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Neoclassical transport is caused by the non-equilibrium distribution function produced by the driving forces
due to quasi-steady but non-uniform plasma state parameters and electromagnetic fields as well as by the
Coulomb interactions. In this article, we present a method to evaluate the impact of each driving force on neo-
classical transport by a single global drift-kinetic simulation. This method can be used to evaluate the impacts
of each driving force not only in one-dimensional forms as transport coefficients, but also in multidimensional
forms as how the impacts of each driving force are distributed over the phase space. As an application of the
method, we investigate the impacts of each driving force on particle density variations in an impurity hole plasma
and demonstrate that the impact of the outward driving force of the temperature gradient on the radial impurity
flux becomes as large as the impact of the inward driving force of the negative ambipolar radial electric field.
Further, we show that the variation of electrostatic potential on each flux surface, Φ1, which is involved in several
factors in a drift-kinetic equation, affects the density variations specifically through the radial E × B drift.
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1. Introduction
The aim of neoclassical transport studies is to under-

stand the transport of particles and energy in a plasma
caused by the steady but inhomogeneous plasma profiles
and electromagnetic fields and by the Coulomb interac-
tions between the charged particles. From the microscopic
point of view, the transport is caused by the deviation of the
distribution function from the local thermodynamic equi-
librium distribution,

δ fa ≡ fa − faM , (1)

where fa is the total 1-particle distribution function and faM

is the local Maxwellian,

faM(r, v) = na(r)

(
ma

2πTa(r)

)3/2

exp

(
− mav

2

2Ta(r)

)
, (2)

which represents the local equilibrium distribution, where
na denotes the density, Ta the temperature, ma the mass, v
the magnitude of the velocity v, and r the radial coordinate,
respectively. The subscript a is the species label. In (1), it
is assumed that

δ fa/ faM ∼ δ � 1, (3)

where δ = ρ/L, ρ is the thermal gyroradius, and L is the
typical length scale of the plasma. The macroscopic fluxes
are evaluated with the distribution function by

Jai =

〈∫
d3v jai δ fa

〉
, (4)
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where Jai is the i-th flux and jai is the corresponding mi-
croscopic flow, such as vd · ∇r for the radial particle flux,
where vd is the drift velocity, and 〈. . .〉 denotes the flux
surface average.

The macroscopic fluxes are flux-surface-averaged
quantities and have little information on the causes of
them. On the other hand, the transport coefficients Dab

i j
relate the fluxes to driving forces linearly as

Jai =
∑

b

∑
j

Dab
i j Xb j, (5)

under the assumptions that the system is close to equilib-
rium and the driving forces are small enough to neglect
the higher-order nonlinear terms. Throughout this article,
we will assume that Xa j ∼ 1/L for all j and a. The trans-
port coefficients thus provide the information on how much
each driving force contributes to the flux-surface-averaged
fluxes.

One approach to evaluating the contribution of a spe-
cific driving force is setting all other driving forces to zero.
This can be a practical option for local simulation because
the radially local approximation enables us to set the gra-
dients of the background parameters to arbitrary values,
including zero, on a specific flux surface keeping the local
values of the background parameters themselves. How-
ever, this is not a realistic option for global simulation.
The first reason is simply the numerical cost. Since the
calculation time required for a global simulation is tens or
hundreds of times larger than those of local simulations
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for a single case. It is thus not always possible to investi-
gate the impact of each driving force by this method one
by one, especially when several species are present in the
plasma. The second reason, which is more crucial, is the
global effects. The outputs of global simulation depend on
the global structure of the background parameter profiles.
A self-consistent calculation of the ambipolar Er requires
all the driving forces to be considered as well. We thus
cannot modify the profiles of the background parameters
in an arbitrary manner. Therefore, we have developed a
new method to evaluate the impacts of each driving force
by a single δ f simulation without a significant increase in
the numerical cost. This method can be implemented in
local codes as well as global codes.

In this article, we present how to implement and ap-
ply the method to evaluate the impacts of driving forces
on particle density variations. Here, we focus on density
variations instead of the transport coefficients because the
transport coefficients are also flux-surface-averaged, one-
dimensional quantities. A lot of information carried by
the distribution function is lost in the averaging process.
The information lost in the process is potentially very valu-
able for the transport study since the transport is caused by
the characteristic orbits of the particles and the inhomoge-
neous distribution of the particles over the phase space.

