block ratio.

The relative error eH and the speedup ratio S H are cal-
culated as a function of the full-rank block ratio α and
are plotted in Fig. 1. This figure shows that both S H and
eH monotonously diminish as the value of α increases. In
other words, the speed of the matrix-vector product is en-
hanced with a decrease in the full rank block ratio, whereas
the accuracy is degraded drastically. From a speed and ac-
curacy perspective, the admissibility parameter in the H-
matrix method is determined so that eH � 10−6 is satisfied.

Fig. 1 Dependence of the relative error eH and the speedup ra-
tio S H on the full-rank block ratio α. Here, the red and
the blue symbols denote the values of eH and S H, respec-
tively.

Next, we estimate the speed performance of the CG
method with the H-matrix-based acceleration technique.
Throughout the present study, the CG method with the
H-matrix-based acceleration technique is called the ICCG
with the H-matrix method (ICCGH). In order to clarify
the effect of the preconditioning, the proposed methods
are compared with the CG method without any accelera-
tion technique. As the measure of the speed of the linear-
system solver, two speedup ratios, S C and S P, are defined
by S C = τS/τC and S P = τA/τC, respectively. Here, τC, τA

and τS represent the CPU time of CG methods with two ac-
celeration techniques, solely withH-matrix arithmetic and
without any acceleration technique, respectively. Note that
τC, τA and τS include the CPU times for generating theH-
matrix, the creation of the preconditioned matrix and the
execution of the solver. The result of the numerical experi-
ment shows that the values of S C and S P are 3.83 and 1.27,
respectively.

From the above results, the ICCGH is faster than the
standard CG method. However, the acceleration effect of
the H-matrix-based preconditioning is lower than that of
theH-matrix arithmetic.

5. Speed Improvement ofH-Matrix
Based Preconditioning

5.1 k time-step-skip approach
As is apparent from numerical results, the speedup

performance of H-matrix based preprocessing is lower
than that of H-matrix arithmetic. In this section, we aim
to improve theH-matrix based preconditioning.

Since δEN must be determined at each time step and
Newton cycle, the preconditioner is generated for each
change in δEN. To shorten the generation time, we propose
a new preconditioner that adopts the approximation matrix
δE∗N instead of δEN. Specifically, Step 1 in the H-matrix
based preconditioning is replaced with the following two
procedures.
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Fig. 2 Dependence of the speedup ratios S P and S C on the num-
ber k of skips.

Fig. 3 Dependence of the CPU time rate RT on the number k
of skips. Here, the symbols, � and �, denote the CPU
time rate for the preconditioning and that for executing
the solver, respectively.

1. The approximation matrix δE∗N is determined from
the shielding current density j obtained at every k
time step.

2. M is determined by M = UT
(
HF + δE∗N

)
U + F.

Throughout the present study, the ICCGH incorporated
with the above two procedures is called the ICCGH with
the skip approach.

Let us investigate the speed performance of the pro-
posed preconditioning. S P and S C are calculated as a func-
tion of the number k of skips and are depicted in Fig. 2. S P

decreases monotonously with k after a slight increase un-
til satisfying k > 2. In addition, the ICCGH with the skip
approach becomes up to about 1.5 times faster than that
solely with theH-matrix arithmetic.

To investigate this tendency, the CPU time rate RT is
calculated as a function of k and is plotted in Fig. 3. Here,
RT denotes the ratio of the CPU times required for the pre-
conditioning or the execution of the solver to τA. We see
from this figure that the CPU time required for the pre-
conditioning diminishes with k until the value of k satisfies
k ≥ 3. On the other hand, the CPU time required for exe-
cuting the solver monotonously rises with an increase of k.
These results show that the solver speed is improved if the
CPU time required for the preconditioning decreases.

Fig. 4 Dependence of speedup ratios S P and S C on the judge-
ment parameter εF. Here, the inset shows the enlarged
figure of Fig. 4 from εF = 0.5 to εF = 0.8.

Fig. 5 Dependence of the nonzero element Ratio RH on the
judgement parameter εF. Here, the inset shows the en-
larged figure of Fig. 5 from εF = 0.5 to εF = 0.8.

These results show that the acceleration effect of the
proposed preconditioning exceeds that of the conventional
preconditioning. In the following, the value of k is fixed as
k = 2.

5.2 Compression of number of nonzero
elements in HF

Although the number of nonzero elements in HF is
much smaller than that in W, it is much larger than that
in δEN. Therefore, we enhance the generation approach
of the preconditioner by reducing the number of nonzero
elements in HF.

In the improved preconditioning, Step 1 in the H-
matrix-based preconditioning is further replaced with the
following four procedures:

1. HF is substituted into the approximation matrix H∗F.

2.
(
H∗F
)

i j
= 0 if and only if

∣∣∣∣
(
H∗F
)

i j

∣∣∣∣ / |Hmax| < εF is satis-

fied.
3. The approximation matrix δE∗N is determined from j

at every k time step.
4. M is determined by M = UT

(
H∗F + δE

∗
N

)
U + F.

Here, εF denotes the judgement parameter and Hmax indi-
cates the maximum value of HF. In the following, the IC-
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CGH incorporated with the above procedure is called the
ICCGH with the modified skip approach.

Let us evaluate the speed performance of the modified
preconditioning. S P and S C are calculated as a function of
the judgement parameter εF and are plotted in Fig. 4. S P

rises monotonically with an increase in εF and its value be-
comes constant for the case with 0.01 � εF � 0.61. How-
ever, the value of S P is less than 1 for εF � 0.61. In addi-
tion, the ICCGH with the modified skip approach becomes
up to about 20 times faster than the standard CG method.

To explain the reason for the above result, the de-
pendence of the nonzero element ratio RH on εF is
shown in Fig. 5. After the nonzero element ratio decreases
monotonously until εF ≈ 10−1, it becomes almost constant.
For εF � 0.61, the value of RH is less than 10−4. In other
words, the nonzero element of H∗F almost vanishes. This
means that H∗F has almost no effect on the preconditioned
matrix for the case with εF � 0.61. Therefore, S P indicates
the behavior as shown in Fig. 5.

In this way, the modified H-matrix-based precondi-
tioning is effective to enhance the speed of the ICCGH.

6. Conclusion
In this study, the ICCGH method has been applied to

the linear system in the shielding current analysis of the un-
cracked HTS film and its performance is investigated nu-
merically. Conclusions are summarized as follows.

1. By improving the H-matrix-based preconditioning,
the speed performance of the H-matrix-based accel-
eration technique is enhanced significantly.

2. The H-matrix based acceleration technique can suit-

ably speed up the linear-system solver.

From these results, the H-matrix-based acceleration tech-
nique might be a useful tool for executing the shielding
current analysis at high speed.

In this study, the hierarchical matrix H is generated
from matrix W. Therefore, memory consumption is ex-
tremely high. In future works, the generation method of H
will be improved for reducing memory consumption.
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