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We develop a new simulation code for solving the Poisson equation, based on Monte Carlo methods. When
static resonant magnetic perturbations (RMPs) are used in tokamak plasma to mitigate or suppress edge-localized
modes, the RMPs generate an electric field in the ergodized edge region. The electrostatic potential should
be calculated only in the edge region to reduce the computational cost of solving the Poisson equation in the
complicated three-dimensional magnetic structure, which is assumed to be fixed in time. In this study, we propose
a basic idea for evaluating an electrostatic potential given by the Poisson equation in only a part of the domain
in curvilinear coordinates. This Poisson solver allows for the boundary condition to be set not only inside the
selected region in which the potential is evaluated, but also outside the selected region. Several benchmarks for
the developed code are also presented.
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1. Introduction
When numerical simulation methods are used to study

impurity transport in the edge region of a quasi-steady
tokamak plasma, the three-dimensionality of the magnetic
field in the edge region should be considered. Currently,
static resonant magnetic perturbations (RMPs) are com-
monly used to mitigate or suppress edge-localized modes
(ELMs) in tokamak plasma [1–3]. Victor et al. [2] reported
that “RMPs are effective at controlling impurity build up in
the pedestal region, regardless of ELM suppression.” Since
the magnetic structure becomes three-dimensional (3D) in
the edge region, the electric field generated in the 3D mag-
netic field is presumed to also affect the impurity transport.
The radial electric field has been observed in the edge re-
gion ergodized by the RMPs in tokamak experiments [3].
In this study, we discuss how to evaluate the electrostatic
potential in the ergodized edge region, where the vector
potential is assumed to be fixed in time.

Typically, electrostatic potential is calculated by solv-
ing the Poisson equation. However, the Poisson solver’s
required performance is complex as the solver is applied
to a highly nonuniform charge-density distribution, which
is thought to be due to the complicated structure of mag-
netic field lines in the ergodized edge region [4]. A Poisson
solver is often based on finite-difference or finite-element
methods [5–7]. These techniques are commonly used for
calculating the potential of the entire domain, such as the
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core, edge, peripheral, and vacuum regions, if the bound-
ary condition is given at the vacuum vessel where the po-
tential can be naturally set to zero. In addition, advanced
techniques for constructing the mesh system are proba-
bly required when considering the complicated structure
of magnetic field lines [7]. It is possible to calculate the
potential even in the complicated structure by making the
mesh size finer without using advanced techniques, but the
computational cost increases in general and a more de-
tailed calculation of the charge density is required. Consid-
ering the above discussion, when impurity transport in the
edge region is simulated, the computational cost of eval-
uating the potential over the entire domain is high since
the volume of the edge region is smaller than the entire
domain within the vacuum vessel. Here, the cost includes
the preparations for the potential calculation, as discussed
above.

When focusing on the edge region where impurity
transport is controlled, it is preferable to calculate the elec-
trostatic potential only in the edge region, rather than for
the entire domain. If a solver based on finite-difference
or finite-element methods is applied only to the edge re-
gion, the values of the potential at the boundary, which
should be set in the edge region, are required in advance
for solving the Poisson equation. Alternatively, using the
stochastic solution for the Poisson equation makes it possi-
ble to evaluate the potential values only in the edge region
and reduce the computational cost, while maintaining the
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boundary condition at the vacuum vessel. The stochastic
solution gives a potential value at an arbitrary point in 3D
coordinates. We can determine the potential values in a se-
lected region within the entire domain using the numerical
method based on the stochastic solution without requiring
advanced techniques for the mesh system and defining the
boundary condition in the selected region. In this numeri-
cal method, we treat separately the selected region and the
region where the boundary condition is set. The idea of
using the stochastic solution to numerically solve the Pois-
son equation has been proposed in previous studies, such
as that by DeLaurentis and Romero [8]. In their study,
the probabilistic algorithm consists of random “walk on
spheres,” where the spheres are finite (nonzero) in size and
can be placed in any shaped domain. The stochastic so-
lution is described using Green’s function in polar coordi-
nates. To limit the number of steps in the random walk, the
walk is stopped whenever it reaches the boundary region
Γδ, which is the boundary with a finite width, δ > 0 [8].
When the solver is expanded to solve the Poisson equation
in curvilinear coordinates and evaluate the potential in the
edge region, it is effective to use the stochastic solution de-
termined by random walks of point particles, i.e., sample
paths, whose diffusion coefficient is twice the metric of the
coordinates, as described in the study by Itô [9]. Here, the
electrostatic potential can be evaluated by averaging the
contribution of the point particles. Both the spheres and
the boundary region, Γδ, are no longer required in the eval-
uation when using the point particles. Thus, we developed
a new simulation code that solves the Poisson equation in
curvilinear coordinates. The new code corresponds to an
expansion of the Monte Carlo (MC) code DIPS-1D [10]
into 3D curvilinear coordinates.