Recently, it has been discussed that several effects that
have conventionally been neglected can be important for
determining neoclassical impurity transport. The first ex-
ample is the variation of electrostatic potential on each flux
surface Φ1 ≡ Φ −Φ0, where Φ is the total electrostatic po-
tential and Φ0 = Φ0(r) is the flux-function part of it. The
potential variation Φ1 is produced mainly by the bulk ion
density variation, and how Φ1 couples with the impurity
density variations has been a subject of interest (e.g.[1–5]).
The second is the effects of external heating such as neutral
beam injection (NBI) [6] that can also give rise to asymme-
try in density profiles on flux surfaces [7, 8]. The third is
synergy effects between neoclassical and turbulent trans-
port. Impurity transport can be affected by the synergy
through the density perturbation [9]. Measurement of im-
purity density variations is of interest to experimental stud-
ies as well [10]. Thus, implementing a method that can
evaluate the density variations with respect to each driv-
ing factor, including those yet to be investigated, is impor-
tant to investigate the detailed mechanism behind impurity
transport.

The rest of this article is organized as follows. In
Sec. 2, we present the theoretical consideration underly-
ing the method. In Sec. 3, we show how to implement the
method in Monte-Carlo δ f simulation codes. Then, an ap-
plication of the method is presented in Sec. 4. Finally, fur-
ther potential applications of the method are discussed, and
the study is concluded in Sec. 5.

2. Linearized Drift-Kinetic Equation
For generality, we consider the formulation including

Φ1. To consider the impact ofΦ1, it is convenient to choose
the lowest order distribution function as

fa0 = faM exp (−ZaeΦ1/Ta). (6)

Then, the non-adiabatic perturbation of the distribution
function, δ fa, is determined by a drift-kinetic equation:

dδ fa
dt
= −d fa0

dt
+C( fa), (7)

where C and d/dt represent the collision operator and the
total time derivative along a guiding-center drift orbit, re-
spectively. Under the assumption (3), the collision opera-
tor can be linearized as C( fa) 	 CL

a (δ fa) ≡ ∑
b CL

ab(δ fa) ≡∑
b[CT

ab(δ fa)+CF
ab(δ fb)], where CT

ab and CF
ab are test-particle

and field-particle parts of the collision operator, respec-
tively. Up to the first order of δ, the right-hand side of
(7) can also be expanded as

d fa0

dt
= vd · ∇r fa0

[
Xa1 +

(
x2

a +
ZaeΦ1

Ta
− 3

2

)
Xa2

]
,

(8)

≡ fa0 ( ja1Xa1 + ja2Xa2) , (9)

with the driving forces,

Xa1 =
n′a
na
− ZaeEr

Ta
, (10)

Xa2 =
T ′a
Ta
, (11)

and the microscopic flows,

ja1 = vd · ∇r, (12)

ja2 = vd · ∇r

(
x2

a +
ZaeΦ1

Ta
− 3

2

)
, (13)

where Zae is the charge of the species a, Er = −dΦ0/dr
is the radial electric field, x2

a = mav
2/(2Ta), and the prime

denotes the radial derivative. The radial drift velocity vd ·
∇r consists of the radial components of the magnetic drift
vm and the E × B drift vE as vd · ∇r = (vm + vE) · ∇r. The
radial E × B drift is generated by Φ1:

vE · ∇r = vE1 · ∇r ≡ B × ∇Φ1

B2
· ∇r. (14)

Therefore, Φ1 is involved in three different factors in (9):
the E × B drift in vd, the potential energy carried by
ja2, and the adiabatic response in fa0. For moderate Za,
ZaeΦ1/Ta ∼ O(δ). Thus, in each of these forms, the im-
pact of Φ1 is usually smaller than the conventional terms
by δ:

ZaeΦ1

Tax2
a
∼ ZaeΦ1

mav2
∼ vE1

vm
∼ δ. (15)
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Note that Φ1 is produced by the density variations [1,
4]:

Φ1 =
1
e

⎛⎜⎜⎜⎜⎜⎝
∑

I

Z2
I nI0

Ti
+

ne0

Te

⎞⎟⎟⎟⎟⎟⎠
−1 ∑

a

Za

∫
d3vδ fa, (16)

where the subscript I refers to ion species, and all the
ion species are assumed to have the same temperature Ti.
Thus, δ fa enters (9), and therefore in the right-hand side
of the drift-kinetic Eq. (7). However, we can still assume
that (9) is approximately independent of δ fa. For impurity
ions, it is because Φ1 is mainly determined by the density
variation of the bulk ions, i.e.,

Φ1 	 Zi

e

⎛⎜⎜⎜⎜⎜⎝
∑

I

Z2
I nI0

Ti
+

ne0

Te

⎞⎟⎟⎟⎟⎟⎠
−1 ∫

d3vδ fi, (17)

if the concentration of the impurity ions is small. In (17),
the electron density variation is also neglected because the
electron response can be assumed to be adiabatic: δ fe = 0.
In the present study, the low concentration of the impurity
ions is a natural consequence of the input profiles, and the
adiabatic response is assumed in evaluating Φ1 by neglect-
ing δne. For the bulk ions, on the other hand, the impact of
Φ1 is small because of the smallness of Za = Zi in (15) and
the formulation without Φ1 can be assumed for the quali-
tative analysis. Then, each factors in (9) are reduced as

fa0 → faM ,

vd · ∇r → vm · ∇r,

ja2 → vm · ∇r

(
x2

a −
3
2

)
.

(18)

Under these considerations, we obtain a linearized
drift-kinetic equation

dδ fa
dt
= − fa0 ( ja1Xa1 + ja2Xa2) +CL

a (δ fa). (19)

Then, corresponding to each driving force, the distribution
function can be decomposed as

δ f =
∑

b

2∑
j=1

δ f j
ab, (20)

where δ f j
ab is proportional to Xb j and each component sat-

isfies either of the decomposed drift-kinetic equations

d
dt
δ f j

aa = − ja j fa0Xa j +CL
a (δ f j

aa), (21)

d
dt
δ f j

ab = CL
a (δ f j

ab), (a � b). (22)

Thus, for example, the integral

δna j =

∫
d3v δ f j

aa (23)

gives the density variation caused by the i-th driving force
regardless of the other driving forces. Note here that the

collision terms do not contribute to the density variation in
the form of (23) since the linearized Coulomb collision op-
erator does not affect the spatial variables (or equivalently
by the particle conservation law, 0 =

∫
dt

∫
d3vCL(δ f )).

The collisions affect the density variation through the ve-
locity variables in (12) and (13) instead.

3. Weight-Splitting Method
In this section, we explain how to implement the

scheme described above in Monte-Carlo two-weight δ f
simulation codes. In the two-weight δ f scheme [11, 12],
the distribution functions are represented by the products
of the marker particle distribution ga(Z, t) and the weight
fields Pa(Z, t) and Wa(Z, t), respectively, as

fa0(Z, t) = Pa(Z, t)ga(Z, t), (24)

δ fa(Z, t) = Wa(Z, t)ga(Z, t), (25)

where Z denotes the guiding-center phase variables, and
fa0 is a Maxwellian if Φ1 = 0 otherwise fa0 =

faM exp (−ZaeΦ1/Ta). Each marker particle is assigned
two weights wa,i and pa,i that are defined as the values of
the weight fields Wa and Pa at the particle position in the
phase space, Zi, respectively:

wa,i(t) = Wa(Zi(t), t), (26)

pa,i(t) = Pa(Zi(t), t), (27)

where i is the marker particle label.
In Monte-Carlo δ f codes, the test-particle part of the

linearized collision operator, CT
a =

∑
b CT

ab, is described
by a diffusion process in the velocity space [13, 14]. The
weight wa,i is then determined by solving the equation

Dwa,i

Dt
= −pa,i ( ja1Xa1 + ja2Xa2) + Pa, (28)

where D/Dt ≡ d/dt − CT
a and Pa represents the field-

particle operator. Then, corresponding to (20), we can split
the weight as

wa,i =
∑

b

2∑
j=1

w
j
ab,i, (29)

where each component is a solution of either of the equa-
tions corresponding to (22),

