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A tomographic method using tangential visible light is proposed for MHD equilibrium reconstruction via
two processes. The first process is a tomographic method to estimate the last-closed-flux-surface (LCFS) in two-
dimensional poloidal cross-section using a single tangential camera image. Applying the Laplacian eigenfunction
series expansion and L1 regularization, we can reconstruct the LCFS from relatively sparse and noisy observa-
tions. The second method is a free-boundary tokamak equilibrium calculation using the TASK/EQU code, in
which we use the estimated plasma surface information as the constraints for the equilibrium calculation. As a
result, we develop a new method for identifying equilibrium states using visible light information.

c© 2021 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: equilibrium, tomography, series expansion, Laplacian eigenfunction, L1 regularization

DOI: 10.1585/pfr.16.2402090

1. Introduction
Reconstruction of the magnetohydrodynamics (MHD)

equilibria from experimental data is the basis for the analy-
sis of tokamak physics. The MHD equilibrium reconstruc-
tion is also crucial for plasma shape control and supporting
plasma operation. Thus, a quick and accurate equilibrium
reconstruction method is required for the future burning
plasma experiments like ITER.

The MHD equilibrium reconstruction is commonly
performed by analyzing external magnetic measurement
data. In a pioneering work, a fast method for reconstruct-
ing the equilibrium using external magnetic measurements
was proposed by Swain and Neilson [1]. This method
uses the least-squares determination of the plasma bound-
ary and a global force balance. Luxon and Brown [2] sub-
sequently developed a more accurate approach in which
the best-fit current density profile is established by solving
the Grad-Shafranov equation based on external magnetic
measurements. This method can determine the character-
istic parameters of the plasma current profile and the shape
of the plasma cross-section. Because Luxon and Brown’s
method requires iteratively calculating a non-linear partial
equation, it is computationally expensive. The success of
these equilibrium reconstruction methods leads to the equi-
librium fitting code (EFIT) proposed by Lao et al. [3].
This method can efficiently reconstruct the current pro-
file parameters, plasma shapes, and current density profile
based on the Picard linearization scheme, which reduces
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the computational cost.
However, these reconstructed results have uncertain-

ties because of the errors associated with the observations
and computational models utilized because these methods
indirectly reconstruct the internal state of the plasma using
the observed data. The external coils are located outside
the toroidal magnetic field coils at a large distance from the
plasma in large-scale fusion devices like ITER. Thus, accu-
rate reconstruction of the plasma equilibrium is becoming
more difficult than the devices with external coils near the
plasma. If we can estimate the shape of the last-closed-
flux-surface (LCFS) using an alternative method, the equi-
librium reconstruction performance could be improved.

Tomography can be used to reconstruct the LCFS
without solving the Grad-Shafranov equations. Tomogra-
phy has been used as a plasma diagnostics tool [4]; this
methodology can determine the inner plasma profile on a
poloidal cross-section using observations from outside the
plasma. This poloidal cross-section profile is obtained by
solving the inverse problem based on the observations of
radiation detectors on the fusion device.

In this work, we utilize tomographic techniques to re-
construct the visible light emission profile on the poloidal
cross-section from a single camera image. After having
obtained the emission profile, we can easily estimate the
shape of the LCFS under the assumption that the Hα emis-
sion is radiated from just inside the LCFS. This will be
shown in Fig. 8 of QUEST experiment. At the center of
the plasma, the Hα emission is weak because the plasma is
completely ionized owing to the high temperature. By con-
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trast, just inside the LCFS, there is a Hα emission due to
the excitation of neutral particles entering the plasma from
the outside; a localized emission is therefore expected in a
thin region near the LCFS.

Tomographic inversion is an essentially ill-posed
problem. The series expansion method using orthogonal
basis patterns was proposed by Y. Nagayama et al. [5]. In
that work, the emissivity profile expansion was introduced
into the Fourier-Bessel series, and the coefficients were de-
termined by the least-squares-fitting method. K. Yamasaki
et al. [6] proposed a method to optimize the Fourier-Bessel
expansion coefficients precisely. S. Ohdachi et al. [7] com-
pared the basis patterns between the Fourier-Bessel and
Laplacian eigenfunction and showed the validity of the L1

regularization.
In this study, we propose a new method to recon-

struct the MHD equilibrium starting from a single tangen-
tial view camera image using the tomographic technique,
and we apply this method to data from QUEST. Like most
other instruments, the target device QUEST spherical toka-
mak [8] has a tangential visible light camera to observe the
entire torus plasma. First, we estimate the LCFS of torus
plasma using tomography based on an observation from
a tangential camera. Then, we select some points on the
LCFS where the magnetic flux ψ = 0. We then calculate
the Grad-Shafranov equation using the TASK/EQU code
using these points as the boundary conditions. This method
is considered more useful because the LCFS is used as the
boundary conditions, whereas the conventional method is
based on magnetic measurements on the reactor wall.