The following section of this paper discusses the new
code using the theory of stochastic differential equations
and presents several benchmarks for the developed code.

2. Monte Carlo Poisson Solver
The electrostatic potential, Φ, is given by the Poisson

equation. The Poisson equation is expressed as follows:

∇2Φ(x) = − 1
ε0
ρ(x), (1)

where ε0 denotes the electric constant and ρ denotes the
charge density. Since we are focused on impurity trans-
port in the plasma edge, electrostatic potential, Φ, should
be calculated only in the edge region, thereby reducing the
computational cost. The MC simulation code for solving
the Poisson equation, which is called DIPS-3D, is based on
a mathematical result presented in Theorem 9.3.3 in Chap-
ter 9 of Øksendal [11] and in Theorem 5.2 in Chapter 6 of
Friedman [12]. These theorems are rewritten for solving
the Poisson equation as follows.

Theorem 1
Define a function Φ(x) as

Φ(x) = Ex [G(x(τ))] − Ex
[∫ τ

0
dt F(x(t))

]
, (2)

where Ex denotes the expectation with respect to the prob-
ability law of sample paths {x(t); 0 ≤ t}, which start from a
position x at time t = 0, i.e., x(0) = x. Here, the stochastic
process x(t), which describes a path of random walking of
a point particle, is given by

dx(t) =
√

2 dW(t) (3)

in Cartesian coordinates (x1, x2, x3) = (x, y, z), where W(t)
is a Wiener process, and τ is the first exit time of the
stochastic process x(t) from the domain of the function Φ.
Then Φ(x) is the unique solution of the Poisson equation:

∇2Φ = F(x), (4a)

where the boundary condition is defined at the boundary of
the domain as follows:

Φ(x) = G(x). (4b)

Here, F and G are arbitrary functions of x. It should be
noted that the physical quantities shown in this theorem
are normalized in SI units using, for example, x0 = 1 [m],
m0 = 1 [kg], t0 = 1 [s], and e0 = 1 [C].

Equation (2) represents the stochastic solution of the
Poisson equation given by the theory of stochastic differen-
tial equations. The contributions of the point particle to the
solution are described as the value of G at the point x(τ) in
the first term and the time integral along the path x(t) from
time t = 0 to τ in the second term. Using this solution, we
can calculate a value for the electrostatic potential, Φ, at
an arbitrary point x in the domain. Notably, Theorem 1 is
not directly applied to the Poisson equation in curvilinear
coordinates; thus, Eq. (3) requires modification. We will
discuss more detail on this point later.

The Poisson solver is first applied to the follow-
ing two-dimensional (2D) Poisson problem, to provide a
benchmark for it. In the Poisson Eq. (4a) in the Carte-
sian space, the charge density ρ is set to ρ = ρ(x, y) =
1.0 × 10−8 [C/m3] if r =

√
x2 + y2 < r0 and ρ = 0 other-

wise, where r0 is set to r0/a = 0.25 and r(x, y) = a = 1 [m]
is the boundary at which Φ = G = 0. The analytic solution
is presented in the work by Endo [13]:

Φ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρr2
0

2ε0

⎡⎢⎢⎢⎢⎣ln
(

a
r0

)
+

1
2
− r2

2r2
0

⎤⎥⎥⎥⎥⎦ if 0 ≤ r ≤ r0,

ρr2
0

2ε0
ln

(a
r

)
if r0 < r ≤ a.