D
Dt
w

j
aa,i = −pa,i j jXa j + Pa,

D
Dt
w

j
ab,i = Pa, (a � b). (30)

Evaluating the solutions of (30), instead of (28), gives the
δ f components with respect to each driving force. See [4]
for how to construct multi-dimensional continuous profiles
of averaged quantities, such as δna, from wa,i.
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4. Application of the Method
4.1 Impurity hole plasma

In our previous study, we investigated the impurity
transport in an impurity hole plasma [5]. An impurity hole
observed in the Large Helical Device (LHD) is a hollow
impurity density profile formed in the core plasma where
an inward-pointing Er exists [15, 16]. The formation of
an impurity hole contradicts the prediction of conventional
neoclassical theory. Under such a condition, inward fluxes
of moderate-Z to high-Z impurities are anticipated by the
conventional neoclassical theory since the driving force
due to the Er (the second term in (10)) is proportional to
the charge Zae. The neoclassical simulations with radially
local codes have confirmed this prediction as well [2, 3].

For this reason, turbulent transport is suspected to play
a key role behind the phenomenon, but to date, no satis-
factory explanation has been provided by turbulent trans-
port studies [17, 18]. On the other hand, through the inves-
tigation of the phenomenon, studies showed that an out-
ward driving force of the large temperature gradient can
compete with or possibly overcome the inward Er driv-
ing force [3, 19]. The studies suggested that producing the
outward impurity fluxes by neoclassical simulation may
remain possible if some more elaborate model is used.
We thus performed numerical simulations using a radially
global neoclassical code FORTEC-3D, which is built on
the Monte-Carlo two weight δ f schemes [14, 20, 21]. As
a result, although some issues remain unsolved, we suc-
cessfully reproduced the outward impurity fluxes, and it
was in fact indicated that the ion temperature gradient ∇Ti

and the ambipolar Er contribute to the flux in the same
level, each in the opposite direction [5]. It was also con-
firmed that Φ1 can contribute to driving the impurity flux
further outwardly. However, the contributions of each driv-
ing force to the macroscopic fluxes have not been quantita-
tively estimated, since in particle codes such as FORTEC-
3D, the fluxes are usually evaluated by integrals (4), not
by the combination of the driving forces as (5). We thus
apply the new method described above to make a quanti-
tative evaluation of the impact of each driving force on the
impurity transport and to examine in which wayΦ1 mainly
contributes to the flux enhancement.

4.2 Simulation setup and the results
The simulation setup and the input plasma profiles are

the same as Case A in [5]. We apply the method to the
cases with and without Φ1. A standard LHD configuration
with a major radius of R0 = 3.7 m and a minor radius of a =
0.62 m is assumed. The plasma contains three ion species:
hydrogen H1+, helium He2+, and carbon C6+. Carbon is the
most typical ion species that has been observed to form an
impurity hole. The n-T profiles are shown in Fig. 1. The
hollow region of the carbon density profile (0.1 < r/a <
0.6) corresponds to an impurity hole. All the ion species
are assumed to have the same temperature Ti.

Fig. 1 Density profiles (left) and the temperature profiles (right).
All the ion species are assumed to be in thermal equilib-
rium with each other.

Fig. 2 Input profiles of the ambipolar Er (left) and the resulting
ΓC (right). The green and red lines represent the results
with and without Φ1, respectively.

A difference in the simulation setup from the previous
study is that the profiles of Er are fixed during the evalu-
ation of δnC so that all Xj are constant on each flux sur-
face. After about 10 carbon collision time (∼ 10τC), Er

and the radial particle fluxes Γa of all species reach steady
values. We then use the steady Er profiles as the input val-
ues and continue the simulation for about another carbon
collision time (∼ τC) to evaluate the carbon density varia-
tion δnC . Thus, the additional numerical cost for applying
the method is about 10% of the original simulation. The
time evolution of Φ1 is not stopped for the case with Φ1,
but after the system reaches a quasi-steady state, Φ1 does
not show appreciable changes. The input profiles of the
ambipolar Er and the resulting radial carbon particle flux
for the present cases are shown in Fig. 2.

