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Spectroscopic analyses of energetic particle (EP) driven bursts of MHD fluctuations in magnetically con-
fined plasmas often exhibit chirps that occur simultaneously in groups of two or more. While the superposition
of oscillations at multiple frequencies necessarily causes beating in the signal acquired by a localized external
probe, self-consistent hybrid simulations of chirping EP modes in a JT-60U tokamak plasma have demonstrated
the possibility of global beating, where the mode’s electromagnetic field vanishes globally between beats and
reappears with opposite phase [Bierwage et al., Nucl. Fusion 57, 016036 (2017)]. This implies that there can be
a single coherent field mode that oscillates at multiple frequencies simultaneously when it is resonantly driven by
multiple density waves in EP phase space. Conversely, this means that the EP density waves are mutually coupled
and interfere with each other via the jointly driven field, a mechanism ignored in some theories of chirping. In
this thesis-style treatise, we study the role of field pulsations in general and beating in particular using the Hamil-
tonian guiding center orbit-following code ORBIT with a reduced wave-particle interaction model in realistic
geometry. Beating is found to drive the evolution of EP phase space structures. A key mechanism is the pulsation
of effective phase space islands combined with the alternation of their effective O- and X-points due to phase
jumps between each beat. Observations: (1) Beating causes density wave fronts to advance radially in a pulsed
manner and the resulting chirps become staircase-like. (2) The pulsations facilitate convective transfer of material
between neighboring layers of phase space density waves. On the one hand, this may inhibit the early detachment
of solitary phase space vortices. On the other hand, it facilitates the accumulation of hole and clump fragments
into larger structures. (3) Long-range chirping is observed when massive holes or clumps detach and drift away
from the turbulent belt around the seed resonance. It is remarkable that the detached vortices remain robust and,
on average, maintain their concentric nested layers while being visibly perturbed by the field’s continued beating.
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1. Introduction
In magnetically confined fusion (MCF) research,

bursting and chirping Alfvénic fluctuations have attracted
much interest since they may affect the confinement of
fusion-born alpha particles, which are expected to pro-
vide most of the plasma heating in a power plant. Much
work has been done on this subject during the last several
decades, as can be appreciated from recent reviews and tu-
torials, such as Refs. [1–3]. However, there is more to be
learned about these important and fascinating phenomena,
and about the underlying nonlinear self-organization pro-
cesses that occur when the plasma is driven away from
equilibrium under the influence of strong sources, sinks
and dissipation. A thorough understanding can help with
the construction of reduced models that yield quantitative
predictions. It is possible to adopt analytic methods that
have been successfully applied in other research fields,
such as particle acceleration and quantum field science,

with adaptations made to account for the specific condi-
tions of MCF plasmas, in particular their strong magneti-
zation and field geometry [1, 4] (more details will follow
shortly).

A key issue in many systems is whether or not there
exists a separation of time scales between the dynamics of
the field (growth, saturation, pulsations, chirping) and the
time scales of the dynamics of collective structures in the
particle distribution, because this determines whether adi-
abatic invariants can utilized. In typical cases of practical
interest, time scale separation may be vague and exist only
in a portion of the system. The problem can be illustrated
using the cartoon in Fig. 1 (a), which shows an island in
action-angle phase space, with “radius” representing the
action variable. The island and surrounding contours ap-
pear when taking Poincaré maps of the perturbed orbits
of particles (or guiding centers) in the frame of reference
moving with the field wave. Poincaré maps of particles1

that are trapped inside the effective potential well of the
field wave circulate around the island center with a charac-
teristic bounce frequency ωb, which peaks in the center of
the island and drops to zero at the separatrix between the
trapped and untrapped domains [5]. No matter how slowly
the amplitude A(t) and phase φ(t) of the field vary, there
will always be a boundary layer, where the value of ωb is
smaller than the rate at which A(t) or φ(t) evolve.

The nonadiabatic boundary layer provides a path for
particles outside the remaining island to pass from one side
of the effective resonance to the other. In the case of fre-
quency chirping at constant amplitude, a well-defined sep-
aratrix still exists in suitable coordinates, but its domain
is reduced so that it no longer isolates the regions above
and below the resonance [6]. As illustrated in Fig. 1 (c),
this allows the remaining adiabatic island core to propa-
gate through the surrounding phase space fluid.

The situation becomes more complicated when the
field amplitude fluctuates. For instance, consider the pro-
cess of saturation of an undamped resonant instability as
shown in Fig. 1 (b). Deriving an analytical formula that
predicts the saturation level of such an instability turned
out to be a nontrivial task. It was solved by Dewar [7], who
obtained a fairly accurate estimate by examining two ideal-
ized extremes as lower and upper limits. The problem that
Dewar encountered was that the system is actually fully
nonadiabatic during the saturation process.

The same is true for the spontaneous onset of nonlin-
ear frequency chirping as observed in simulations of in-
stabilities that contain a coherent energy loss channel. The
energy loss may occur in the field (damping) or in the parti-
cles (drag), its role being to permit phase slippage between
field waves and density waves, as we will discuss in more
detail later. An analytic formula for the nonadiabatic on-
set of chirping in tokamak geometry has been derived by

1Hereafter, when we speak loosely of “particle motion in/around a
phase space island”, we mean the motion of the particle’s Poincaré map.
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Fig. 1 Schematic illustration of processes in resonantly interacting systems; here, energetic particles (EP) with shear Alfvén waves. The
upper diagrams show time traces of the amplitude A(t) of a symmetry-breaking field perturbation, whose time-dependence has the
form A(t) sin(−ω0t − φ(t)), with initial frequency ω0 and dynamic phase φ(t). In columns (a)-(c), only a single mode is considered,
giving rise to resonant phase space islands whose internal contours are drawn as gray ellipses. The background EP density
decreases with increasing radius. Red and blue arrows indicate uphill and downhill convection, respectively. Here, “radius” is a
proxy for a generalized action variable in suitable action-angle coordinates. Column (a) illustrates a steady state; i.e., a mode with
fixed frequency A and phase φ. The closed separatrix of the perfectly adiabatic steady state (a) becomes a nonadiabatic boundary
layer (orange band) in the semi-adiabatic cases (b) and (c) due to a pulsating amplitude A(t) and/or an accelerating phase φ(t) (i.e.,
chirping). Faster phase adjustments and larger fluctuation amplitudes yield a wider boundary layer around the adiabatic core, until
the entire system becomes nonadiabatic. Column (d) shows an example of convective amplification, where three radially adjacent
modes labeled k = 1, 2, 3 successively rise to large amplitudes and “relay” a resonant particle bunch radially outward [8].

Zonca & Chen [8] based on the concept of a convective
instability as illustrated in Fig. 1 (d). The chirping rate is
predicted to follow the curve of a hyperbolic tangent; i.e.,
exponential acceleration followed by exponential deceler-
ation. We will confirm that this prediction compares well
with simulations during the stage of spontaneous formation
and separation of a nonadiabatic hole-clump wave pair.

Rapid short-lived chirps that last only a millisecond
or less are often observed experimentally in well-resolved
spectrograms (e.g., Fig. 6 of Ref. [9]). These chirps may
remain fully nonadiabatic until their end, but they may also
spawn vortices with an adiabatic core. Sufficiently massive
vortices may gain a large degree of control over the field
and become self-sustained for several milliseconds. Their
propagation can be observed as long-range chirps and they
may cause ballistic long-range transport. We will ana-
lyze some concrete examples where semi-adiabatic vor-
tices form after a few milliseconds of total nonadiabaticity.