(5)

This 2D analytic solution is derived under the assumption
of cylindrical symmetry. The numerical solution given by
the Poisson solver is confirmed to be consistent with the
analytic solution (5), as presented in Fig. 1. There is a nu-
merical error caused by a difference scheme for solving the
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stochastic differential Eq. (3), which is numerically solved
using the second order Runge-Kutta method [14, 15] with
a time step Δt, where Δt is a fixed value in the solver and
is set to Δt/t0 = 1.0× 10−4 in Fig. 1. Here, the normalizing
time scale, t0, and length, x0, are t0 = 1 [s] and x0 = a =
1 [m], respectively, which are estimated from the diffusion
coefficient 2 [m2/s] given by Eq. (3). When the time step is
increased to, for example, 25 times that of Fig. 1, the nu-
merical solution degrades, as shown in Fig. 2 (a). The nu-
merical error evaluated by |Φnum −Φana|/|Φana| is shown in

Fig. 1 The black dots represent the numerical solution given by
the Poisson solver. The red solid line depicts the analytic
solution given in Eq. (5). Both the solutions are calcu-
lated along the x axis.

Fig. 2 (a) The numerical solution in the case where Δt/t0 is 25 times greater than in Fig. 1 is represented by the black dots. The analytic
solution is illustrated by the red solid line. Both solutions are calculated along the x axis. (b) The numerical errors are shown by
the black dots for the case of Fig. 1 and by the red open squares for the case of Fig. 2 (a).

Fig. 2 (b), where Φnum is the numerical solution and Φana is
the analytic solution. The numerical error becomes larger,
particularly around the boundary r/a ∼ 1. This is because
the numerical accuracy of the time integral along the sam-
ple paths given by Eq. (3) degrades if the starting point of
the paths is close to the boundary. Notably, the second
term in the solution (2) is given by the time integral along
the sample paths, and the first term is zero in this case.
In contrast to the cases of r/a ∼ 1, the numerical error is
smaller when the starting point is sufficiently far from the
boundary. For instance, the error is � 10−2 for |x/a| � 0.3
in Fig. 1. The following should be noted: the aforemen-
tioned results imply that the spatial resolution of this Pois-
son solver depends on the time step Δt, i.e., the step sizes
of the random walkers, with the root mean square of the
step sizes being ∼ √2Δt. The spatial resolution will be
discussed again later. The degree of numerical error shown
in this problem should also depend on the total number of
random walkers per point. In Figs. 1 and 2, the total num-
ber, Nrw, is set to 72,000 at each point x in the domain. The
error is proportional to ∼ 1/

√
Nrw. Figure 3 shows that the

error becomes approximately 10 times greater when Nrw is
adjusted to Nrw/100.

Next, we applied the solver to a 2D example that em-
ploys the kanji characters ‘ ’ which produce a
complicated boundary with the conditions F(x) = 1 and
G(x) = 0 for verifying the potential calculation in a speci-
fied part of the domain. First, when applying the solver to
the entire domain, the potential, Φ(x), is shown in Fig. 4.
Maintaining the conditions of F and G in Fig. 4, this solver
can also be used to calculate the potentialΦ(x) in the speci-
fied part, as can be seen from Fig. 5. It should be noted that
the paths x(t) of the random walkers starting from a point

1403029-3



Plasma and Fusion Research: Regular Articles Volume 17, 1403029 (2022)

Fig. 3 The numerical errors are plotted by the black dots for the
case of Nrw = 72, 000 per point, which is the case in
Fig. 1, and represented by the red open squares for the
case of Nrw/100 = 720 per point. The average values of
the error for |x/a| ≤ 0.3 are shown by the black dashed
line for the case of Nrw and by the red solid line for the
case of Nrw/100.

