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An electric current is induced on the vacuum vessel when the toroidal current of a tokamak plasma varies
in time, and it is called the eddy current. During disruption, the eddy current becomes large and influences the
process of disruption by interacting with the confined plasma. We have developed a new non-axisymmetric eddy
current simulation code, the Keddy3D that solves the eddy current equation based on the thin-wall approximation.
The Keddy3D is suitable for simulating long-term non-axisymmetric disruption processes with low computational
costs.
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1. Introduction
Disruption is a sudden loss of plasma current in toka-

maks and is one of the most critical issues for the practical
use of the tokamak fusion reactor. In principle, a toka-
mak requires a plasma current, and the time variation of
the current generates an inductive electric current in the
surrounding conductors such as the vacuum vessel. The
induced current on the vessel is called the eddy current and
generates a magnetic field to interact with the plasma. Dur-
ing the disruption, the rapid loss of plasma current gener-
ates large eddy currents that are thought to affect the dis-
ruption process. Although experimental observations have
shown that the disruption exhibits non-axisymmetry [1],
the mechanism of non-axisymmetric disruption has not yet
been fully understood. One of the reasons for this is a lack
of understanding of non-axisymmetric eddy currents ex-
cited on the vacuum vessel.

Eddy currents are not unique to the nuclear fusion
field but are a ubiquitous phenomenon of electromag-
netism, and various analysis methods are developed. On
the other hand, the vacuum vessel of a tokamak device
has a specific geometry with periodicity in both poloidal
and toroidal directions, which requires ingenuity in the
eddy current analysis. In the eddy current calculations of
axisymmetric disruption simulation codes such as DINA
code [2], the vacuum vessel is modeled as a collection of
axisymmetric multi-filaments, but this modeling is not ap-
plicable for the analysis of non-axisymmetric cases, and a
different method must be employed.

In the study of non-axisymmetric disruption, the thin-
wall approximation is usually employed by assuming that
the thickness of the peripheral conductors is sufficiently
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thin relative to the overall device scale. An example of
an existing simulation code using this approximation for
non-axisymmetric calculations of eddy currents is the ED-
DYCAL code [3, 4]. The EDDYCAL constructs equations
based on the energy principle for a conductor system mesh
divided by the finite element method and performs eigen-
value decomposition to obtain eddy currents expanded to
a finite number of eigenmodes. While the finite element
method can describe spatial structures with greater flexi-
bility, its calculation process is more complicated than a
simple finite difference method, and the calculation load
tends to be heavy. EDDYCAL employs eigenmode expan-
sion to enable time-evolving computations with low com-
putational cost, but there is a tradeoff: a small number
of modes restricts expressive ability, while a large num-
ber of modes demands a large amount of computation. In
disruption analysis, it is necessary to perform a long-time
analysis on the scale of transport phenomena while tak-
ing into account dynamically changing plasma currents.
Thus an eddy current calculation code with reasonable ex-
pressive ability and light computational load is required.
In addition, it is preferable to adopt a simple calculation
method with high extensibility to deal with phenomena
such as halo currents in the future. Based on this motiva-
tion, we have developed a simple eddy current calculation
code based on the finite difference method.

In this study, we reformulate a computational the-
ory of non-axisymmetric eddy currents based on the thin-
wall approximation. Our computational theory is sim-
pler, lighter-loaded, and suitable for disruption analysis
compared to the EDDYCAL. A new simulation code,
Keddy3D, was developed based on our computational the-
ory and validated by numerical experiments. Our code
is useful for the analysis of non-axisymmetric disruptions
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and resistive wall modes (RWMs) [5].
This paper is composed of five sections. In Sec. 2,

the computational theory of time evolution of non-
axisymmetric eddy currents is described. In Sec. 3, the
simulation code developed based on the theory is validated
by numerical experiments. In Sec. 4, we discuss the limi-
tation of our method on the application. Finally, in Sec. 5,
we summarize the results.

2. Derivation of Eddy Current Equa-
tion and Numerical Method
In this section, we first develop the eddy current equa-

tion and then describe how its numerical solution works.
The thin-wall approximation is described in Sec. 2.1, along
with an overview of the coordinate system and eddy cur-
rent representation form. To determine the temporal evo-
lution of the non-axisymmetric eddy current distribution,
the eddy current equation is derived in Sec. 2.2. The eddy
current equation is discretized in Sec. 2.3 to solve them nu-
merically. The discrete formulations for the spatial coordi-
nates and the stream function are discussed in Secs. 2.3.1
and 2.3.2. Sections 2.3.3, 2.3.4, and 2.3.5 provide spatially
discrete formulations for the terms of the magnetic field
generated by eddy currents, magnetic field diffusion in the
conductor, and magnetic field related to external sources,
respectively. The temporal discretization and time evolu-
tion techniques are covered in Sec. 2.3.6. The boundary
conditions that enable the system of equations to be solved
are covered in Sec. 2.4, which also organizes the relation
between the number of equations and the number of un-
knowns. We cover the computations for the unusual cir-
cumstances where the conductor is not periodic and the
conductor shape is not smooth, respectively, in Secs. 2.5
and 2.6.

2.1 Thin-wall approximation
The vacuum vessel is considered as a surface without

thickness in the thin-wall approximation, the current dis-
tribution in the radial direction is disregarded, and eddy
currents are calculated as surface currents. This allows the
vessel to be expanded into a two-dimensional grid with
poloidal and toroidal coordinates, and the eddy currents
to be represented by the gradient of a scalar potential, al-
lowing for easier analysis. On the other hand, because it
cannot manage the radial distribution, it may not be ap-
propriate for analyses that reproduce the intricate dynam-
ics around the divertor or for analyses where radial current
diffusion is essential.