Berk, Breizman and Petviashvili [10] have derived
a widely used formula that predicts the rate of vortex-
mediated chirps in regimes near marginal stability; i.e.,
when strong damping is overcome by a slightly stronger
drive. The predicted overall range and rate of chirping of-
ten lies in the right “ball park”, even in cases with fairly
rapid chirps and even relatively far from marginality. How-
ever, the actual form of long-range chirps in a realistic set-
ting often deviates from the predicted square-root time de-
pendence. This is to be expected because the assumptions

made are, at best, satisfied only at intermediate times, af-
ter the nonadiabatic layer has narrowed and before back-
ground nonuniformities and collisions become important.

A rigorous treatment of the nonadiabatic processes
remains challenging and usually requires numerical sim-
ulations, but analytical theory can help to gain insight
and minimize the computational effort by reducing the
Maxwell-Vlasov system. A comprehensive theoretical
framework has been formulated by Chen & Zonca [1] on
the basis of concepts from quantum field theory, invok-
ing a Schrödinger-like equation for the intensity evolu-
tion (bursts or solitons) and a Dyson-like equation for
(driven or spontaneous) emission of (zonal or vortical)
phase space structures that break the symmetry of the ref-
erence state [4]. For instance, this theory captures nona-
diabatic avalanches in a process called convective amplifi-
cation, as illustrated in Fig. 1 (d). The Schrödinger-Dyson
system of equations is less complex than the original gy-
rokinetic Maxwell-Vlasov system, but handy formulas for
the quantitative prediction of chirping dynamics are not yet
easy to come by, except in certain limits, such as short-
wavelength modes interacting with magnetically deeply
trapped particles [8], or in certain space plasmas [11].

It is particularly difficult to reduce analytically the dy-
namics of long-wavelength modes in a MCF plasma, be-
cause the plasma profiles and the global geometry of the
field can have a significant influence on the dynamics. In
this case, it can be difficult to justify the assumption of
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the existence of two disparate spatial scales that underlies
some of the reductions used by Chen & Zonca. However,
the long-wavelength regime is of practical interest, because
such modes are common in present-day MCF experiments
and the associated transport tends to be global.

The present work was motivated by a study of long-
wavelength chirping modes with toroidal mode numbers
n = 1, 2, 3 driven by energetic particles (EP) in JT-60U
tokamak plasmas [12], where experimental and numerical
evidence for beating in the field signal due to interference
between multiple chirps was reported. Using the ORBIT
code with a reduced model for the fluctuating field [13], we
investigate here the physical implications of beating. We
examine the wave-particle interactions in realistic tokamak
geometry, but use a somewhat simpler scenario than the
original JT-60U case that motivated this work, where the
primary resonances were located near the magnetic axis,
touching the domain of stagnation orbits. Here, we avoid
such boundary effects by working with a resonance located
at mid-radius in the domain of circulating particles. Our
plasma has the dimensions of the conceptual fusion reactor
FIRE, but a weaker magnetic field with a flux density of
B0 = 0.49 T at the axis located at R0 = 2.15 m.

The effect of field pulsations in general and beating
in particular is relevant for several aspects of nonlinear fre-
quency chirping, including the nonadiabatic onset of chirp-
ing, hole-clump pair formation, and the applicability of re-
duced transport models, such as the so-called bucket trans-
port [6] and waterbag [14–16]. In Sec. 2, we introduce es-
sential physical concepts, review methods used to charac-
terize chirping systems, and discuss open questions that
may be addressed by elucidating the effects of field pul-
sations and beating. In Sec. 3, we describe the physical
model and numerical methods used in this study. The pro-
cesses of phase space structure formation, nonlinear satu-
ration2 and the onset of beating are revisited in Sec. 4. The
effects of beating during the nonadiabatic onset of chirp-
ing, the formation and propagation of massive vortex struc-
tures and the particle transport they cause are analyzed in
Sec. 5.

This study makes extensive use of comparisons be-
tween cases near and far from marginal stability. Compar-
isons are also made with simulations where no sustained
chirping occurs due to the absence of field damping. The
contrast between these examples will help us to highlight
the trends. By presenting known and less known effects
in a unified systematic treatise, we hope to contribute to a
better understanding of nonlinear frequency chirping.

Sections 2, 4 and 5 can be regarded as three shorter
articles that have been compiled here into a unified thesis-
style treatise. We conclude with a summary, discussion

2“Saturation” is used here as a generic term, referring to a stagnation
in the growth of the field amplitude, such as a (quasi-)steady state due to
a permanent exhaustion of resonant drive, or temporary peaking due to a
transient dynamic balance between resonant drive and damping coming
from different regions of phase space that we integrate over in Eq. (2).

and outlook in Sec. 6. The comprehensive Appendices
contain a mathematical theory of two-wave beating, addi-
tional simulation results, and a thorough characterization
of the model and methods used, including tests for numer-
ical convergence and sensitivity. At the end of the paper,
there are links to animated movies for several simulations.

2. Physical Concepts and Open Ques-
tions
In this section, we establish the conceptual framework

that we will use in our discussion and interpretation of the
simulation results. The rationales behind the chosen physi-
cal pictures are explained and useful quantities characteriz-
ing chirping systems are defined. Finally, we discuss why
we expect that studying the effects of beating may improve
our understanding of chirping systems. Before we discuss
the theory, let us show a concrete example of nonlinear
chirps as seen in our simulations.

2.1 Phenomenology of a chirping system
Figure 2 shows results from one of the simulations that

we will analyze in detail in this paper. Appendix E.3 con-
tains a link to the movie file. The simulations use a reduced
model of EP-driven ideal magnetohydrodynamic (MHD)
fluctuations in the frequency band of shear Alfvén waves
in a tokamak plasma. Our EPs are fast deuterons with ki-

Fig. 2 Evolution of ideal MHD fluctuations in one of our numer-
ical simulations of nonlinear frequency chirping using the
ORBIT code [13, 17, 18] that we analyze in detail in this
paper. Panel (a) shows the raw signal s(t) of Eq. (1) in
code units, and panel (b) shows the Fourier spectrogram
obtained with a sliding time window of size 0.47 ms. This
case is marginally unstable and develops semi-adiabatic
vortices. The dotted parabola is the theoretically pre-
dicted chirp front assuming marginality, adiabaticity, and
uniform background [10]. The “ghost chirp” seems to be
an artifact and is discussed in Appendix C.4.
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netic energies around 80 keV. Figure 2 (a) shows the raw
signal

s(t) = A(t) sin(−ω0t − φ(t)), (1)

which represents ideal MHD displacements ξ. In the
present case, the peak values of this signal fluctuate at
levels below 10−3, which corresponds to radial displace-
ments of resonantly trapped particles by δrres/R0 � 6×10−3

and ideal MHD bulk displacements δrmhd/R0 � 7 × 10−4

(cf. Appendix D.7). Panel (b) shows the corresponding
Fourier spectrogram obtained with a sliding time window
of size Δtwin = 0.47 ms. The chirps in Fig. 2 (b) pro-
ceed at rates on the order of φ̈ = δν̇ � 10 kHz/1 ms
(φ̇ ≡ dφ/dt) around the seed resonance with initial fre-
quency ν0 = ω0/(2π) = 100 kHz. In the present example,
the chirping dynamics enhance the displacement of reso-
nant and near-resonant particles by an order of magnitude
to δrchirp/R0 ≈ 4 × 10−2, which illustrates why this phe-
nomenon is of practical interest.