4.3 Case without Φ1
We first represent the result of the case without Φ1.

Figure 3 represents the carbon density variation, δnC , on
three different flux surfaces: from left to right, r/a =
0.2, 0.25, and 0.3, respectively. These surfaces belong in
the region where Er changes its sign from negative to pos-
itive. The horizontal and vertical axes correspond to the
toroidal angle (ζ) and the poloidal angle (θ) in Boozer co-
ordinates, respectively. The upper figures are the results
evaluated with the unsplit weight, wC , and the lower figures
with the sum of the split weights,

∑
j w

j
CC . The smallness

of the difference between the upper and lower figures jus-
tifies the linear expansion of δ f in the driving forces (20).

Since vd · ∇r ∼ − sin θ, the radial particle flux is ef-
fectively produced by the sin θ component of δna. The
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Fig. 3 Carbon density variation profile on the flux surface at
r/a = 0.2 (left), r/a = 0.25 (center), and r/a = 0.3 (right)
for the case without Φ1. The upper figures correspond to
the result evaluated with unsplit weights and the lower
figures to the sum of the split weights. N is the toroidal
symmetry number (N = 10 for LHD).

positive sin θ component corresponds to an up-down (top-
bottom) asymmetric distribution of the particles: the den-
sity is high at the top (θ = π/2) and low at the bottom
(θ = 3π/2) regions, respectively, and which leads to an
inward particle flux. Conversely, the negative sin θ compo-
nent contributes to an outward flux. In light of this con-
sideration, we see that the phase structures of the carbon
density profiles indicate that the flux is driven outwardly,
as indeed shown in Fig. 2.

Now, let us look into the contribution of each driv-
ing force to the carbon density variation δnC . In order to
compare the impacts of Er and ∇TC on δnC directly, we
decompose XC1 as XC1 = X∇n + XE , where

X∇n ≡
n′C
nC
, XE ≡ −ZCeEr

TC
, (31)

and evaluate the density variation with respect to X∇n, XE ,
and X∇T ≡ XC2 = T ′C/TC , respectively.

Figure 4 represents the carbon density variation due
to X∇n (top), XE (center), and X∇T (bottom) respectively.
As in Fig. 2, from left to right, each column corresponds
to r/a = 0.2, 0.25, and 0.3. At r/a = 0.2, where Er < 0,
the XE-driven component clearly contributes to the inward
flux. However, the X∇T -driven part has the opposite sign,
while the amplitude is almost the same as XE-driven one.
This indicates that in the impurity hole plasma, the inward
impurity flux due to the negative Er can be canceled by
the outward flux due to the temperature gradient, as es-
timated with local simulation results in [3, 19]. This re-
sult is consistent with experimental reports that impurity
holes are usually observed in the core of NBI-heated dis-
charges where ∇Ti becomes large [10]. At r/a = 0.25,
where Er ∼ 0, the amplitude of XE-driven part decreases
as it should. At r/a = 0.3, where Er > 0, the profile of the
XE-driven part changes its sign from that of r/a = 0.2.

Fig. 4 Carbon density variation due to X∇n (top), XE (center),
and X∇T (bottom) for the case without Φ1. From left
to right, each column corresponds to the flux surface at
r/a = 0.2, r/a = 0.25, and r/a 0.3, respectively. N is the
toroidal symmetry number (N = 10 for LHD). Note that
the color contour range is different for each plot.

Fig. 5 Carbon density variation profile on the flux surface at
r/a = 0.2 (left), r/a = 0.25 (center), and r/a = 0.3 (right)
for the case with Φ1. The upper figures correspond to the
result evaluated with unsplit weights and the lower fig-
ures to the sum of the split weights. N is the toroidal
symmetry number (N = 10 for LHD).

4.4 Case with Φ1
Le us move on to the result of the case with Φ1. Fig-

ure 5 represents δnC at r/a = 0.2, 0.25, and 0.3, respec-
tively. The upper figures are the results evaluated with the
unsplit weight, wC , and the lower figures with the sum of
the split weights,

∑
j w

j
CC . As was for case without Φ1, the

differences between the upper and lower results are in a tol-
erable level for the present analysis. The contributions of
each driving force to the total density variation are shown
in Fig. 6.