Consider a vacuum vessel in a curvilinear coordinate
system (s, θ, ζ). Let s be the minor radial coordinate with
∇s as the outward normal vector of the vessel, θ be the
poloidal angle, and ζ be the toroidal angle. Assuming that
a vacuum vessel of thickness d is approximated by a thin
wall and that a surface current of surface current density
J is flowing on the thin wall, the current density j is ex-

pressed as

j =
J
d
. (1)

According to the thin-wall approximation, the surface cur-
rents flow only in the θ and ζ directions. Therefore,

J · ∇s = J s = 0, (2)

J = Jθeθ + Jζeζ , (3)

where eθ and eζ are covariant basis vectors in the θ and ζ
directions, and J s, Jθ, Jζ are the contravariant components
in each directions. Any position r in the Cartesian coordi-
nate system (x, y, z) is

r = xêx + yêy + zêz, (4)

where êx, êy, êz are the unit vectors in Cartesian coordi-
nates. Then, eθ and eζ can be expressed as follows,

eθ =
∂r
∂θ
=
∂x
∂θ

êx +
∂y

∂θ
êy +

∂z
∂θ

êz, (5)

eζ =
∂r
∂ζ
=
∂x
∂ζ

êx +
∂y

∂ζ
êy +

∂z
∂ζ

êz. (6)

Defining contravariant basis vector ∇s with eθ and eζ

∇s ≡
eθ × eζ∣∣∣eθ × eζ

∣∣∣ , (7)

the Jacobian determinant of the transformation
√
g can be

defined as

√
g =

∣∣∣eθ × eζ
∣∣∣ . (8)

Since eddy currents are induced currents,

∇ · J = 0, (9)

must always be satisfied. The partial derivatives with θ
and ζ of the coordinate values at each position in equa-
tions such as (5) are provided exactly in our code since the
form of the vacuum vessel is handled in the Fourier series
expansion of cylindrical coordinates (R, ζ, Z) as

R (θ, ζ)

=
∑
k,l

Rc
k,l cos (kθ − lζ) + Rs

k,l sin (kθ − lζ) , (10)

Z (θ, ζ)

=
∑
k,l

Zc
k,l cos (kθ − lζ) + Zs

k,l sin (kθ − lζ) , (11)

where x = R cos ζ, y = R sin ζ, z = Z in Cartesian coordi-
nates.

As an expression that always satisfies Eq. (2), we con-
sider the expression of the surface current density J as the
outer product of ∇s and a vector. Since the outer product
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between gradient vectors has no divergence, by consider-
ing the expression (9) and introducing the stream function
T , we obtain

J = ∇T × ∇s (12)

=
1
√
g

∂T
∂ζ

eθ −
1
√
g

∂T
∂θ

eζ . (13)

Comparing this expression with (3), we obtain

Jθ =
1
√
g

∂T
∂ζ
, (14)

Jζ = − 1
√
g

∂T
∂θ
. (15)

As a result, the time evolution of the stream function T
should be determined to get the time evolution of eddy cur-
rents.

2.2 Eddy current equation
We begin the deriving process of the eddy current

equation, which describes the time evolution of eddy cur-
rents with Faraday-Maxwell’s equation

∂B
∂t
= −∇ × E, (16)

and Ohm’s law

j = σE, (17)

as the starting equation, where σ is the conductivity of the
vacuum vessel, B is the magnetic field vector, and E is the
electric field vector. From Eqs. (16) and (17),

∂B
∂t
= −∇ ×

(
J
σd

)
, (18)

is obtained, where the magnetic field is

B = Beddy + Bex. (19)

Here, Beddy is the magnetic field generated by the eddy cur-
rents and Bex by the external sources. If Beddy and Bex are
separated as shown, (18) can be written as

∂Beddy

∂t
= −∇ ×

(
J
σd

)
− ∂Bex

∂t
. (20)

This Eq. (20) is the basic form of the eddy current equation.
Furthermore, Beddy can be written from Biot-Savart’s law
as

Beddy =
µ0

4π

$
j × (r − r′)

|r − r′|3
√
gds′dθ′dζ′

=
µ0

4π

"
J × (r − r′)

|r − r′|3
√
gdθ′dζ′, (21)

where r′, ds′, dθ′, dζ′ denote variables at the position of the
current element. Substituting Eq. (21) into (20), we obtain
the eddy current equation

∂

∂t

[
µ0

4π

"
J × (r − r′)

|r − r′|3
√
gdθ′dζ′

]
= −∇ ×

(
J
σd

)
− ∂Bex

∂t
.

(22)

The rotation of any vector A in curvilinear coordinates
is expressed as

∇ × A =
∑

i

∑
j,k

1
√
g
εi jk
∂Ak

∂u j

 ei. (23)

Therefore, the first term on the right-hand side of the
Eq. (22) at the (s, θ, ζ) coordinates can be rewritten as

∇ × J =
1
√
g

[(
∂Jζ
∂θ
− ∂Jθ
∂ζ

)
es

(
eθ
∂

∂ζ
− eζ

∂

∂θ

)
Js

]
,

(24)

where Jθ and Jζ are the covariant components of J in θ
and ζ directions, and J has no radial distribution. Only the
components in the es direction are connected to the surface
currents Jθ and Jζ , according to the Eq. (24). Therefore,
we ignore the eddy current equation of eθ and eζ direction.
Taking the inner product of the entire Eq. (22) and ∇s, we
obtain

∂

∂t

[
µ0

4π

"
J × (r − r′) · ∇s

|r − r′|3
√
gdθ′dζ′

]
= −∇ ×

(
J
σd

)
· ∇s − ∂Bex · ∇s

∂t
,

(25)

which we actually need to solve. This Eq. (25) represents
the s-direction component of the eddy current equation.
This equation will be referred to as the eddy current equa-
tion throughout this paper.

2.3 Discretization of eddy current equation
The eddy current Eq. (25) must be discretized and

solved numerically because it cannot be solved analyti-
cally. The specifics of the numerical calculation are de-
scribed in this section.