The example in Fig. 2 was simulated in the perfectly
collisionless limit and without external EP sources, so the
chirps tend to continue and dominate the signal for a long
time, whereas the original mode is not revived. In reality,
rapid nonlinear chirps may be visible for less than a mil-
lisecond, and even long-range nonlinear chirps usually last
no longer than 10 ms, so this phenomenon can be taken to
be insensitive to changes in the background plasma con-
ditions (magnetic geometry, kinetic profiles, rotation) on
global scales, which typically evolve on the time scale of
100 ms or more under the influence of heating, fueling, col-
lisional diffusion and turbulent transport.

The δ f -weighted kinetic Poincaré plots in Fig. 3 are
a way to visualize the structure and motion of the incom-
pressible Vlasov fluid that makes up the EP phase space.
Density waves in this incompressible fluid are realized by
the convective interchange of denser and lighter fluid el-
ements that exist due to an initially imposed density gra-
dient. Here, the gradient is along the canonical toroidal
angular momentum Pζ , which represents the radial direc-
tion along the vertical axis in Fig. 3 (a). EP phase space
structures causing upward chirps travel upward in Fig. 3
and vice versa. The vertical axis of Fig. 3 (b) has been con-
verted to frequency units for easier comparability with the
spectrogram in Fig. 2 (b).

The Poincaré section in Fig. 3 moves with the phase
velocity of the seed wave along the toroidal angle ζ, so δ f
structures at the seed resonance appear stationary. Shades
of blue indicate a reduction in EP phase space density
(δ f < 0, “hole”) where lighter fluid has moved into regions
previously occupied by denser fluid, and shades of red in-
dicate increased density (δ f > 0, “clump”). In the present
scenario, four cross-sections of the same phase space struc-
ture appear at different poloidal angles ϑ since the under-
lying resonance has p = 4 elliptic points along ϑ. Note
that we use the terms “hole” and “clump” in a more gen-
eral manner than some readers may be used to. Namely,

Fig. 3 Two snapshots of EP phase space density waves around a
seed resonance with p = 4 poloidal elliptic points found
in the case of Fig. 2. The structures are visualized using
δ f -weighted kinetic Poincaré plots, with shades of blue
representing decreased density (δ f < 0, “hole”) and red
increased density (δ f > 0, “clump”). The Poincaré maps
are accumulated during a short interval of one toroidal
transit, so, strictly speaking, we plot a time-integrated
phase space density perturbation 〈δ f 〉transit. The canonical
toroidal angular momentum Pζ serves as a radial coordi-
nate, here normalized by the poloidal magnetic flux at the
plasma edge ΨP,edge. The initial EP density (not shown)
decreases from the bottom (inner plasma) to the top (outer
plasma). In the rotating frame of reference chosen here,
fluctuations at the seed resonance (P̂ζ,res = 0.719) ap-
pear stationary, and the poloidal phase velocities increase
away from the resonance as indicated by the horizontal
arrows. Using the calibration in Eq. (D6), the vertical axis
of panel (b) has been converted to frequency ν for easier
comparability with the spectrogram in Fig. 2 (b).

we use them not only to refer to solitary vortices but also
for short-lived convective perturbations in EP density.

Some notable dynamic structures seen in the system
studied here have been labeled in Figs. 2 and 3. Chirping
starts with the radial propagation of convective EP density
“wave fronts”. In the wake of these wave fronts, a turbulent
belt forms, which consists of more or less stratified layers
of differentially rotating hole and clump waves. The in-
teractions between these layers are reminiscent of sheared
“convective interchange” and “wave breaking”: wave tops
rise, overtake wave bottoms, then collapse back down.
Sometimes, we observe the complete detachment of a mas-
sive hole or clump from the turbulent belt. Such structures
can be seen in the upper and lower parts of Fig. 3 (b) and
are referred to here as “solitary vortices”. The massive soli-
tary clump vortex, whose interior looks like a spiral galaxy,
is responsible for the long-range upward chirp in Fig. 2 (b)
that spurs away from the turbulent domain up to 180 kHz.

The propagating phase space structures and associ-
ated chirps may be affected by but are not necessarily con-
strained to the linear MHD response spectra of the back-
ground plasma, which (in the limit t → ∞) consist of sin-
gular continua or discrete global eigenmodes. In fact, the
MHD spectra are entirely ignored in the reduced model
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that we employ here — boldly assuming that the plasma
responds equally well at any frequency, being subject only
to an ad hoc damping rate γd that is spatially uniform,
independent of frequency and constant in time. Our re-
duced model captures the essential physical mechanisms
for chirping with full complexity in the particle dynamics
and reduced complexity in the field dynamics, which en-
hances physical transparency and computational efficiency.

2.2 δ f structures = ensemble of pump waves
In the previous section, we have, in a casual way, re-

lated the coherent structures appearing in Poincaré plots
of δ f in Fig. 3 to the chirps seen in the spectrogram in
Fig. 2 (b). Let us review the underlying theoretical foun-
dation.

When applying a symmetry-breaking electromagnetic
perturbation that displaces our energetic charged particles
in the direction of a preexisting gradient in their initial
guiding center distribution F0 = F(t = 0), one obtains
a perturbed distribution F(t) = F0 + δ f (t), whose fluctu-
ating part δ f (t) consists of wave-like structures. Short-
wavelength portions of δ f that cease to contribute to the
dynamics of interest act like a zonal (angle-independent)
structure, which we denote by δ f̄ and interpret as a mod-
ification of the axisymmetric reference state F0. During
the ensuing mutual interactions between the phase space
density waves and the electromagnetic field, remaining or
newly formed gradients in F̄(t) = F0 + δ f̄ (t) may facilitate
the excitation of additional waves or continue to feed ex-
isting ones. Although conventionally referred to as “wave-
particle interactions” — which is, of course, correct from
the energetic point of view — we interpret these dynamics
in terms of interactions between two types of waves:

• electromagnetic field waves, here represented by E⊥,
and
• collective density waves represented by δ f (t).

Speaking of density waves instead of particles is not just a
semantic matter. It is motivated by Maxwell’s equations,
which state that the field responds to collective structures
in δ f , whose group velocities generally differ from particle
velocities. Let us elucidate this point within the scope of
the reduced field model that we will be using in this work.

We express the combined time-dependence of the
ideal MHD field waves as E⊥(t) ∝ A(t) cos(−ω0t − φ(t)),
with an amplitude factor A(t) and nonlinear phase shift φ(t)
relative to a reference wave with frequency ω0.3 Our re-
duced equations governing the field response have the form

dA
dt
= −Ωc

ν2
A0

ω2
0

∫
d5Zgcδ f

�gc · E⊥
A

− γdA, (2a)

A
dφ
dt
= −Ωc

ν2
A0

ω3
0

∫
d5Zgcδ f

�gc · ∂t E⊥
A

; (2b)

3A(t) cos(Θ(t)) corresponds to the real part of the analytic signal s̃(t) =
s(t) + iŝ(t) = A(t)eiΘ(t), where ŝ(t) is the Hilbert transform of s(t).