Fig. 4 The numerical solution given by the Poisson solver for
the case of G(x) = 0 in the region in red, which is given
by the KANJI characters ‘ ’, and F(x) = 1 in the
domain.

x are kept to be followed even after they have gone outside
the specified part and until they firstly cross the bound-
ary given by G, i.e., until the time t = τ. Here, the first
exit time τ is determined probabilistically for each random
walker by firstly crossing the boundary. It should be also
noted that the probability used for calculating the expec-
tation in Eq. (2) is conserved as its total since the random

Fig. 5 The numerical solution given by the Poisson solver for
the case of calculating the potential, Φ, only in the region
of |x| ≤ 0.8 and |y| ≤ 0.8 in Fig. 4.

walkers do not disappear until they firstly cross the bound-
ary. Here, the probability is given by the random walkers
in the MC method. As illustrated in Fig. 6 (a), there is no
degradation in the accuracy of the numerical solution when
the potential is calculated only in the specified part. If a
solver based on finite-difference or finite-element methods
is used to calculate the potential in Fig. 5, the values of G
at the boundary should be reset, where the boundary is de-
fined by the parts of the kanji characters and the edge of
the image itself in Fig. 5.

The potential, Φ, (and its gradient) at a point x de-
pends on the spatial structures of F and G, which the ran-
dom walkers starting from the point x can access until
they firstly cross the boundary given by G. As shown in
Fig. 6 (a), the gradients of Φ at, for example, x = −0.5
and x = 0.7 are different depending on the spatial structure
around these points. If the spatial resolution of the method
proposed in this study degrades, i.e., when the time step,
Δt, is modified to be, for example, 25 times greater than
that in Fig. 6 (a), the gradients at x = −0.5 and x = 0.7
become almost identical, as shown by the black solid line
in Fig. 6 (b). This is because the random walkers do not
sufficiently detect the spatial structures of F and G. The
potential, Φ, converges to the values shown in Fig. 6 (a)
when the spatial resolution improves. See, for example,
the green dashed line and the red solid line in Fig. 6 (b).

The stochastic process, x(t), depends on the coordi-
nate system in which the Poisson equation is solved, as
described in the study by Itô [9]. Hereafter, 3D curvilin-
ear coordinates (u1, u2, u3) are used in solving the Poisson
equation:

F(u1, u2, u3) = ∇2Φ(u1, u2, u3)

=
1√
g

∂

∂uk

{√
g gk�

∂

∂u�
Φ

}
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Fig. 6 The numerical solution, Φ, is shown with respect to x under the condition of y = 0 in (a) by the red solid line for the case in Fig. 4
and the black dashed line for the case in Fig. 5. In (b), the numerical solution, Φ, is also shown by the red solid line for the case of
Δt/t0 = 1.0 × 10−4, which is also set in (a), the green dashed line for the case of Δt/t0 = 4.0 × 10−4, and the black solid line for the
case of Δt/t0 = 2.5 × 10−3.

= Uk ∂

∂uk
Φ +

1
2

Dk� ∂
2

∂uk∂u�
Φ, (6a)

and

Φ(u1, u2, u3) = G(u1, u2, u3) (6b)

at the boundary of the domain. The stochastic solution of
Eqs. (6a) and (6b) is the same as Eq. (2), but the stochastic
process x(t) = (u1(t), u2(t), u3(t)) is modified as follows:

duk(t) = Ukdt + σk�dW�(t). (7)

Here, Dk� = 2gk� is the diffusion coefficient tensor, gk� is
the metric of the curvilinear coordinates, g = det[gk�], and
Uk and σk� are given as

Uk =
1√
g

∂

∂u j

{√
g g jk

}
, (8a)

and

σk� =
√

2 gk j

{
∂x�

∂u j

}
, (8b)

where (x1, x2, x3) is the Cartesian coordinate system. From
Eq. (7), the relation between Djk and σαβ is confirmed as
follows:

Djk= lim
ε→0+

1
ε

E
[{

u j(t+ε)−u j(t)
} {

uk(t + ε)−uk(t)
}]

= lim
ε→0+

1
ε

E
[
σ jα

{
Wα(t + ε) −Wα(t)

}

×σkβ
{
Wβ(t + ε) −Wβ(t)

}]
=σ jασkβδαβ = 2 g jk, (9)

where E denotes the expectation with respect to the prob-
ability measure of x(t) and the Wiener process, W(t) =

(W1(t),W2(t),W3(t)), satisfies the following for arbitrary
time t ≥ 0 [11, 12]:

E
[{

Wα(t + ε) −Wα(t)
}{

Wβ(t + ε) −Wβ(t)
}]
= ε δαβ.

(10)

We use the curvilinear coordinates (u1, u2, u3) shown be-
low to benchmark the solver, which is a special case of the
helical coordinates [16],

x =
(
Rax + u1

)
cos u3, (11a)

y = −
(
Rax + u1

)
sin u3, (11b)

z = u2. (11c)

The calculation of the potential, Φ, is addressed when
the charge density ρ is set to ρ = ρ(u1, u2, u3) = 1.0 ×
10−8 [C/m3] if r =

√
(u1)2 + (u2)2 < r0 and ρ = 0 other-

wise, where r0 is set to r0/a = 0.25 and r(u1, u2) = a =
1 [m] is the boundary at which Φ = G = 0. Here, Rax is
the major radius of the axis of the torus and the coordinates
(u1, u2, u3) satisfy −Rax < u1, u2 < Rax and 0 ≤ u3 < 2π. In
this case, Uk in the Poisson Eq. (6a) is given from Eq. (8a)
as follows:

U1 =
1

Rax + u1
, (12a)

U2 = U3 = 0. (12b)

We also obtain σk� from Eq. (8b) as follows:

σ11 =
√

2 cos u3, (13a)

σ12 = −√2 sin u3, (13b)

σ23 =
√

2, (13c)

σ31 = −
√

2
Rax + u1

sin u3, (13d)
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Fig. 7 The numerical solution given by the Poisson solver in the case of Rax/a = 200 is represented by the black dots. The 2D analytic
solution given in Eq. (5) is illustrated by the red solid lines. Both solutions are calculated along (a) the u1 axis and (b) the u2 axis.

Fig. 8 The numerical solution given by the Poisson solver in the case of Rax/a = 2 is shown by the black dots. The 2D analytic solution
given in Eq. (5) is illustrated by the red solid lines. Both solutions are calculated along (a) the u1 axis and (b) the u2 axis.

σ32 = −
√

2
Rax + u1

cos u3, (13e)

σ13 = σ21 = σ22 = σ33 = 0. (13f)

From Eq. (9), it is confirmed that the tensor σk� is
related to the diffusion coefficient tensor Dk�, where
D11 = D22 = 2, D33 = 2/(Rax + u1)2, and Dk� = 0 if
k � �. The relationship Dk� = 2gk� is also confirmed in the
coordinates (u1, u2, u3) that satisfy Eqs. (11a) - (11c). The
difference between the 3D numerical solution evaluated
by the solver and the 2D analytic solution given in Eq. (5)
becomes smaller if the torus is slender, i.e., U1,D33 → 0
as Rax/a → ∞, U2 = U3 = 0, Dk� = 0 for k � � and
D11 = D22 = 2 in Eq. (6a). This tendency is confirmed

in Fig. 7. The 3D numerical solution is almost identical
to the 2D analytic solution, when the major radius is set
to Rax/a = 200. Here, the degree of numerical error
depends on both the time step and the total number of
random walkers, as discussed in Figs. 2 and 3. If the
major radius is reduced, for example Rax/a = 2, the 3D
numerical solution differs from the 2D analytic solution
(Fig. 8). Figure 8 (a) shows that due to toroidicity, the
3D numerical solution on the u1-axis is slightly larger
in the region of −1 < u1/a < 0 and slightly smaller
in the region of 1 > u1/a > 0 compared with the 2D
analytic solution given in Eq. (5). Conversely, the 3D
numerical solution on the u2-axis is consistent with the
2D analytic solution and satisfies the up-down symmetry,
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as presented in Fig. 8 (b). For checking dependence of the
numerical solution on random numbers used in the solver,
the difference between the solutions calculated multiple
times should be evaluated using different random number
sequences [10]. In this study, the difference is given as∫
D d3x