2.3.1 Spatial grid

The θ-ζ surface on which the vacuum vessel is placed
is divided into a grid with fixed intervals of ∆θ and ∆ζ in
each direction. Using the indices i and j, the position of a
grid point is then determined as

θi = ∆θ(i − 1), (26)

ζ j = ∆ζ( j − 1). (27)

When the number of grid points in the θ direction is m and
in the ζ direction is n, ∆θ = 2π/m and ∆ζ = 2π/n.

The left side of Eq. (22) diverges to infinity when the
evaluation position of the magnetic field r and the position
of the current element r′ are identical. Therefore, a stag-
gered mesh is employed so that the evaluation grid does not
overlap with the current grid. As an example, a staggered
mesh is shown in Fig. 1 when the number of grid points
is (m, n) = (3, 3). When the base position of each grid
(θ, ζ) = (θi, ζ j), the evaluation points for the magnetic field
and stream function are (θ, ζ) = (θi+ ∆θ2 , ζ j+

∆ζ
2 ), the evalu-

ation point of poloidal current is (θ, ζ) = (θi+ ∆θ2 , ζ j) and the

evaluation point of toroidal current is (θ, ζ) = (θi, ζ j +
∆ζ
2 ).
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Fig. 1 Example of staggered mesh with the number of grid
points (m, n) = (3, 3).

2.3.2 Stream function

Considering the expressions (14) and (15) on the dis-
crete grid, we obtain

Jθi, j =
1
√
gi, j

Ti, j − Ti, j−1

∆ζ
, (28)

Jζi, j = −
1
√
gi, j

Ti, j − Ti−1, j

∆θ
, (29)

where the Jacobian
√
g is the value at each current position.

J and T are handled as one-dimensional arrays
[
Jθ

]
,
[
Jζ

]
and

[
T
]

in programming. Then, the transformation of J
and T is implemented as:[

Jθ
]
=

[
MJθT

][
T
]
, (30)[

Jζ
]
=

[
MJζT

][
T
]
, (31)

where
[
MJθT

]
and

[
MJζT

]
are the coefficient matrices.

Looking at Eqs. (28) and (29), we notice that it is nec-
essary to refer to the value of the off-grid stream function
whose index is 0 to determine the surface current at the
minimum end of the grid ( j = 1 in Eq. (28) and i = 1 in
Eq. (29)). Due to the periodicity of the torus, the point with
index 0 physically represents the same position as the point
with the maximum index, hence, all physical quantities at
θ0 and θm, ζ0 and ζn must have the same value. The stream
function, unlike the Jacobian and surface currents, is not
periodic since it is not a physical quantity. Thus, the value
of the stream function at index 0 can differ from the value
at the maximum index. On the other hand, if the value of
the stream function at each one point with i = 0 and j = 0
is known, the surface currents at the maximum index can
be used to obtain the stream function values at all remain-
ing outer-grid points because the surface currents represent

the gradient of the stream function. Specifically, by substi-
tuting i = 0 into Eq. (28) and transforming it, we obtain

T0, j = T0, j−1 + Tm, j − Tm, j−1. (32)

For example, when the value of T0,1 is known, we obtain
the expression for T0, j as

T0, j = T0,1 + Tm, j − Tm,1, (33)

where the right-hand side is composed of the known values
and the values in the grid. As similarly for j = 0, if T1,0 is
known

Ti,0 = T1,0 + Ti,n − T1,n, (34)

can be said. Therefore, in order to represent Jθ and Jζ for
all grid points, the stream function array needs to include
T0,1 and T1,0 in

[
T
]
.

Because the stream function is a potential, even
if the gradient (surface current) is known, the value
cannot be determined without a reference point. Any
point can be taken as the reference, but we choose
Tm,n = 0 in this case. In summary, the un-
knowns to be sought to represent the eddy currents are[
T1,1,T2,1, . . . , Tm,1,T1,2, . . . , Tm−1,n,T0,1,T1,0

]
, the number

of which is m × n + 1.

2.3.3 Eddy current field term

Consider the discrete form of the left-hand side of the
eddy current Eq. (25), the term for the magnetic field gen-
erated by the eddy currents. Since the calculation of the
outer product of vectors is simplified in Cartesian coordi-
nates, we handle J × (r − r′) · ∇s in Cartesian coordinates.
From the expressions (3), (5) and (6), the eddy current vec-
tor J can be written as

J =
(
Jθ
∂x
∂θ
+ Jζ
∂x
∂ζ

)
êx

+

(
Jθ
∂y

∂θ
+ Jζ
∂y

∂ζ

)
êy

+

(
Jθ
∂z
∂θ
+ Jζ
∂z
∂ζ

)
êz,

(35)

Jx ≡ Jθ
∂x
∂θ
+ Jζ
∂x
∂ζ
, (36)

Jy ≡ Jθ
∂y

∂θ
+ Jζ
∂y

∂ζ
, (37)

Jz ≡ Jθ
∂z
∂θ
+ Jζ
∂z
∂ζ
. (38)

Then the outer product of the current vector and relative
position vector is

J × (
r − r′

)
= ρxêx + ρyêy + ρzêz, (39)

where

ρx ≡ Jy
(
z − z′

) − Jz
(
y − y′) , (40)

ρy ≡ Jz
(
x − x′

) − Jx
(
z − z′

)
, (41)

ρz ≡ Jx
(
y − y′) − Jy

(
x − x′

)
. (42)
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Now J×(r − r′) is expressed in Cartesian coordinates. The
remaining ∇s can be obtained from the definition (7),

∇s =
1
√
g

(
∂y

∂θ

∂z
∂ζ
− ∂z
∂θ

∂y

∂ζ

)
êx

+
1
√
g

(
∂z
∂θ

∂x
∂ζ
− ∂x
∂θ

∂z
∂ζ

)
êy

+
1
√
g

(
∂x
∂θ

∂y

∂ζ
− ∂y
∂θ

∂x
∂ζ

)
êz

≡ (∇s)xêx + (∇s)yêy + (∇s)zêz. (43)

Thus, the numerator of the function under integration on
the left-hand side of the Eq. (25) becomes

J× (
r − r′

) · ∇s = ρx(∇s)x +ρy(∇s)y +ρz(∇s)z. (44)

If we again divide this into the coefficients over Jθ and Jζ ,
we can express J × (r − r′) as the product of coefficient
matrix and vector:[

L
]
=

[
MLJθ

][
Jθ

]
+

[
MLJζ

][
Jζ

]
, (45)

where
[
L
]

is an array representing the left-hand side term
of the eddy current equation, which will be time-partially
differentiated.