(see Sec. 6.9 of Ref. [19]) where νA0 = �A0/R0 is the on-
axis Alfvén frequency, Ωc the cyclotron frequency, d5Zgc

is a volume element in guiding center (GC) phase space,
�gc is the GC velocity, and ∂t ≡ ∂/∂t in Eq. (2b) acts
only on the “fast” oscillations ω0. All damping mech-
anisms unrelated to the particle distribution F0 are cap-
tured by γd, which we take to be constant. The Jaco-
bian has been absorbed in the distribution function F, so∫

d5ZgcF = N is the number of particles (whose con-
servation implies

∫
d5Zgcδ f = 0). The set of GC co-

ordinates Zgc = (Pζ ,K, μ, ϑ, ζ) consists of the canoni-
cal toroidal angular momentum Pζ , kinetic energy K, the
magnetic moment μ, and poloidal and toroidal angles ϑ
and ζ. For particles with mass M, electric charge Qe
and velocity �, in a toroidally axisymmetric magnetic field
B = ∇ζ×∇ΨP+Bζ∇ζ, these GC coordinates have the form

Pζ = −Ψp + Bζ
�‖
Ωc
, μ =

M�2⊥
2B

, K =
M�2

2
, (3)

where 2πΨP is the poloidal magnetic flux, �‖ is the GC
velocity parallel to the magnetic field, �2⊥ ≡ �2 − �2‖ , and
Ωc = QeB/M with e the electric charge of a positron.

Note that the phase space density gradients ∂Zgc F do
not appear in the field Eq. (2) explicitly; only the density
perturbation δ f (Zgc) appears. The Vlasov equation

∂tδ f = −Żgc · ∂Zgc F

= − (ϑ̇∂ϑδ f + ζ̇∂ζδ f )︸���������������︷︷���������������︸
free streaming

− (Ṗζ∂Pζ F + K̇∂K F)︸�����������������︷︷�����������������︸
acceleration

,

(4)

states that the instantaneous rate of change of δ f is deter-
mined by phase space flows Żgc ≡ dZgc/dt across phase
space density gradients ∂Zgc F. Meanwhile, the instanta-
neous structure of δ f reflects the time history of these dy-
namics (until erased by external sources, sinks and colli-
sions). Thus, like the fields in Maxwell’s equations, our
field governed by Eq. (2) sees only the result of that his-
tory in the form of an evolving density perturbation δ f (t).

For instance, let us assume that the zonal gradients
have been flattened, so that F̄ ≈ const., and what remains
is a single density wave with frequency ωpump. The ab-
sence of zonal gradients means that there is no net guid-
ing center current δ f �gc along the transverse electric field
E⊥, so the total energy transfer

∫
d5Zgcδ f �gc · E⊥ van-

ishes, because there is no “DC” component and the “AC”
components δ f ∝ sin(−ωpumpt) and E⊥ ∝ cos(−ω0t − φ)
are out of phase. Ignoring damping, Eq. (2a) becomes
Ȧ = 0. Meanwhile, the time derivative on the right-
hand side of the phase Eq. (2b) aligns the phases of den-
sity and field fluctuations. Using the fact that the integral
over ∂t(δ f �gc · E⊥) vanishes, we can let δ f �gc · ∂t E⊥ →
1
2 (δ f �gc · ∂t E⊥ − �gc · E⊥∂tδ f ), so that Eq. (2b) becomes
φ̇ = ωpump − ω0. This means that the field wave responds
with oscillations E⊥ ∝ cos(−ωpumpt) of the same frequency
as the density wave, which acts as a pump wave as it prop-
agates subject to the free streaming terms in Eq. (4). In the
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presence of zonal gradients, the pump waves propagate up
or down those gradients and grow or decay in magnitude.

Therefore, Eq. (2) states that the field responds to the
pumping action exerted by an ensemble of density waves,
so it behaves as a driven oscillator; albeit an active one,
that is capable of shaping the δ f landscape4. One may say
that the integral on the right-hand side of Eq. (2a) measures
the correlation between the structure of the density waves’
current density Qeδ f �gc and the field wave E⊥, so the re-
sponse is stronger the better the phases match. Conversely,
the coherence of density waves is maintained by resonant
interactions with the field, where “resonance” means that
phase-matching is maintained over many field oscillation
cycles. Thus, the effect of resonance emerges on interme-
diate time scales situated between rapid field oscillations
and transport, allowing coherent δ f structures to form and
to remain robust.

The total field signal E⊥(t) cannot be phase-locked to
multiple pump waves simultaneously, and as the relative
phases shift, the sign of the phase correlation integral in
Eq. (2a) can change5. The beating phenomenon, whose ef-
fect we study in this work, can be interpreted as the tem-
poral interference pattern of two or more pump waves in
phase space density, which propagate with different phase
velocities around the plasma torus. The math for the spe-
cial case of two-wave beating is presented in Appendix A.

Variations in the pump wave distribution are observ-
able in spectrograms of the field signal s(t). The spectral
patterns one sees depend on the time window used for the
spectral analysis. Short time windows can reveal details
about rapid phase adjustments performed by the field, but
may not reflect the existence of multiple pump waves, only
their combined instantaneous action. Long time windows
show only the overall trend, but allow to discern a larger
number of spectral harmonics that can then be attributed to
multiple pump waves as in Figs. 2 and 3. We will analyze
dynamics in our simulations on short and long time scales.

When the EP density waves propagate radially in a
tokamak plasma, their transit frequencies change, giving
rise to the chirps in the spectrogram of the field waves they
drive. We will consider scenarios with a destabilizing “ra-
dial” gradient ∂Pζ F̄ > 0 and will observe “clump waves”
(δ f > 0) that tend to propagate downhill and “hole waves”
(δ f < 0) that tend to propagate uphill. The radial propa-
gation of these phase space structures is facilitated by field
damping γd and the reason for this is considered next.

4Parallels with the concept of parametric instabilities are evident.
5For instance, even when the density waves δ f are still growing, the

field may saturate or even vanish if the phase relation is such that the
contributions of pump waves with positive and negative δ f cancel in the
correlation integral of Eq. (2a). This illustrates the difference between
the linear regime — where phases are spontaneously aligned such that
∂t ln A = ∂t ln δ f regardless of amplitude and position — and the nonlin-
ear regime, where the phase relations can become arbitrarily complicated
and one has to consider the flows Żgc of GC phase space fluid across
phase space density gradients ∂Zgc F. The local flow contours, in turn, are
determined by the field’s instantaneous phase and amplitude.

2.3 Phase slippage between pump and field
Interactions between pump waves in EP phase space

density and electromagnetic field waves do not necessarily
lead to spontaneous chirping. There needs to be a mech-
anism that causes phase slippage between these density
waves and field waves, which we review in this section.

When the field wave is unaffected by the presence
of the EP density perturbation δ f (e.g., when it is exter-
nally enforced), one obtains the situation shown in Fig. 4.
Around the resonance (vertical dash-dotted line), an is-
land structure forms in phase space, which can be visu-
alized using a kinetic Poincaré plot as in panel (a), using
action-angle coordinates like (Pζ , ϑ) in the frame of ref-
erence moving with the phase velocity of the wave field.
The circulation of particles that are trapped inside the is-
land causes a perturbation in phase space density δ f with a
coarse-scale structure as shown in (b), with a hole (δ f < 0,
blue) on one side and a clump (δ f > 0, red) on the other.