This paper is organized as follows. In Section 2, the
orthogonal function, which is valuable for the composi-
tion of the emission distribution, will be introduced. Sec-
ond, the proposed method is used to reconstruct the local
emission distribution from a single camera image from a
tangential direction. Both synthetic and experimental data
are used for this test (Section 3). Finally, in Section 4,
using the reconstructed local emission, the poloidal mag-
netic fields are calculated numerically using the equilib-
rium code.

2. Tomography Using an Orthogonal
Basis
In this section, we describe the tomographic recon-

struction technique. Tomography is the problem of deter-
mining the poloidal cross-sectional emissivity, f (r′), from
the tangential observed image, g(r), as shown schemati-
cally in Fig. 1. Here, we define r′ as the coordinates in real
space and r as the coordinates on the camera screen. The
function g(r) is defined to obey

g(r) =
∫

D
h
(
r, r′
)

f
(
r′
)

dr′, (1)

where D is the region of an object’s existence and h(r, r′)
represents a projection coefficient of r′ to r. With column

Fig. 1 Schematic view of the tomographic reconstruction.

vectors f and g, Eq. (1) can be expressed as a discrete equa-
tion:

Hf = g

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · · · · h1N

h21 h22 · · · · · · h2N
...

...
...

hM1 hM2 · · · · · · hMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...
...

fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2
...

gM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N,M ∈ N).

(2)

Here we define hmn = h
(
rm, r′n

)
Δr′n, fn = f

(
r′n
)
, gm =

g (rm). Figure 1 shows a schematic of the interpretation
of Eq. (2). We reconstruct f from g by applying the inverse
operator H−1. However, this inversion problem presents
an ill-posed and often under-determined problem because
fusion plasma data are usually spatially sparse because of
the limited number of detectors. In other words, the inverse
matrix H−1 cannot be computed because H is not a matrix
with full rank.

Here, we use the tangential view of the whole torus
as g. In devices larger than QUEST, it is expected that
the observed image will be limited to one side of torus.
In tokamaks, because toroidal axial symmetry is assumed,
there is no significant effect if the poloidal cross section is
covered. However, if there is inherent noise at a particular
location, it will affect the reconstructed image as the noise
cannot be smoothed in the toroidal direction.

In this case, the most basic approach to solving Eq. (2)
is using the least-squares method. This method gives the
solution f minimizing the following equation

g = arg min
g
|g − Hf|. (3)

Because this solution is often under-determined and unsta-
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ble, an additional penalty term is used. The total magni-
tude of the local emission is used as a penalty term, and
the function to be minimized becomes

g = arg min
g
|g − Hf| + λ|g|α. (4)

When α = 2, the penalty function is the Euclid norm of the
vector g.

|g|2 =
√

g1
2 + g2

2 + ... + gN
2. (5)

This method is called L2 regularization (Ridge regression)
and suppresses the magnitude of the solution. When α = 1,
the penalty function is the sum of the absolute values of
each term:

|g|1 = |g1| + |g2| + ... + |gN |. (6)

This method is called L1 regularization or, least abso-
lute shrinkage and selection operator, (LASSO regression)
[9]. LASSO regression shrinks some coefficients to zero.
Hence, it tends to retain a reasonable basis. If the matrix H
is orthogonal, LASSO linear regression can be optimized
efficiently using the LARS [10] algorithm.

A local emission distribution approximated as series
expansion, by contrast, makes the linear equation small,
and then it is possible to derive a solution even from sparse
observations. In the series expansion method, the local
emissivity f can be expanded as a series of patterns bi:

f =
∑

i

aibi. (7)

Substituting Eq. (7) into Eq. (2), and replace the basis pat-
terns as Bi = Hbi gives the following:

g =
∑

i

aiHbi =
∑

i

aiBi. (8)

Each coefficient ai can be optimized according to

ai = arg min
ai

|gi − aiBi| + λ|ai|α. (9)

Having obtained ai, we can easily calculate the recon-
structed image f using Eq. (7).

The Fourier basis is generally used in image process-
ing as a series expansion approximation of an image. In
this study, we introduce a basis that is more suitable for the
plasma emission distribution.