2.3.4 Diffusion term

The first term on the right-hand side of the eddy cur-
rent Eq. (25) represents the magnetic field diffusion in the
conductor. We discretize this term as follows. From the
Eq. (24), the magnetic field diffusion term can be trans-
formed as

∇ ×
(

J
σd

)
· ∇s =

1
√
g

[
∂

∂θ

(
Jζ
σd

)
− ∂
∂ζ

( Jθ
σd

)]
. (46)

Using the covariant measurement tensor g, covariant com-
ponents are expressed with contravariant components:

Jθ = gθθJ
θ + gθζ J

ζ , (47)

Jζ = gζθJ
θ + gζζ J

ζ . (48)

Therefore, we obtain

− ∇ ×
(

J
σd

)
· ∇s

=− 1
√
g

[
∂

∂θ

(gζθ
σd

Jθ−
gζζ

σd
Jζ

)
− ∂
∂ζ

(
gθθ
σd

Jθ−
gθζ

σd
Jζ

)]
.

(49)

This term can also be organized by separating the coeffi-
cient on Jθ and the coefficient on Jζ as[

R
]
=

[
MRJθ

][
Jθ

]
+

[
MRJζ

][
Jζ

]
, (50)

where
[
R
]

is an array representing the first term on the
right-hand side of the eddy current equation.

2.3.5 External term

The second term on the right-hand side of the eddy
current Eq. (25) is the term of the magnetic field generated
by external currents and so on. In this paper, the mag-
netic fields generated by the plasma current and the center
solenoid coil current are assumed to be included in this
term.

The magnetic field generated by plasma current can be
calculated by Biot-Savart’s law in the same way as the term
of the magnetic field generated by eddy currents. Plasma
currents, unlike eddy currents, have a three-dimensional
distribution and must be three-dimensional integrated to
obtain the magnetic field. To lessen the computational
load, we adopt the Virtual Casing method (VC method) [6]
in our code, which reduces the integration dimension by
considering a virtual conductor surface. Note that the ac-
curacy of the VC method tends to deteriorate when the
plasma and the vessel are very close. When the distance
to the plasma is less than a certain threshold, the VC
method is not applied, and a 3-dimensional integration is
performed in our code.

By modeling the center solenoid as an axisymmet-
ric conductor, the magnetic field generated by the center
solenoid current BCS can be computed using general ellip-
tic integration. We then take an inner product of BCS and
∇s in (43) because what we want to evaluate is Bs

CS. Since
the eddy current equation requires the time derivative of
Bs, the magnetic field generated by the center solenoid cur-
rent ICS is calculated by giving known ∂ICS

∂t . For the mag-
netic field generated by the plasma current, it is necessary
to obtain ∂Bs

ex
∂t by subtracting the magnetic field from the

previous time step’s value.

2.3.6 Integration scheme for time evolution

To determine the time evolution of the eddy currents,
we perform temporal integration of T . Expressing the
Eq. (25) in the form of the arrays, we obtain

∂

∂t

[
L
]
=

[
R
]
−

[
∂Bs

ex

∂t

]
. (51)

Furthermore, from the expressions (30), (31) , (45), and
(50),

[
L
]

and
[
R
]

can be expressed as the product of
[
T
]

and coefficient matrices:[
L
]
=

{[
MLJθ

][
MJθT

]
+

[
MLJζ

][
MJζT

]} [
T
]

≡
[
X
][

T
]
, (52)[

R
]
=

{[
MRJθ

][
MJθT

]
+

[
MRJζ

][
MJζT

]} [
T
]

≡
[
Y
][

T
]
. (53)[

X
]

is time-invariant because the coefficients depend only
on the vessel shape. Then, the Eq. (51) can be rewritten as
the time evolution equation for

[
T
]
:[

X
] ∂
∂t

[
T
]
=

[
Y
][

T
]
−

[
∂Bs

ex

∂t

]
. (54)
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This expression (54) is the discrete form of the eddy cur-
rent Eq. (25) and what our code solves. To obtain

[
T
]

at the

next time step, we multiply the inverted matrix of
[
X
]

from
the left and replace the time derivation with the numerical
differentiation. If we apply a simple explicit method (Euler
method), the Eq. (54) is solved as follows:[

T
]
t+∆t
=

[
T
]
t
+ ∆t

[
X
]−1

([
Y
][

T
]
t
−

[
∂Bs

ex

∂t

])
, (55)

where the lower subscript denotes the time, t is the current
time, and ∆t is the time step of discretization. Note that[
X
]

must be a regular matrix for the inverse matrix to exist.
The regularity of the matrix is discussed in Sec. 2.4.

Since the Eq. (54) is a linear problem, we can eas-
ily apply the implicit method to the problem to improve
the stability of the solution. When we apply the Crank-
Nicolson method, the Eq. (54) is solved as follows:[

T
]
t+∆t

=

([
X
] 1
∆t
− 1

2

[
Y
])−1 [([

X
] 1
∆t
+

1
2

[
Y
]) [

T
]
t
−
[
∂Bs

ex

∂t

]]
.