The hole and clump in this configuration are station-
ary collective modulations of the particle density, not tied
to the motion of individual particles. Asymptotically, the
system develops a non-axisymmetric EP distribution that

Fig. 4 Perturbation of the EP trajectories and EP density in the
presence of an imposed oscillating field with fixed am-
plitude and phase velocity. The kinetic Poincaré plot in
panel (a) shows a phase space island around the reso-
nance at P̂ζ,res = 0.719. The colors in (a) represent the in-
stantaneous total (kinetic + potential) energy E of a parti-
cle. Panel (b) shows the relaxed phase space density per-
turbation 〈δ f 〉, averaged over the last 50 transits. Panel
(c) shows the radial profile of the axisymmetric EP refer-
ence distribution F0 (shaded triangle) and three views of
the perturbed EP distribution F = F0 + 〈δ f 〉: poloidally
averaged, O-point profile and X-point profile.
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Fig. 5 Schematic illustration of the nonlinear frequency chirping process in a monoenergetic beam that is abruptly perturbed out of
equilibrium. Note that, in reality, stages 1-4 are not as distinct as they are shown here. For instance, phase slippage (item 3) occurs
before the wave amplitude saturates and decays; in fact, we will show that, in a marginally unstable system, this phase slippage
and the resulting beats (item 5a) contribute actively to an early temporary saturation and decay, and subsequent revival of the field
wave. In the case of EPs interacting with shear Alfvén waves in a toroidal plasma, acceleration (deceleration) of particles and
resonant damping (drive) of the field is connected with radially inward (outward) transport.

is consistent with the perturbed field6. If the amplitude of
the symmetry-breaking field perturbation is reduced, some
particles are released from the island and carry with them
the previously established density modulation. One will
then observe a counter-propagating hole-clump wave pair.
When the dynamics of the field’s amplitude A(t) and phase
φ(t) are coupled to the dynamics of the density waves δ f as
in Eq. (2), the propagating hole and clump structures will
act as pump waves that drive field fluctuations, which re-
spond auto-resonantly to the pump frequencies.

From this we infer that instability is not essential for
triggering a frequency shift. Although a gradient in the ref-
erence state F0 is required to produce density waves in an
incompressible fluid, that initial gradient by itself does not
need to be destabilizing. The energy required to launch off-
resonant pump waves can also be provided by an abruptly
imposed perturbation that breaks the symmetry of the par-

6It must be noted that Fig. 4 does not show an equilibrium state. We
have fixed the amplitude of the field perturbation at an arbitrary value
A0 = 10−6 that is far below the level of about 3 × 10−5 required for
the formation of a (quasi-)steady state that is consistent with the initial
EP density gradient (cf. Fig. 14). The non-equilibrium character of this
relaxed EP distribution can be inferred from the lack of mirror symmetry
of δ f in Fig. 4 (b), which implies that there is still potential for net energy
transfer (which we have inhibited here by freezing the amplitude). Thus,
the flat O-point profile in (c) is misleading! There are still active gradients
nearby. The X-point profile is also misleading; the actual direction of the
X-point gradient is diagonal in (P̂ζ , ϑ) and the energy stored there is not
easily tapped (cf. Sec. 4.3). The result of launching a simulation from this
relaxed state is shown in Fig. D4 of Appendix D.3. Since a primordial
hole-clump pair has already been set up, this setup effectively skips the
exponential growth phase and first beat.

ticle distribution. What is essential for nonlinear chirping
is a mechanism that facilitates phase slippage by prevent-
ing complete trapping of displaced particles; for instance,
a mechanism that damps the field wave.

The process leading to the onset of chirping is illus-
trated schematically by the cartoon in Fig. 5. As shown
on the left-hand side, the process begins with symmetry
breaking and (partial) particle trapping in the potential well
of the field wave:

0. Consider a monoenergetic bunch of particles circulat-
ing around the plasma torus at a characteristic tran-
sit frequency Ω0. The particle bunch is abruptly per-
turbed by a resonant field wave that causes an abrupt
finite displacement and oscillates at the same fre-
quency ω0 = Ω0. This perturbation breaks the sym-
metry of the system and takes it out of equilibrium.

1. The collective response of the guiding centers pro-
duces a modulation δ f in their distribution function
F = F0 + δ f in position and velocity space. Depend-
ing on the local phase of the field wave, some particles
are accelerated, others decelerated.

When the field and the particles constitute an energy-
conserving closed system, the particles oscillate indefi-
nitely inside the field’s potential well. A high-resolution
spectrogram may show transient frequency splitting, but
no sustained chirping occurs.

The situation changes when this field-particle system
is not isolated and exchanges energy with other compo-
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nents of the plasma or its surroundings. On the right-hand
side of Fig. 5, we illustrate how sustained frequency chirp-
ing can occur when

2. the field wave experiences some form of energy loss
that is not related to the resonance at hand and exceeds
a certain threshold. Possible damping mechanisms
include phase mixing in the wave-carrying medium
(a.k.a. Landau damping), nonlinear wave-wave cou-
pling, or viscous dissipation. When this happens, the
particles are detrapped, and . . .

3. . . . the density waves disperse. For simplicity, this
cartoon ignores the continuity of the velocity distri-
bution and shows only the density wave fronts consti-
tuted by maximally decelerated and maximally accel-
erated particles, whose characteristic transit frequen-
cies satisfy Ω− < Ω0 < Ω

+.7 The consequence of de-
trapping is phase slippage between the density waves
and the (weakened) field wave.

4. The released density waves excite auto-resonantly
phase-matched field waves. In the present symmetric
case, the result is a pair of new field waves, one down-
shifted (ω−) and one up-shifted (ω+) in frequency.

As indicated by the triangle of green arrows in the center
of Fig. 5, this cycle of trapping, detrapping, phase slippage
and auto-resonance can repeat, spawning multiple genera-
tions of chirps that successively appear as time passes by.

In reality, steps 1-4 illustrated simplistically in Fig. 5
are not so distinct and may overlap in time. For instance,
the field is usually damped continuously, so the phase slip-
page described in step 3 may already begin before the field
amplitude saturates and decays. The essential point is that,
because of damping, the field wave has irreversibly lost a
part of the energy that it had received when disturbing the
gradients in the particle’s phase space density, so it does
not possess enough energy to reverse all the displacements
that have occurred in the particle distribution. In other
words, the (weakened) field is able to trap only a fraction of
the particles that have been displaced, and that fraction de-
creases with increasing damping rate. The particles that the
field fails to pull back across the resonance will carry along
density modulations that act as pump waves at shifted fre-
quencies ω+ and ω−.

The same principles apply in more complex systems.
The consequences of irreversible field energy loss is par-
ticularly manifested in (but not limited to) marginally un-
stable scenarios subject to strong drive and nearly equally
strong damping, like our examples in Figs. 2 and 3. In
such cases, the onset of chirping occurs early and proceeds
gradually. In contrast, in cases with strong drive but weak
damping, chirping tends to be retarded and begin abruptly.

7Like a two-stream approximation [20] of the continuous system [21].

2.4 Field amplitude pulsations
In order to characterize the evolution of the field am-

plitude, we define the instantaneous growth rate γ(t) as

A(t) = A0eγt, γ = d ln A/dt = γk − γd; (5)

where γd represents some form of damping (here taken
to be constant), and γk(t) represents the instantaneous ki-
netic drive; namely, the integral on the right-hand side of
Eq. (2a) divided by A(t). At the beginning of a simulation
with a sufficiently small initial perturbation A0 and an ax-
isymmetric EP distribution F0,8 the kinetic drive has an ap-
proximately constant value that corresponds to the growth
rate of the linearized system: γk ≈ γL = const. The linear
growth rate γL(∂Pζ F0, ∂K F0) is determined by the gradients
of the reference state F0(Pζ ,K, μ) at the seed resonance.
When γL > γd, the field amplitude A(t) begins to grow
(nearly) exponentially with a rate γ ≈ γL − γd.