∣∣∣Φ(1)(x) − Φ(2)(x)
∣∣∣ / ∫D d3x (1/2)

∣∣∣Φ(1)(x) + Φ(2)(x)
∣∣∣,

where Φ(1) and Φ(2) are the numerical solutions calculated
twice and the difference is evaluated in the domain D. In
the case of Fig. 8, this difference is 1.9 × 10−2.

3. Summary and Discussion
In this study, the Monte Carlo Poisson solver is devel-

oped, based on the theory of stochastic differential equa-
tions, for partly calculating electrostatic potential,Φ, in 3D
curvilinear coordinates. The computational cost of calcu-
lating the potential, Φ, derived from the Poisson equation
becomes problematic, when impurity transport is consid-
ered in the edge region ergodized by the RMPs. Here, the
cost includes the preparations for the potential calculation,
as discussed in the introduction. The computational cost
may increase because the magnetic structure, which sig-
nificantly affects the charge density, is complicated by the
RMPs. Further, if traditional techniques (such as finite-
difference or finite-element methods) are used for evaluat-
ing the potential, Φ, when the boundary condition is set on
the vacuum vessel, Φ is calculated throughout the entire
domain within the vacuum vessel. We demonstrate that
the potential, Φ, can be successfully calculated only in a
selected region within the entire domain using the stochas-
tic solution of the Poisson equation shown in Theorem 1.
Thus, the MC solver can reduce the cost by approximately
[the volume of the edge region] / [the total volume within
the vacuum vessel] in 3D curvilinear coordinates without
requiring advanced techniques for the mesh system and
setting the boundary condition in the selected region. It
should be noted that Theorem 1 is not directly applied to
the Poisson equation in 3D curvilinear coordinates, and
that this application particularly requires Eq. (8b), which
is derived in this study.

The numerical accuracy of the MC solver’s bench-
marks is � 10−2. This accuracy is sufficient for estimating
impurity particle flux in one or two significant digits in a
kinetic simulation of impurity transport in a quasi-steady
state. If more accurate calculation of the potential is re-
quired, the total number of random walkers should be in-
creased and their time step should be finer. The boundary
propagation method is useful in this scenario for decreas-
ing the MC solver’s computational cost [17], where the
boundary propagation is illustrated in Fig. 9. To improve
the numerical accuracy and reduce the computational cost
of the potential calculation, combining the MC method and
the finite-difference or finite-element methods is also ben-
eficial. When a solver based on the finite-difference or
finite-element methods is applied only to a selected region
within the entire domain, the boundary condition of that re-

Fig. 9 Illustration of the boundary propagation [17]. The origi-
nal boundary is shown by the black solid-line with num-
ber 1. The 2nd boundary is shown by the red solid-line.
The region between the original boundary (i.e., the 1st
boundary) and the 2nd boundary is hatched in this figure.
The procedure consists of initiating random walks from
points within the region between the (k − 1)-th and the k-
th boundaries, where k = 2, 3, 4, · · · . Here, the boundary
condition in calculating the potential within this region is
set at the (k − 1)-th boundary. The (k − 1)-th boundary
is replaced by the k-th boundary when all random walks
have terminated.

gion is provided by the MC solver proposed in this study.
In general, the electrostatic potential in and around

the edge region depends on several physics mechanisms,
including neoclassical and turbulent transport and interac-
tions between various particles such as background ions,
impurities, electrons and neutrals. However, these mecha-
nisms are not discussed here. Simulation studies of impu-
rity transport will be conducted in the future using the MC
solver developed in this study.
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