Here we use the Laplacian eigenfunctions (LEs) as a
basis. Consider the fundamental solution of the Laplacian
in two dimensions,

K(x, y) = − 1
2π

log |x − y|, (10)

this operator K has the following eigenfunction expansion

K(x, y) ∼
∞∑
j=1

μ jϕ j(x)ϕ j(y). (11)

Fig. 2 Basis patterns of series expansion (first 20 patterns). (a)
Fourier basis and (b) LE basis.

This eigenvector φ constitutes an orthogonal basis. Fig-
ure 2 (b) shows the LE basis. The Fourier basis (Fig. 2 (a))
is a commonly used method to approximate images by se-
ries expansion. The Fourier basis is incompatible with the
representation of aperiodic local emissions because it im-
plicitly assumes a periodic boundary condition. However,
the LE basis is considered to be suitable for construct-
ing the local emission profile observed in fusion plasma.
As the plasma is a continuum, it is expected to be re-
constructed using a low-mode basis (a basis with gradual
changes).

3. Application to the Tangential
Viewing System of QUEST
In this section, we demonstrate the application of

the proposed method to the tangential viewing system of
QUEST. Reconstruction of the local emission profile from
a synthetic or experimental tangential image will be dis-
cussed. Figure 3 shows the arrangement of the virtual tan-
gential camera system of QUEST. This camera observes
the torus plasma, which has a circular cross-section.

First, we try to reconstruct the local emission from
the synthetic image with noises as a test. Figure 4 (a) is
the synthetic observation image, which is added uniform
Gaussian noises and synthetic reflective objects (center
vertical bar and horizontal square dots) have been added.
(e) shows the ground truth. Figures 4 (b-d) show a compar-
ison of the results of the three methods. Figure 4 (b) shows
the results of the L2 regularized least-squares method of
Eq. (4), Fig. 4 (c) shows the results of the reconstruction
using the Fourier basis, and Fig. 4 (d) shows the reconstruc-
tion obtained using the LE basis. The orthogonal basis ap-
proaches (Figs. 4 (c and d)) achieve a much cleaner recon-
struction than the results obtained using the L2 regularized
least-squares method. Little difference can be observed
between the results of the Fourier and LE basis methods
shown in Figs. 4 (c) and (d), respectively, because both use
1000 patterns. This number is sufficient for both bases
to reconstruct the image well. However, a more prefer-
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Fig. 3 Schematic view of QUEST plasma (top). The inner
and outer bold lines represent the boundaries of the area
where plasma can exist.

Fig. 4 (a) A synthetic tangential image with uniform Gaussian
noise and synthetic object noise. (b) Reconstruction re-
sults using the L2 regularized least-squares method. (c)
Reconstruction results using a Fourier basis. (d) Recon-
struction using a LE basis. (e) Ground truth.

Fig. 5 Absolute values of cumulated every 20 coefficients ai,
which represents the strength of each basis term. Black
line is the Fourier basis coefficients, and yellow line is
the LE basis coefficients. For comparison, each value is
normalized by the maximum value.

able basis can reconstruct the cross-sectional profile using
a smaller number of patterns. In the following, we evaluate
the suitability of these bases.

We compare each of the coefficients ai in Eq. (7) in
the cases of using 1000 patterns. Figure 5 shows the nor-
malized absolute values of each coefficient ai. Figure 5
shows that the LE basis has small values of ai for i > 200,
whereas the Fourier basis uses some large values of ai even
for larger i. This indicates that a low-mode LE basis can
encode the local emission more efficiently than can the
Fourier basis, and that it is therefore more compatible with
plasma reconstruction.

Fig. 6 Mean absolute errors between the reconstructed image
and the ground truth. LE method’s error decrease faster
than Fourier method.

Fig. 7 The cumulated values for every 20 patterns of normalized
absolute coefficients. Black line is L2 regularization and
red line is L1 regularization. For comparison, each value
is normalized by the maximum value.

Here, we compare the performances of the Fourier and
LE bases by varying the number of patterns used. Figure 6
shows the mean absolute error of the two methods and its
dependence on the number of patterns. We can see that the
LE method reaches stable value at i = 200. When a suf-
ficiently large number of patterns are used (approximately
over 500), there is little difference between these two meth-
ods. By contrast, when a low number of patterns are used,
the LE method performs better than the Fourier method.
When using more than 200 patterns, the residual error of
the LE method becomes almost constant; this result makes
sense because the LE method has small values of ai for
i > 200 (Fig. 5). The difference between the methods de-
creases when the number of bases becomes larger. This
indicates that the LE basis is well suited to the reconstruc-
tion of the plasma.