Figure 6 shows two examples of the amplitude evolu-
tion in ORBIT simulations in the scenario that we study in
this paper. Panel (a) shows an undamped case (γd = 0)
with relatively weak drive γL/ω0 = 0.5%. The rapid
oscillation of the field signal s(t) with frequency ω0 =

2π × 100 kHz are not visible, since we plot only its tem-
poral envelope A(t). One can see that the amplitude grows
to about A ≈ 2.7 × 10−5. The period τpulse � 1 ms of the
subsequent pulsations seen in Fig. 6 (a) is more or less con-

Fig. 6 (a) Weak pulsations and (b) strong beating in the am-
plitude A(t) associated with (a) an undamped and (b) a
strongly damped electromagnetic field wave destabilized
by resonant EPs. Both cases have the same small initial
growth rate γ/ω0 = (γL − γd)/ω0 ≈ 0.5% (γ/ν0 ≈ 0.03)
with ν0 = ω0/(2π) = 100 kHz. The damped case in (b)
exhibits strong chirping as was shown in Fig. 2. Panel (b)
is split in two parts with different scales (factor 5) in order
to show the small amplitudes during the first 2 ms.

8As shown in Apendix D.3, exponential growth and the first beat are
effectively skipped if one starts with a relaxed non-axisymmeteric EP dis-
tribution that has adapted to the initial perturbation of the field as in Fig. 4.
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sistent with Dewar’s theoretical prediction [7]

ωDewar
b =

256
9π2

γL ≈ 2.88 × γL, (6)

which gives a bounce period τDewar
b = 2π/ωDewar

b ≈ 0.7 ms
for our parameters.

Pulsations like those appearing in Fig. 6 (a) are some-
times said to be caused by the continued over- and under-
shoots of the gradients around the resonance that, in turn,
are caused by the bouncing motion of near-resonant par-
ticles that are trapped inside the effective potential well
of the field wave. Although this interpretation may ap-
peal to intuition, it is important to keep in mind that pul-
sations can be caused not only by the acceleration terms
(Ṗζ∂Pζ + K̇∂K)F of the Vlasov Eq. (4), but also by the free
streaming terms (ϑ̇∂ϑ + ζ̇∂ζ)δ f . The details of these inter-
actions are complicated, which is why we use numerical
simulations. As suggested in Sec. 2.2, it may be more in-
structive to think of these amplitude pulsations as being
a consequence of the motion of density waves, because
it is δ f (not Żgc · ∂Zgc F) that appears in the field Eq. (2).
The field pulsations cause a repeated trapping and detrap-
ping of density waves in the boundary layer of the phase
space island as illustrated schematically in Fig. 1 (b). The
resulting variations in the relative phase between density
and field waves, in turn, feed back on the evolution of the
field via the phase correlation integral between EP cur-
rent density and electric field in Eq. (2). We suspect that
these boundary layer dynamics, in combination with ra-
dial asymmetries in our simulation setup, are the primary
cause for the sustained and somewhat irregular oscillations
seen in Fig. 6 (a). The fact that the bounce frequencies vary
across the island radius [5] may also play a role. Limited
numerical accuracy can cause spurious growth of the field
amplitude (see Appendix D.6). We will analyze these data
in more detail in Appendix B, examining the effect of the
pulsations and demonstrating that, although there is no sus-
tained chirping, the field’s oscillation frequency can vary
measurably even in the absence of field damping.

Figure 6 (b) shows that a very different evolution with
strong pulsations of the field amplitude A(t) is seen in the
presence of strong damping, which is here nearly equal to
the drive. This is the same case as in Figs. 2 and 3, with
γd/ω0 = 7.5%. The damping is marginally overcome by
a steep gradient ∂F0/∂Pζ > 0 that gives a linear kinetic
drive γL/ω0 ≈ 8%. Thus, the overall growth rate during
the exponential phase is small, γ/ω0 ≈ 0.5%, and equal
to that in the undamped example in Fig. 6 (a). We observe
in Fig. 6 (b) an early saturation of the field amplitude dur-
ing the first millisecond, at a still tiny amplitude of only
A ≈ 6 × 10−6, not far from the initial value A0 = 10−6.
Subsequently, the amplitude grows by nearly two orders of
magnitude to about 3 × 10−3, while performing pulsations
with a magnitude of 100% on time scales of 0.1 ms or less,
not much longer than the 10 μs seed wave period.

These amplitude pulsations have been shown in many

previous works dealing with nonlinear frequency chirping
— theoretical, numerical and experimental. Clarifying the
role of these pulsations in different stages of a chirping
simulation is the main subject of the present study.

2.5 Characterization of chirping systems
Aside from geometric effects and other nonuniformi-

ties of the plasma, the behavior of our reduced system is
largely determined by its initial proximity to the state of
marginal stability, where drive and damping approximately
balance,

|γL − γd|/γL � 1 (marginal (in)stability), (7)

and by the amount of free energy stored in the initial gradi-
ent, which can be measured by the ratio of γL to the initial
wave frequency ν0 at the seed resonance9,

γL/ν0 � 1 (weak drive), (8)

γL/ν0 � 1 (strong drive). (9)

The cases discussed in this paper are situated in the
strongly driven regime, γL/ν0 ≈ 0.5 (γL/ω0 ≈ 8%). We
consider one case close to marginal stability, γL/γd ≈ 1.07,
and one case with relatively rapid growth, γL/γd ≈ 1.88.

An important measure that characterizes the phase
space dynamics underlying the chirps is the degree of adi-
abaticity of the dynamics, which is determined by the ra-
tio of the mean and maximal displacement of a simulation
particle (representing an EP Vlasov fluid element) during
a field pulsation period τpulse,10

〈
δPζ

〉
pulse

max|δPζ |pulse
∼ 〈δE〉pulse

max|δE|pulse
< 1 (adiabatic

regime); (10)

where δPζ = Pζ − 〈Pζ〉pulse and 〈. . .〉pulse ≡
τ−1

pulse

∫
dτpulse(. . .) denotes the pulse average. E = K+QeΦ

is the total particle energy, consisting of kinetic energy K
and electrostatic potential energy QeΦ. In simple terms,
Eq. (10) means that, in the adiabatic regime, the coherent
phase space structures (if any) rotate faster than they ad-
vance, so the chirps are associated with the drift of vortex-
like structures in phase space, which we have labeled “soli-
tary hole/clump vortices” in Fig. 3 (b). In this case, the
pulse period τpulse may be identified with the bounce period
τb, and the pulse average becomes the bounce average. In
contrast, chirps in the nonadiabatic regime are associated
with the propagation of convective plume-like structures
in phase space density as in Fig. 3 (a). These structures ad-
vance radially faster than they rotate, taking the form of
a convective instability [4]. In this case, a bounce time τb

cannot be easily defined, and this is the reason why we
9In Eq. (9), we write γL/ν0 instead of γL/ω0 in order to be able to

make a clearer distinction between strong (� 1) and weak (� 1) drive.
Apart from this, we usually work with γL/ω0.

