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Prediction of time evolution of multi-scale turbulence is performed by using Long-short term memory net-
works. The time series data is obtained by Langmuir probes in a linear magnetized plasma device, PANTA.
The simultaneous prediction of high and low frequency components of turbulence is shown to be possible within
several tens percent accuracy. The prediction accuracy depends on the initial network, which can be controlled
by reducing the learning rate.
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Dynamical control of magnetized plasmas has been
an active research topic in fusion research [1]. Prediction
of abrupt plasma transport, such as edge localized modes
(ELMs) [2] and avalanches [3], is one of critical issues.
The abrupt phenomena are highly nonlinear and are of-
ten caused by micro-scale turbulence e.g. [4]. Therefore,
the prediction of the multi-scale turbulence is crucial. On
the other hands, in recent years, data-driven approaches,
such as machine learning and advanced mode decomposi-
tion methods have shown remarkable development [1,5,6].
In this study, by using machine learning methods, tempo-
ral behaviors of turbulence are predicted, and its properties
are reported.

The turbulence data analyzed in this study is ob-
tained in a linear magnetized plasma device, PANTA [7,8].
Plasma discharges are operated by Argon gas with an RF
helicon source (6 kW, 7 MHz) and with an external mag-
netic field of 0.13 T. Fluctuations of ion saturation current
is measured by 64-channel Langmuir probes, which are
aligned azimuthally at radial position of 4 cm from the cen-
ter of the device. The following analysis is performed with
a temporal evolution of ion saturation current obtained by
a certain probe. In this discharge condition, several insta-
bilities coexist, and their dynamical interaction determines
the global system [9]: drift waves and axially symmetric
mode, which could be a Kelvin-Helmholtz instability. The
frequency of the drift wave is around 10 kHz, and that of
the axially symmetric mode is 1 - 2 kHz, which shows the
multi-scale turbulence. In this paper, as a first step toward
predicting the intermittent plasma transport, both dynam-

author’s e-mail: sasaki.makoto@nihon-u.ac.jp
a) Current affiliation: National Institute for Fusion Science, National In-

stitutes of Natural Sciences, Toki 509-5292, Japan

ics is predicted by a machine learning method.
The long-short term memory network (LSTM) is a

kind of recurrent neural networks (RNNs), which have
loop structures so as to store time series of data. The LSTM
is an extension of the RNN to overcome an issue of pa-
rameter searching, called vanishing gradient problem [10].
Because of this, the LSTM can treat much longer time se-
ries of data compared to the conventional RNN. In this
study, the LSTM is selected to predict the multi-scale tur-
bulence, which contains long-period fluctuations as well
as short-period ones. The LSTM Network consists of mul-
tiple units called LSTM Blocks in the hidden layer, which
contain cells that store past information and three gate units
(input gate units, forget gate units, and output gate units)
that control the flow of information. The initial conditions
of the network are set to 200 units and the learning rate of
0.005, which is a hyperparameter to tune the network [10].
The time series of 1600 points data, which corresponds to
that for 16 ms, is used. The first 800 points data (8 ms) is
used for the training and the network is established. Then,
the next 800 points data (8 ms) is predicted by using the
built LSTM blocks. By changing the initial network 50
times, and the prediction properties are statistically evalu-
ated.

The predicted evolution by the LSTM is shown in
Fig. 1. Top panel of Fig. 1 shows that the predicted data
agrees well with the observed data for a few milliseconds
in the beginning of the prediction. The dominant fluctu-
ation is associated with the drift waves (high-frequency
component), and the modulation of the fluctuation cor-
responds to the axially symmetric mode (low-frequency
mode). The deviation of the prediction from the obser-
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Fig. 1 Comparison between prediction and observation. Top
panel shows the temporal evolutions of observation (blue)
and prediction (red). Bottom panel illustrates the relative
squared error defined by Eq. (1).

vation is evaluated by the relative squared error, defined
as

ε(t) =

√√∑t
j=1 |yo,t − yp,t |2∑t

j=1 |yo,t |2 , (1)

where yo,t and yp,t denote the observation and prediction
at time t, respectively. The error is shown in the bottom
panel of Fig. 1. The prediction error increases in time with
a typical time scale of millisecond, which is a typical pe-
riod of the low frequency mode. The phase of the predicted
temporal data for high-frequency component gradually de-
viates from the observation, which causes the increase of
the prediction error.

To clarify the properties of the prediction by the
LSTM, spectrum of each temporal data and the cross-
spectrum between the time series of observed data and of
the prediction is evaluated, which are shown in Fig. 2. In
this analysis, the data at the beginning of the prediction,
t< 2 ms, is used. Here, the light blue lines correspond to
the predicted data with different initial networks, and the
red solid line shows the statistical average of the predic-
tions. As shown in the top panel of Fig. 2, the magnitude
of the spectrum peaks with 10 kHz and 2 kHz including the
side-bands of 8 kHz and 12 kHz of the observation and pre-
diction agree well. The cross-spectrum, shown in the bot-
tom panel of Fig. 2, indicates the high correlation at less
than 2 kHz, and at around 10 kHz. Here, it is noted that the
dependence of the prediction on the initial network condi-
tion is around few tens percent for the high-frequency com-
ponent. It is found that both the low and high frequency
components can be predicted simultaneously by the LSTM
at least for a few milliseconds. It is noted that the predic-
tion of the time evolution is possible within a similar ac-
curacy for the different discharge data with similar turbu-

Fig. 2 Comparison between spectrum of prediction and obser-
vation. Top panel shows frequency spectrum of predic-
tions average (red) and observation (blue). Bottom panel
shows the cross-spectrum.

Fig. 3 Cross-Spectrum values and standard deviation for vary-
ing Learning rate. Left panel shows high frequency (blue)
and low frequency (red) error bars of cross spectrum val-
ues. Right Panel illustrates standard deviation of left
panel’s error bars.

lence, where the high frequency fluctuation is modulated
by low frequency component.

The variations of the prediction, dependent on the ini-
tial network, can be controlled by the learning rate η. By
scanning the learning rate, the change of the values of the
cross correlations at 2 kHz and 10 kHz are plotted in the
left panel of Fig. 3, where the error bars are evaluated from
the standard deviation of the results with 50 different initial
conditions. The error bars are an index of the prediction
variations. The prediction variation can be controlled by
changing the learning rate, which is illustrated in the right
panel of Fig. 3. Especially for the low-frequency compo-
nent, the prediction variation becomes small with a smaller
learning rate.

In conclusion, the prediction of the temporal evolution
of the multi-scale turbulence, observed at a single spatial
position, is performed by using the LSTM. The simultane-
ous prediction for the low and high frequency component
is shown to be possible for several periods of the low fre-
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quency mode. In addition, the variations of the prediction,
dependent on the initial network, can be suppressed with a
small learning rate.
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