Next, we evaluate the performance of the L1 regular-
ization method. Figure 7 shows a comparison of the coef-
ficients of the L1 and L2 regularizations using the case of
the LE basis using 1000 patterns. We can see that L2 takes
non-zero values across the entire range shown, whereas L1

predominantly uses only lower-order patterns. In the L1

method, 64.6 % of coefficients are zero. This fact indi-
cates that the L1 regularization enables us to reconstruct
the model using only the essential basis.

Figure 8 shows the results of reconstructions at two
different times using experimental images utilizing the LE
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Fig. 8 Input camera images (left) and reconstructed images of
the cross-sectional emissivity (right).

basis with 1000 patterns and the L1 regularization. The left
column is the image of QUEST taken from the tangential
direction (input), and the right column is the reconstructed
image (output). The upper row, taken at 3.040 s, is an un-
steady state in which the coil current changes at every mo-
ment; the lower row, taken at 3.160 s, is taken in a steady
state. We have been able to reconstruct the poloidal cross-
sectional shape of the plasma boundary at both times.

4. MHD Equilibrium Calculation
with TASK/EQU Code
In this section, we calculate the MHD equilibrium

based on the estimated plasma surface from the recon-
structed image. In doing so, we test the validity and ef-
fectiveness of the proposed method.

The plasma equilibrium in an experimental device is
modelled using the theory of MHD equilibrium. MHD
equations give an equation of motion of plasma:

ρ
dv
dt
= j × B − ∇p + ρg. (12)

Assuming steady-state in the MHD equation and ignoring
the gravity term g, Eq. (12) becomes

∇p = j × B. (13)

Using Maxwell’s equations, we can derive the following
Grad-Shafranov equation from Eq. (13). The poloidal flux
function ψ of the plasma in the MHD equilibrium is de-
scribed as follows:

Δ∗ψ =
∂

∂R
1
R
∂

∂R
ψ +

∂2ψ

∂z2
= −μ0R jφ, (14)

where j is the toroidal plasma current density, R is the ra-
dius in cylindrical coordinates, and z is parallel to the major
axis. The current density satisfies the expression:

jφ = Rp′ +
1
μ0R

FF′, (15)

where F = BφR, Bφ is the toroidal magnetic field, and p is
the plasma pressure. Both F and p are functions of ψ, (i.e.
p = p(ψ) and F = F(ψ)). The free-boundary equilibrium
calculation code TASK/EQU [11] is used to solve Eq. (14)
and thus to obtain the equilibrium magnetic field.

Here, we introduce the iterative solution of Grad-
Shafranov equation, which is explained in Ref. [12] as
the free-boundary equilibrium solver. The computational
domain is a rectangular region with the axes R and z in
cylindrical coordinates. The TASK/EQU code requires the
boundary conditions, poloidal coil currents, and prescribed
markers picked from the estimated plasma surface (the red
curve in Fig. 9 (a)). The poloidal flux function can be de-
composed into two elements:

ψ(R, z) = ψp(R, z) +
∑

i

ψi
v(R, z), (16)

where ψp is the contribution from the plasma current and
ψi

v is that from the i-th poloidal coil. As Eq. (14) is a non-
linear partial differential equation, the iterative solver is
used as follows.

1. As an initial guess for ψp(R, z), the Solov’ev [13] so-
lution is used.

2. Adding the sum of ψi
v to ψp, the ψ distribution is ob-

tained.
3. Using ψ distribution from step 2, the plasma current

density j is calculated from Eq. (15).
4. Using the obtained jφ, a new ψp distribution is calcu-

lated from Eq. (14).
5. With this ψp as an input to step 2, the process is re-

peated until the current distribution converges.

Note that ψi
v used in step 2 is determined for each iteration

by the least-squares method with a penalty term of

W =
∑

j

⎡⎢⎢⎢⎢⎢⎣ψp

(
Rj, z j

)
+ ψs +

∑
k

Iv,kψv,k

(
Rj, z j

)
− ψ j

⎤⎥⎥⎥⎥⎥⎦
2

+
∑

k

wk

[
Iv,k − I0

v,k

]2
, (17)

where j indicates the j-th prescribed marker, k indicates
the k-th poloidal coil, ψs is the poloidal flux function of
the plasma surface, Iv,k is the k-th coil current, I0

v,k is the
prescribed coil current, ψ j is the prescribed flux of the j-th
marker and wk is the weight. In this study, ψ j is set ψ j = 0
as a plasma surface point. The first term in the right-hand
side makes the value of the flux function at the marker
point closer to the input value. The second term makes the
currents of each coil closer to the prescribed value. There-
fore, the coil current is determined by the balance between
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the prescribed marker condition and the initial coil current
condition.