By comparing Fig. 5 with Fig. 3, we find that the phase
structures are not largely changed. On the other hand, the
amplitude of δnC is increased by the inclusion of Φ1 on
all the surfaces. However, Fig. 6 indicates that the increase
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Fig. 6 Carbon density variation due to X∇n (top), XE (center),
and X∇T (bottom) for the case with Φ1. From left to right,
each column corresponds to the flux surface at r/a = 0.2,
r/a = 0.25, and r/a 0.3, respectively. N is the toroidal
symmetry number (N = 10 for LHD). Note that the color
contour range is different for each plot.

Fig. 7 Carbon density variation profile given by (32) on the flux
surface at r/a = 0.2 (left), r/a = 0.25 (center), and r/a =
0.3 (right).

mainly results from the diffusion-related components, i.e.,
the X∇n and XE components. At r/a = 0.3, the amplitude
of the X∇T term, which involvesΦ1 in the microscopic flow
as (13), is rather decreased by the inclusion of Φ1.

To examine the contribution of Φ1 through (13), the
density variation due to the relevant part of the term that
includes Φ1 in the flow

δnΦ1
C ≡ −

∫
dt

∫
d3vvd · ∇r

ZCeΦ1

Ti
fC0
∇Ti

Ti

	 −
∫

dt
∫

d3vvm · ∇r
ZCeΦ1

Ti
fCM
∇Ti

Ti
, (32)

is evaluated and shown in Fig. 7. The phase structure
of δnΦ1

C is different from other terms, but its amplitude
is too small to have an appreciable impact on the entire
contribution of the X∇T component. Since the adiabatic
response factor in the lowest order distribution function
exp (−ZCeΦ1/Ti) 	 1 − ZCeΦ1/Ti contributes in a simi-
lar manner, this result indicates that Φ1 affects the carbon
density variation, and therefore the particle flux, mainly
through the radial E×B drift, vE1·∇r, and its effects through
the microscopic flow ja2 and the adiabatic response are in-
significant. This fact may allow us to simplify the formula-
tion to evaluate the impact of Φ1 on the impurity transport.

5. Conclusion
In this article, we presented a new method to evaluate

the impact of each driving force on neoclassical transport
separately by a single Monte-Carlo δ f simulation. As an
application, we used the method to evaluate the relative
impact of the driving forces on the impurity transport in
an impurity hole plasma. In the application, we visually
showed that the impact of the outward driving force of the
ion temperature gradient can be as large as the impact of
the inward driving force of the negative ambipolar Er near
the magnetic axis. We also showed that the contribution
of Φ1 in the drift-kinetic equation mainly results from the
radial E × B drift, and the contributions through the micro-
scopic energy flow and through the adiabatic response of
the lowest order distribution function are relatively small.

As demonstrated by the application, this method can
provide fruitful information on the causes of the density
variations and which leads to our deeper understanding
of the transport process. Unlike transport coefficients, the
evaluation of the density variation in the two-dimensional
form allows us to see the explicit configuration dependence
of the transport. Although relatively insignificant in the
present case, the spectrum components other than the sin θ
component become important in some cases. Our method
can of course be used to study any Fourier components of
δ fa within a reasonable range (in this study, we expanded
δ fa as δ fa =

∑
m,n[ f̃ s

a sin (mθ − Nnζ) + f̃ c
a cos (mθ − Nnζ)]

with the mode number ranges −5 ≤ m ≤ 5 and 0 ≤ n ≤ 5).
This aspect may be useful for comparative studies between
different configurations of the device or between different
devices.

The applicability of the method is wider than demon-
strated above. First, as mentioned in the introduction, the
impact of driving factors other than those considered in the
example can be evaluated as well. Second, the method can
be used to evaluate and visualize not only the spatial distri-
bution but also the velocity distribution. This sort of appli-
cation can be useful, for instance, to investigate the impacts
of collisions and external heat sources. Third, the method
can also be applied to evaluate the transport coefficients.
This enables us to assess the global effects in terms of the
transport coefficients by comparing them with those evalu-
ated with local codes. The further applications enumerated
here will be presented in future publications.
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