(56)

Our code adopts the Crank-Nicolson method for tempo-
ral integration. The disadvantage of the implicit method
is that the time step ∆t is included in the coefficient ma-
trix for which the inverse matrix should be calculated, so
if the time increment is changed in the middle of the sim-
ulation, the inverse matrix calculation must be performed
each time. Since the most computation time-consuming
part of our code is the inverse matrix calculation, it may be
more efficient to use the Euler method or the Runge-Kutta
method if the time step is frequently changed during the
simulation. However, the inverse matrix calculation is par-
ticularly time-consuming when the number of grid points
is large, in which case the explicit method requires an even
finer time step due to the Courant condition.

From the Eq. (54), the eddy current distribution at
a steady state can be obtained directly. Since the time-
varying term on the left-hand side is zero in the steady-
state, the eddy currents under the steady-state time varia-
tion of the external magnetic field

[
∂Bs

ex
∂t

]
can be calculated

as [
T
]
steady

=
[
Y
]−1

[
∂Bs

ex

∂t

]
. (57)

2.4 Boundary conditions and solvability
As mentioned in Sec. 2.3.2, if the number of the grid

points is (m, n) in (θ, ζ) direction, there are m × n + 1 un-
knowns to be obtained. On the other hand, the number
of the eddy current equations is only m × n at most be-
cause it is a physical equation and can be established at
each grid point. Furthermore, because the total flux link-
age on the closed surface is zero (Faraday’s law), the num-
ber of independent equations is restricted to m × n − 1,
since the magnetic field at one point is determined from the

magnetic fields at all other points. Therefore, as boundary
conditions, the equations for the circulating voltage in the
poloidal and toroidal directions are introduced.

V loop
pol =

∮
Cθ

∂A
∂t
· dlθ = −

∮
Cθ

(
J
σd

)
· dlθ, (58)

V loop
tor =

∮
Cζ

∂A
∂t
· dlζ = −

∮
Cζ

(
J
σd

)
· dlζ , (59)

where V loop
pol and V loop

tor are the circulating voltages in the
poloidal and toroidal directions respectively, A is the vec-
tor potential, Cθ and Cζ are the integral loop, and l is the
line element along the integral loop. Separating the vector
potential in the left-hand side term to the components gen-
erated by eddy currents and by external sources like (19),
we obtain∮

Cθ

∂Aeddy

∂t
· dlθ

= −
∮

Cθ

(
J
σd

)
· dlθ −

∮
Cθ

∂Aex

∂t
· dlθ, (60)∮

Cζ

∂Aeddy

∂t
· dlζ

= −
∮

Cζ

(
J
σd

)
· dlζ −

∮
Cζ

∂Aex

∂t
· dlζ . (61)

We can use any loop to evaluate the circulating voltage,
but if the point of evaluation of the vector potential coin-
cides exactly with the location of the current element, the
vector potential will diverge. In our code, the vector poten-
tial is evaluated on the (θ, ζ) = (θi, ζ j) grid so that it does
not overlap with the current point. Since the voltage drop
is evaluated in integral value, the value evaluated on the
(θ, ζ) = (θi, ζ j) grid should be identical with the value eval-
uated on the current grid (θ, ζ) = (θi + ∆θ2 , ζ j) for poloidal

direction and (θ, ζ) = (θi, ζ j +
∆ζ
2 ) for toroidal direction.

The Biot-Savart law for vector potential is

A(r) =
µ0

4π

"
J(r′)
|r − r′|

√
gdθ′dζ′, (62)

and can be expressed in the same way as the magnetic field,
by multiplying the stream function by the coefficient ma-
trix.

To incorporate the Eqs. (60) and (61) into the eddy
current Eq. (54), the term on the left-hand side and the sec-
ond term on the right-hand side of the eddy current equa-
tion are extended to include the rows of coefficients for the
vector potential generated by the eddy currents and exter-
nal source respectively. To the first term on the right-hand
side of the Eq. (54), we add the rows of coefficients rep-
resenting the voltage drop due to electrical resistance and
eddy currents as the corresponding quantities to the circu-
lar voltage. This results in a total of m × n + 1 equations,
which equals the number of unknowns, indicating that the
system of equations is now solvable. All of these m× n+ 1
equations are independent, ensuring the regularities of the
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matrices and the existence of the inverse matrices required
by Eqs. (55) and (56).

Consider the physical meaning and computational role
of the circulating voltage equation used for the boundary
conditions. Physically, the integral of the eddy currents
around the vessel is given by the circulating voltage equa-
tion, and the difference between eddy currents is given by
the eddy current equation. They determine the current val-
ues at all points by working together. Computationally, the
circulating voltage equation determines the difference of T
from the value after one round of the vessel, so that T out-
side the grid can be fully represented by T inside the grid,
and the eddy current equation becomes solvable. Figure 2
shows a schematic diagram that summarizes the theory up
to this point. The number of unknowns is m × n − 1 in the
grid and 2 outside the grid, and the number of equations is
m × n − 1 in the eddy current equations and 2 in the circu-
lating voltage equations, which constitute together a set of
linear equations (matrix equations) of m × n + 1 order.

2.5 Non-periodic spatial structure case
The calculation theory described up to Sec. 2.4 as-

sumes a torus vessel with periodicity in the poloidal and
toroidal directions, and it must be modified if the object to
be calculated is a spatially non-periodic conductor, such as
stabilizing plate [7]. In obtaining the eddy currents at the
edge of the grid, the Eqs. (33) and (34) can be used when

Fig. 2 Schematic diagram of the numbers of unknowns and in-
dependent equations on the eddy current calculation.

there is periodicity. In the case of no periodicity at all,
all the values of the off-grid stream function are identical,
because no eddy currents (corresponding to the gradient
of the stream function) flow outside the grid. Therefore,
there is only one value of T outside the grid that should be
considered as an unknown, and the number of unknowns
is decreased to m × n. Next, we consider the number of
equations. Different from Sec. 2.4, the linear dependency
of the eddy current equations which is due to the total flux
linkage is eliminated because the conductor is not a closed
surface. Thus, m × n eddy current equations are available.
At this point, the number of equations coincides with the
number of unknowns, indicating that the boundary condi-
tions are no longer necessary.