Figure 9 (a) shows the selection of the prescribed
markers. The selection process is as follows: First, points
on the edge of emission intensity f (r, z) are sampled as
candidates for the location of the LCFS (orange and gray
dots in Fig. 9 (a)). This edge region is detected based on
the Laplacian filter, which detects sharp intensity changes
in the image and highlights the edges. The Laplacian value
on the edge region satisfies the condition ∂2 f (r, z)/∂r2 +

∂2 f (r, z)/∂z2 < −0.015. These points are then clustered
to the emission boundary group (orange dots) and other
small groups (gray dots) using hierarchical clustering algo-
rithm [14]. Next, as an estimate for the plasma surface, the
Fourier series-expanded closed curve (red closed curve in
Fig. 9 (a)) is fitted to these points. The radius of this closed
curve is then expanded to be 5% larger than the original
fitted curve. Finally, the prescribed markers (blue X sym-
bols in Fig. 9 (a)) are picked from this closed curve. In
this study, we made the simple assumption that the emit-
ting surface and the LCFS are almost coincident; in reality,
however, whether the emitting surface is inside or outside
the LCFS depends on the electron temperature. In larger
tokamaks including ITER with higher temperatures, the
LCFS estimation algorithm needs to be calibrated accord-
ing to the electron temperature.

The initial plasma parameters for calculation are given
as follows: plasma density, ne0 = 1017 cm−3, electron tem-
perature Te0 = 10 eV, plasma pressure p0 = ene0Te0 =

0.16 Pa, major radius R = 0.5 m, toroidal magnetic field
multiplied by major radius RBt = 0.16 m·T.

Here, we discuss the rationale behind the utilization of

Fig. 9 (a) The procedure to estimate the tentative plasma sur-
face. Blue X markers are used as prescribed markers in
TASK/EQU. (b) The calculated contour of the magnetic
flux.

the free-boundary equilibrium calculation code instead of
the fixed-boundary code. In the fixed-boundary code (such
as TASK/EQ), a prescribed LCFS is required as a bound-
ary condition. The emission boundary of the reconstructed
image has a finite width, and the closed curve of the LCFS
cannot be defined precisely at first. Therefore, we sampled
some likely points on the emission boundary from the ob-
tained images and determined the LCFS by solving the GS
equation together with the current information of poloidal
coils.

A superposition of the reconstruction image and the
calculated equilibrium field is shown in Fig. 9 (b). The re-
constructed local emissions are distributed just inside the
separatrix (i.e. the LCFS) and almost on the single flux
surface. Therefore, the reconstructed image and the com-
puted magnetic field configuration are in good agreement;
this indicates the validity of the proposed method. How-
ever, there is the difference between the prescribed marker
positions and the LCFS. If the coil currents Iv,k and the
prescribed flux ψ j in Eq. (17) are consistent, the LCFS will
overlap the marker exactly. This problem can be solved by
improving the accuracy of the reconstruction and the LCFS
estimation algorithm.

5. Conclusions
We have proposed a tomographic method using tan-

gential visible light for MHD equilibrium reconstruction
via two processes.

The first process is the poloidal cross-section tomo-
graphic reconstruction to estimate the shape of the LCFS.
Tomographic reconstruction consists predominantly of two
parts. First, a target image, the poloidal cross-sectional
emission profile, is expanded using orthogonal basis pat-
terns. We have compared the Fourier and LE bases. The
difference between these two methods of reconstruction is
not significant when a sufficiently large number of bases
are used. However, we have shown that the LE method per-
forms well even when smaller number of bases are used. It
is thus concluded that the LE basis is well suited to esti-
mating plasma emissions. Second, we have introduced the
L1 regularization to solve the least-squares equation. It is
found that the L1 regularization makes many coefficients
shrink toward zero. As a result, only essential patterns re-
main to reconstruct the image. This result aids reducing
the noise.

The second process is the MHD equilibrium calcula-
tion using the free-boundary equilibrium calculation code,
TASK/EQU. This code requires two types of boundary
condition. One is the poloidal coil currents, and the sec-
ond is the prescribed markers on the tomographically es-
timated plasma surface. The calculated contours of the
magnetic flux show good agreement with the reconstructed
image. A remaining issue is the difference between the
estimated plasma surface and the calculated LCFS that is
caused by the inconsistency between the estimated plasma
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surface and the coil currents. This problem can be solved
by improving the accuracy of the reconstruction and the
LCFS estimation algorithm.
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