10As indicated in Eq. (10), the variations of a particle’s canonical
toroidal momentum Pζ and energy E = K + QeΦ are closely related
in the system studied here. We will use this relation later (cf., Eq. (26)).
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have chosen the amplitude pulsation time τpulse to measure
(non)adiabaticity in Eq. (10).

Nonlinear frequency chirping always begins nonadia-
batically, with the propagation of convective wave fronts
in whose wake dynamics reminiscent of convective inter-
change and wave breaking can be observed in plots of
δ f (Pζ , ϑ), with corresponding chirping patterns appearing
in the spectrograms. In Figs. 2 and 3, this turbulent belt can
be clearly seen in the form of complicated patterns around
the seed resonance. The region around the seed resonance
tends to remain nonadiabatic, but solitary vortices with an
effectively adiabatic core can be emitted from its bound-
ary. Thus, the same system may simultaneously contain
adiabatic and nonadiabatic portions. If the evolution of the
wave field is dominated by one of the adiabatic vortical
structures in phase space, Eq. (10) can be written as11

2πδω̇

ω2
b

= τ2
bδν̇ =

τb

τchirp
< 1 (single smooth

adiabatic chirp); (11)

where τ−1
chirp ≡ δν(τb) ≈ τbδν̇ is the frequency shift that the

wave experiences during one bounce time.
In summary, we will refer to a subdomain of phase

space as being “adiabatic” when the dynamics in that re-
gion exhibit a distinct separation of time scales, where a
particle’s mean nonlinear displacement

〈
δPζ

〉
b

during one
bounce cycle τb is smaller than the maximal displacement
max|δPζ |b during that period. The physical relevance of
such a time scale separation is that it facilitates the for-
mation of robust vortex structures in phase space, that can
be viewed as a generalization of Bernstein-Greene-Kruskal
(BGK) modes formed by electron Langmuir waves [23].
We will show that the large vortex that is visible in the up-
per part of Fig. 3 satisfies the adiabaticity condition only
marginally (τb � τchirp/2), but it nevertheless resembles a
BGK mode since its interior consists of concentric nested
layers as illustrated in Fig. 1 (c), with the remarkable abil-
ity to withstand the strong and incoherent beats of the field.

2.6 Discussion of the adiabatic limit
The scale separation in the adiabatic limit is useful for

analytical treatments and has allowed Berk, Breizman et
al. (BB) to develop a model that yields a quantitative pre-
diction of the chirping rate if the values of γL and γd are
known [10, 24]. With some approximations, their integral
relation between δω and ωb reduces to the analytical form

δωBB = ωBB
b

(
2γd

3
t

)1/2

≈ 0.44 × γL(γdt)1/2, (12a)

with ωBB
b =

16
3π2

γL ≈ 0.54 × γL. (12b)

11The quantity α = δω̇/ω2
b has been used as an expansion parameter in

theoretical treatments. Here, we included a factor 2π since we feel that
this quantifies the upper limit of adiabaticity in a more precise and intu-
itive way: 2πα = τb/τchirp < 1 instead of α � 1. An indication for this
can be seen in Fig. 13 of Ref. [22] and we will offer further justification
in Sec. 5.4 when inspecting the motion of tracer particles in a vortex.

Note that since A ∝ ω2
b, Eq. (12b) predicts the field ampli-

tude associated with a chirping BGK mode. Comparison
with Eq. (6) shows thatωBB

b /ωDewar
b ≈ 0.18, so the field am-

plitude of the BGK wave is predicted to be 30 times smaller
than the saturation amplitude of the undamped wave driven
by gradients that give the same value of γL. Conversely,
this means that a BGK wave is predicted to require a
1/0.18 = 5.6 times larger value of γL in order to yield the
same bounce frequency (and amplitude). We suspect that
this is connected with the assumption of marginal stability
that underliesωBB

b but notωDewar
b . Consequently, we expect

to find reasonable agreement with ωb in simulations where
(γL−γd)/γL is comparable to ωBB

b /ωDewar
b ∼ O(0.1 . . . 0.2).

In our simulations, this marginality parameter will have the
values 0.06 and 0.47 and we will find bounce periods that
lie slightly above and below the prediction τBB

b ≈ 0.24 ms.
The dotted green curve in Fig. 2 (b) indicates the theo-

retical prediction δνBB ∼ 24 kHz × √t[ms] from Eq. (12a)
for our parameters. One can see that the curve lies in the
right “ball park”, especially for the upward chirp12. Sim-
ilar agreement in the overall extent of the chirps was seen
in many other studies, even when the parameters clearly
stretch the range of validity of the theoretical model, as in
our marginally unstable but strongly driven example.

This remarkable robustness of the model may be at-
tributed to the fact that Eq. (12) is the result of balancing
the rate at which the fluctuating field receives energy from
the destabilizing gradients (γL) and loses energy via the
ad hoc damping γd. The theory simply postulates that the
BGK wave is somehow able feed on the gradients at the
same rate as the field loses energy, implicitly relying on the
existence of a nonadiabatic layer as illustrated in Fig. 1 (c),
without modeling the detailed processes inside that layer.
Therefore, the overall agreement means only that both the-
ory and simulation satisfy the energy balance constraint. It
does not necessarily mean that the theoretical picture on
which the theory is built captures the processes that actu-
ally occur in the simulation (or in a real plasma)13.

A generalized model that accounts for nonlinear dis-
tortions and shrinking of the field’s effective potential well
has been derived by Breizman [25] and further extended to
expanding potential wells by Hezaveh et al. [16]. A key
point that is captured in these and related studies of long-
range chirping [26–29], and which is closely related to the
topic of the present paper, is that the generalized BGK-like
modes have an active boundary layer that can dynamically
expand or shrink as the field amplitude grows or decays14.

12One reason for the smaller extent of the downward chirp is that it
propagates away from the peak of the field mode in our setup.

13As an analogy, consider the phenomenon of so-called magnetic re-
connection, which can be realized by different physical mechanisms. All
mechanisms break the frozen-in-flux condition of ideal MHD, but the en-
ergy conversion rates and side effects (such as wave excitation) differ.

14Our interpretation of the results presented in Ref. [25] is that the
leading-order effect is the variation of the potential well’s depth. The dis-
tortions of its shape seem to be corrections of higher order, comparable to
various other effects (e.g., geometric nonuniformity) that were ignored.
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2.7 Some open questions: Formation of soli-
tary vortices and the role of beating

Having reviewed the concepts that will be needed for
the discussion of our results, we proceed now with an out-
line of some open questions that we wish to tackle.

One question that, to our knowledge, has not been sat-
isfactorily answered yet is how solitary vortices are formed
and emitted from the turbulent belt around the seed reso-
nance. We believe that some of the results reported here
can contribute to a better understanding of the nonadiabatic
onset of chirping and how it can lead to the detachment of
solitary vortices. We will present evidence indicating that
these processes are facilitated by pulsations of the field am-
plitude A(t) like those in Fig. 6 (b).

Such pulsations and accompanying phase jumps have
been reported in a previous analysis of moderate bursts
of chirping shear Alfvén waves seen in JT-60U tokamak
experiments [12]. The patterns were seen both in the ex-
perimental data and in self-consistent hybrid simulations
with realistic EP sources and collisions, and they were ex-
plained (loosely speaking) as the beating between multiple
chirps that occur simultaneously at different frequencies.
Some examples were shown in Fig. 13 of Ref. [12].