Similarly, we evaluate the number of unknowns and
equations for the case of periodicity in only one direction.
For example, if the periodicity is in the θ direction, each
one off-grid stream function value on the maximum side
and the minimum side of ζ grid should be treated as un-
known. When the periodicity is in the ζ direction, the re-
sult is the same. The total number of unknowns is thus
m × n + 1, which is the same as in the torus case and m × n
eddy current equations are available as in the non-periodic
case. Therefore, just one boundary condition, namely the
circulating voltage equation, is needed.

2.6 Spatially non-differentiable structure
case

The calculation theory described in Sec. 2.1 to Sec. 2.4
assumes that the conductor has a spatially smooth (differ-
entiable) structure. In this section, we will look at how
to calculate eddy currents in conductors with non-smooth
spatial patterns.

Because the stream function and eddy current are
mapped by spatial differentiation as (14) and (15), the rep-
resentation by the stream function is not possible at points
where the spatial derivative cannot be defined. Although
the stream function representation guarantees to satisfy the
continuity equation of surface current at each grid point,
the continuity equation must be considered by other means
if the stream function is not used. Consider the use of
Kirchhoff’s first law in a circuit network that imitates the
grid on the conductor. If the net current at each grid in-
tersection is zero, there is no divergence of current. A
schematic diagram of the current inflow and outflow at an
intersection is shown in Fig. 3.

To avoid confusion with the previous sections, we de-
fine α and β as arbitrary coordinate axes along the ves-
sel surface in this section. Also, Jα and Jβ are not the
contravariant components of the surface currents, but the
components of the physical surface currents in each direc-
tion. Because the surface current values after discretization
are representative values around the grid point, the cur-
rent flowing into the intersection can be obtained by taking
the products of surface currents Jα, Jβ and the grid widths
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Fig. 3 Schematic diagram of the current inflow and outflow at
an intersection on the circuit network.

dα, dβ. Thus, Kirchhoff’s first law at the grid intersection
(i, j) can be expressed as

Jαi−1, j

(
dβi−1, j−1 + dβi−1, j

)
+ Jβi, j−1

(
dαi−1, j−1 + dαi, j−1

)
− Jαi, j

(
dβi, j−1 + dβi, j

)
− Jβi, j

(
dαi−1, j + dαi, j

)
= 0.

(63)

Without the stream function representation, the un-
knowns are each component of the eddy currents at all
grid points, hence the number of unknowns is 2m × n.
However, the number of equations is m × n + 1, imply-
ing that the equations are insufficient to solve the problem.
By combining the Eq. (63) with the eddy current equation,
the solution should be derived if the number of equations
equals the number of unknowns. The Eq. (63) can be for-
mulated at each grid intersection point, but they are not
completely independent. An equation at a point can be ob-
tained by adding or subtracting the equations at all other
points. Therefore, the number of equations from Kirch-
hoff’s first law is only m× n− 1. These m× n− 1 equations
can be expressed as the product of the current array

[
J
]
=

[
Jα

Jβ

]
, (64)

and the coefficient matrix
[
K
]

as[
K
][

J
]
= 0. (65)

The eddy current equation in matrix form (51) can also be
expressed without the stream function as

∂

∂t

[
L
]
=

[
R
]
−

[
∂Bs

ex

∂t

]
,[

L
]
=

[
MLJα MLJβ

][
J
]
≡

[
MLJ

][
J
]
, (66)[

R
]
=

[
MRJα MRJβ

][
J
]
≡

[
MRJ

][
J
]
, (67)

where
[
MLJα

]
,
[
MLJβ

]
,
[
MRJα

]
, and

[
MRJβ

]
are the coeffi-

cient matrices in m × n − 1 rows and m × n columns re-
spectively, and then

[
MLJ

]
and

[
MRJ

]
have m × n − 1 rows

and 2 × m × n columns. When Eqs. (51) and (65) are
combined, the number of equations becomes (m × n + 1)+
(m × n − 1) = 2 ×m × n, which corresponds to the number
of unknowns. Kirchhoff’s first law must be applied to the
eddy currents at the following time step when doing the
computations asMLJ

∂J
∂t
|t

KJt+dt

 =
MRJ Jt −

∂Bs
ex

∂t
0

. (68)

The time derivative of this equation can be discretized in
the same way as in Sec. 2.3.6, and the time evolution of
the eddy currents can be calculated by performing the time
integration with an arbitrary method. As an example, when
we adopt the Euler method:

[J]t+∆t =

[
MLJ

K

]−1
(MLJ + ∆tMRJ)Jt − ∆t

∂Bs
ex

∂t
0

.
(69)

Note that the computational load for matrix calcula-
tion increases when the stream function is not used because
each coefficient matrix is of order 2 × m × n, whereas it
is of order m × n + 1 when the stream function is used.
On the other hand, the number of matrix calculations can
be reduced because the calculation to convert the stream
function to eddy current is no longer required.

3. Non-Axisymmetric Eddy Current
Calculation Code Keddy3D
Based on the computational method described in

Sec. 2, we have developed the non-axisymmetric eddy cur-
rent calculation code Keddy3D. In this section, we de-
scribe our simulation setup and calculation results per-
formed to validate the Keddy3D.

3.1 Calculation of axisymmetric eddy
current

In eddy current calculation on axisymmetric toka-
maks, an approximation method in which the conductor
is split into several toroidal conductor loops (filament ap-
proximation) [8] is widely employed. We will compare the
simulation results of the Keddy3D with those of the fila-
ment approximation and establish the validity of axisym-
metric eddy current calculations.

3.1.1 Setup

Figure 4 shows a schematic of the vacuum vessel and
the center solenoid coils (CS coils) employed in the simu-
lation.
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Fig. 4 Simulation setup for axisymmetric eddy current calcula-
tion.

The toroidal angle ζ is taken in the direction where
the cylindrical coordinate system (R, ζ, Z) is right-handed,
and the poloidal angle θ is taken in the direction where
the curvilinear coordinate system (s, θ, ζ) is right-handed
with the coordinate in the minor radial direction s. Con-
sider a toroidal axisymmetric circular vessel with center
point at (R,Z) = (3 m, 0 m), small radius 1 m, wall thick-
ness 0.02 m, and conductivity 0.72 µΩ ·m. Axisymmetric
conductors imitating the CS coils are placed at (R,Z) =
(1.5 m,±1 m). The temporal evolution of the induced eddy
currents in the vacuum vessel is calculated until it reaches a
nearly steady-state. The electromotive force is supplied by
flowing currents through each CS coil at a constant time-
varying rate of 0.1 MA/s. It is assumed that no eddy cur-
rents exist in the initial state. The simulations are carried
out with a circuit equation code based on the filament ap-
proximation and the Keddy3D, and the results are com-
pared. In the filament approximation code, the vacuum
vessel is split into 100 poloidal sections, each of which
is considered as an individual axisymmetric conductor.
The cross-sectional area of each axisymmetric conductor
is adjusted to match the original vacuum vessel’s cross-
sectional area divided by the number of poloidal sections.
In the Keddy3D calculation, the number of grid points in
(θ, ζ) direction is set to (m, n) = (100, 180).

3.1.2 Result

The temporal evolution of the total toroidal compo-
nents of induced eddy currents in the vacuum vessel is
shown in Fig. 5.

The total eddy current in Fig. 5 is determined by a sim-
ple summation of all currents flowing through the filaments
in the filament approximation code. In contrast, an integra-
tion of surface current density in poloidal circumference is
needed to obtain it in the Keddy3D. According to Fig. 5, it
can be seen that the calculated result of the Keddy3D is in
good agreement with the result of the filament approxima-

Fig. 5 Time evolution of the total of toroidal eddy currents in-
duced in the vacuum vessel (comparison of filament ap-
proximation code vs. Keddy3D).

tion code.
Next, we compare the surface current density distribu-

tion of eddy currents at each time. We compare it at three
stages of temporal evolution: 0.02 s, 0.10 s, and 0.30 s. The
poloidal distribution of eddy current density at each time
point is shown in Figs. 6 - 8.

The surface current densities in Figs. 6 - 8 are deter-
mined by dividing eddy current values in each filament by
the length of the arc to the next filament in the filament ap-
proximation code, whereas it is computed as the gradient
of stream function in the Keddy3D. The eddy current den-
sity distribution has a minor inaccuracy in the early stage
of temporal evolution, as seen in Fig. 6. The error is most
obvious at θ = π (outboard side of the torus), which can be
interpreted as the position away from the evaluation point
of the circular voltage equation as the boundary condition.
In this simulation, we evaluate the toroidal circular voltage
at θ = 0 (inboard side of the torus), and because the circular
voltage equation is essentially similar to the circuit equa-
tion calculated in the filament approximation, the inaccu-
racy in the calculation results stays modest at θ = 0. On the
other hand, at points other than θ = 0, the Keddy3D eval-
uates the eddy currents indirectly through the difference of
the stream function, whereas the filament approximation
obtains the eddy currents from the circuit equation. This
discrepancy might be the source of the inaccuracy shown in
Fig. 6. The error in the eddy current at θ = π point at 0.02 s
was −6.37 % when the filament approximation code result
was used as the real value. Although this seems to be a sig-
nificant error, θ = π is the region with the lowest eddy cur-
rent density, therefore the relative error is easily assessed
to be large. As shown in Fig. 6, the overall error is rather
minor, and the Keddy3D calculation results are typically
consistent with the circuit equation solution (the results of
the filament approximation code). Furthermore, Figs. 6 - 8
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Fig. 6 Poloidal distribution of eddy current density at 0.02 s af-
ter simulation start (comparison of filament approxima-
tion code vs. Keddy3D).

Fig. 7 Poloidal distribution of eddy current density at 0.10 s af-
ter simulation start (comparison of filament approxima-
tion code vs. Keddy3D).

Fig. 8 Poloidal distribution of eddy current density at 0.30 s af-
ter simulation start (comparison of filament approxima-
tion code vs. Keddy3D).

illustrate that the inaccuracy decreases as the temporal evo-
lution advances. This result suggests that the inaccuracy is
mostly attributable to the component of the equation relat-
ing to temporal variation, namely

[
X
]

in the Eq. (54). This
is the term for the magnetic field generated by the eddy
currents and is calculated by Biot-Savart’s law. The mag-
netic field generated by current elements discretized in the
toroidal direction in the Keddy3D may differ slightly from
the magnetic field generated by continuous currents in the
filament approximation code. This discrepancy is assumed
to be the source of temporal variation inaccuracies. Ac-
tually, the inaccuracy decreases as the number of toroidal
grid points n increases, validating the aforementioned as-
sumption.

As a conclusion of this numerical experiment, it was
found that the Keddy3D can calculate axisymmetric eddy
currents with good overall accuracy, although it is prone to
errors in the temporal evolution away from the evaluation
point of the boundary condition.

3.2 Calculation of non-axisymmetric eddy
current in vessel with bellows

To confirm the validity of the non-axisymmetric eddy
current calculations of the Keddy3D, we simulated the case
of bellows in a vacuum vessel. In a previous study [9],
experimental and simulational results for eddy currents in
a tokamak vessel with bellows were compared. Therefore,
we can verify the physical consistency of the Keddy3D by
comparing the results of the Keddy3D calculations with
those of the previous study.

3.2.1 Setup

Figure 9 shows a schematic view of the vacuum vessel
and the CS coils employed in the simulation. The CS coils
are arranged like the walls of a concentric cylinder, sand-
wiching the vacuum vessel from the inside and outside.

The wall thickness is set to 8.2 mm in accordance with

Fig. 9 Simulation setup for non-axisymmetric eddy current cal-
culation.
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the previous study [9]. The vacuum vessel has bellows at
four separate locations around its circumference, and the
vessel is simply modeled by varying the electrical resis-
tivity in the poloidal and toroidal directions at the bellows
sites separately. Other experimental settings were not pro-
vided in the previous study, thus appropriate values are set
by guesswork. The number of grid points in the Keddy3D
is set to (m, n) = (50, 360).

We investigate the eddy currents that flow in the vac-
uum vessel when an alternating current of 50 Hz is sup-
plied to the center solenoid coil.

3.2.2 Result

To begin, we confirm that the eddy current distribution
is properly simulated in the presence of bellows. The eddy
current distribution in the simulation result of the Keddy3D
is shown on the surface of the vacuum vessel by vectors in
Fig. 10.

Since the calculation results showed toroidal period-
icity, the results are only presented for one cycle, but the
entire vessel is calculated. The following three features of
the eddy current distribution in the presence of bellows are
identified.

1. Because the bellows section has a high electrical re-
sistance in the toroidal direction, currents in the sec-
tion are small.

2. Large poloidal currents flow along the border between
the bellows section and the wall section.

3. Eddy currents circulate through the wall section,
forming a saddle-shaped structure.

Fig. 10 Result of non-axisymmetric eddy current calculation by
the Keddy3D. The direction of a vector corresponds to
the direction of the eddy current at its position and the
color corresponds to the magnitude of the current.

Looking at Fig. 10, it can be roughly confirmed that the
currents are smaller in the bellows section and larger near
the boundary and that the currents circulate in the wall sec-
tion, forming a circulating current flow.

The distribution of eddy currents in each direction is
then seen in detail. The current density of the toroidal eddy
currents flowing through the vacuum vessel is shown in
Fig. 11.

According to Fig. 11, toroidal currents flowing in the
bellows section have a consistent direction independent
of the poloidal position, but toroidal currents flowing in
the wall section have variable directions depending on the
poloidal position because they circulate. Comparison with
the previous study [9] shows that the magnitude and distri-
bution of the eddy currents are consistent with the experi-
mental result.

Next, the current density of poloidal eddy currents
flowing through the vacuum vessel is shown in Fig. 12, tak-
ing the distribution in the toroidal direction.

From Fig. 12, we can again confirm the characteristic
that the poloidal currents increase near the border between
the bellows part and the wall part, which was also observed
in Fig. 10. When this result is compared with the previous

Fig. 11 Poloidal distribution of toroidal eddy current density.

Fig. 12 Toroidal distribution of poloidal eddy current density.
The dotted line indicates the boundary between bellows
and wall sections.
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study [9], the toroidal variation of poloidal current at the
boundary between bellows part and wall part (ζ = 31◦) is
more drastic. The modeling of bellows should be the pri-
mary cause of this discrepancy. Because the detailed mod-
eling is not provided in the previous study, we referred to
another paper [10] to model the electrical resistivity distri-
bution of bellows. The resistivity in our model discontin-
uously changes at the boundary in both the poloidal and
toroidal directions. The eddy current there varies radi-
cally for this reason. The magnitude and distribution of the
current are mostly consistent with the experimental result,
notwithstanding the gradient’s differences.

As a conclusion of this numerical simulation, it can be
said that the results of the non-axisymmetric eddy current
calculation by the Keddy3D are physically valid since the
results generally reproduced the experimental results pre-
sented in the previous study.

4. Discussion
The calculation method presented in this study is not

suitable for imitating complicated in-vessel components as
divertors and blankets precisely because it adopts fixed in-
tervals for the poloidal and toroidal grid, which tend to lack
flexibility in spatial expression. However, this study is mo-
tivated not to reproduce detailed eddy current structures,
but to analyze the dynamics of plasma interacting with
the eddy currents. In terms of saving computational re-
sources used by eddy current calculations, we would rather
evaluate the effects of the characteristic structures approx-
imately by modeling them as mathematical expressions
than imitate them precisely consuming more computing re-
sources by adopting advanced computational methods.

5. Summary
We have developed a new simulation code for simulat-

ing the time evolution of non-axisymmetric eddy currents
induced on the vacuum vessel. The Keddy3D code solves
the eddy current equation obtained by using the thin-wall
approximation. In the code, the eddy current is represented
in terms of the stream function and is discretized on (m, n)
grid points in (θ , ζ ) direction, and then the eddy current
equation becomes a system of m × n − 1 independent al-
gebraic equations for the stream function at m × n + 1 grid

points. By adding equations for the circulating voltage in
each direction, the system of equations becomes solvable.

Two numerical tests are carried out to verify the va-
lidity of the Keddy3D code. In the first test, we made the
axisymmetric eddy current calculations and compare the
obtained results with those from an axisymmetric eddy cur-
rent calculation code based on the filament approximation.
We found that they are in good agreement. In the second
test, we simulated eddy currents with non-axisymmetry
due to the bellows of a vacuum vessel. We confirmed that
the simulation results were consistent with experimental
results presented in Ref. [9]. From the results of these nu-
merical experiments, we conclude that the Keddy3D code
provides physically reliable results.

The Keddy3D code developed in this study has an ad-
vantage in the long-term evolution of non-axisymmetric
eddy current on the vacuum vessel because of its low
computational cost, and thus the Keddy3D code is use-
ful for the analysis of disruptions and resistive wall modes
(RWMs). We have also developed an integrated dis-
ruption simulation code that incorporates the Keddy3D
code. Our integrated code is capable of performing non-
axisymmetric disruption simulations and will be reported
in our next paper.
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