Indeed, the chain of events sketched in Fig. 5 and
discussed in Sec. 2.3 implies that one chirp rarely comes
alone. As is illustrated schematically in the bottom part of
Fig. 5, we may distinguish two ways for beating to occur:

5a. interference of wave pairs ω± produced by frequency
splitting (described in Sec. 2.3);

5b. interference between different generations of chirps
ω(1), ω(2), . . . (like those seen in Fig. 2).

The physical picture we will use may be described as fol-
lows. The convective interchange of EP Vlasov fluid pro-
duces multiple more or less coherent structures in the per-
turbed EP phase space density δ f that are more or less
stratified radially along the vertical (Pζ) axis in Fig. 3. As
indicated by the horizontal arrows in Fig. 3, these struc-
tures propagate at different phase velocities around the
plasma torus (horizontal axis and out of plane), depend-
ing on the local value of Pζ . These EP density waves
drive the same field mode at different frequencies simul-
taneously. The field mode responds by beating as shown
in Fig. 7, as if it consisted of multiple field waves, each
locked to a different pump wave. Indeed, the total signal
s(t) = A(t) sin(−ω0t−φ(t)) in Eq. (1) represents an arbitrary
number of harmonic waves, whose superposition causes
the combined amplitude A(t) to pulsate and the combined
phase φ(t) to jump by ±π between pulses as in Fig. 7. In
Appendix A, we show that this physical picture is mathe-
matically consistent with the field equations we solve.

When we represent the time-dependence of the com-
bined signal in the form s(t) = A(t) sin(−ω0t−φ(t)), we de-
mand that its harmonic components must all have the same
spatial structure. One may argue that representing EP-
driven shear Alfvén waves in this form is an oversimpli-

Fig. 7 Example of global beating in a short time window around
t ≈ 2 s of Fig. 6 (b). Panel (a) shows the raw signal s(t)
(gray) and the envelope A(t) (red). The equidistant verti-
cal yellow stripes help to discern changes in the signal’s
phase. Panels (b) and (c) show, respectively, the global
mode structure of the ideal MHD displacement in code
units at times of maximal constructive and destructive in-
terference. While global beating is inevitable in the semi-
perturbative model used in the ORBIT code with which
this signal was computed, it is remarkable that such be-
havior was also observed in self-consistent hybrid simu-
lations (cf. Fig. 12 of Ref. [12]).

fication, because a self-consistent (nonperturbative) field
mode may simply decompose into several spatially sep-
arated nonlinear modelets, whose amplitudes and phases
can evolve more or less independently, each driven by its
own resonant phase space structure. This is certainly a pos-
sible scenario, but it is not a necessity, as one can infer from
a remarkable observation made in the above-mentioned
self-consistent hybrid simulation of a JT-60U plasma [12]:
Fig. 12 of that paper shows that the energetic particle mode
(EPM) [30] with toroidal mode number n = 1 that was re-
sponsible for the chirps in that system sometimes vanishes
completely between beats and reappears with perfectly op-
posite phase. In principle, the field in that hybrid simu-
lation could have decomposed into multiple independent
EPMs, but this did not occur, at least not at a readily visi-
ble level (i.e., not at leading order). The same behavior is
reproduced here in idealized form in Fig. 7.

We interpret the possibility of global beating as a con-
sequence of a certain degree of rigidity that is inherent
to MHD modes with long wavelengths and which is fur-
ther enhanced by large magnetic drifts. For instance, in
the above-mentioned JT-60U scenario, EP orbits spanned
20. . . 30% of the minor radius (cf. Fig. 3 of Ref. [31]). This
rigidity preserves the coherence of the wave field across a
significant portion of the plasma radius and one might say
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that this is the reason why we call it a mode. All chirps
studied in the present paper are caused by radially propa-
gating phase space structures that stay within the range of
an unperturbed drift orbit, which justifies a posteriori the
assumption of a rigid mode whose evolution is captured by
the time-dependence of two scalars, A(t) and φ(t).

One physical consequence that is highly relevant for
the present study is that the resonant phase space density
waves are mutually coupled and interfere with each other
via the jointly driven MHD field mode. Such an interaction
has been explicitly ignored in the model of chirping BGK
modes formulated by Berk et al. (Eq. (23) of Ref. [24]).
We believe that this is a point where interesting unexplored
physics may still be lurking and we are aware of one more
group of researchers who are tackling this topic by con-
sidering the effect of beating on chirps driven by a pair
of electron resonances [16]. It is difficult to foresee all
the implication of this complex feedback; apart from the
perhaps obvious fact that all particles are temporarily de-
trapped at the times of destructive interference, and that
the EP density waves find themselves out-of-phase when
the field wave regrows after performing a phase jump as in
Fig. 7. Thus, instead of independent BGK waves, we have
a complex multi-body system consisting of several more or
less strongly coupled components.

Such multi-component interactions can become more
regular in cases where chirping is suppressed, e.g., by pro-
cesses that scatter the resonant particles. In such cases, the
spectrum of a resonantly driven mode can still broaden, but
it does so in a well-structured manner by splitting into a se-
quence of discrete lines with equal frequency spacing Δν
as reported by Fasoli et al. [32]. According to the theory
presented by Fasoli et al. [33] based on Berk et al. [10],
such phenomena can be explained by a period doubling bi-
furcation of a near-threshold kinetic instability. The modu-
lation of the field amplitude (beating) through the interfer-
ence between the waves associated with such a bunch of
spectral lines is an integral part of the process, but in that
collision-dominated (non-chirping) regime the phase space
dynamics as well as the beats of the field become regular,
settling into a cyclic pattern. The feature that makes our
chirping scenarios (with weak or no collisions) more com-
plicated is that irregular convective motion can persist, es-
pecially near the seed resonance. Fascinatingly, however,
coherent structures in the form of long-lived phase space
vortices do form in this turbulent environment. One pur-
pose of our study is to throw light on the role that beating
may play in the formation of such robust vortices.

One may argue that beating has a zeroth-order effect
only on the motion of individual particles, while its effect
on the coherent phase space structures is of higher order,
because the interaction is nonresonant15. However, chirp-
ing itself is often a higher-order effect, especially in the

15The beats may resonate with other regions in phase space, which is
an interesting story on its own, and not pursued here.

limit of slow (adiabatic) chirps. Therefore, we think that it
is worthwhile to consider the effects of beating on the same
footing. In this paper, we take a close look at how beat-
ing affects the phenomenon of nonlinear frequency chirp-
ing and the underlying motion of Vlasov fluid in EP phase
space, which we represent here using discrete particles.

3. Model and Methods
3.1 Global beating as a rationale for a semi-

perturbative model
MHD-PIC hybrid simulations often compare well

with experiments, at least for EP-driven Alfvén modes
with long wavelengths (n < 10) [12, 34–36]. However,
such simulations require high-performance supercomput-
ers, primarily because of the expensive field solver that
has to evolve the electromagnetic fields, plasma density
and pressure on a dense three-dimensional (3D) mesh con-
sisting of tens of millions of grid points. The globality of
the beating observed in Ref. [12] offers a justification for a
semi-perturbative approach, where the spatial structure of
the Alfvénic field modes is prescribed, reducing the MHD
solver’s large number of degrees of freedom to the evo-
lution of merely two scalars; namely, the amplitude A(t)
and phase φ(t) appearing in Eq. (1). Numerical studies of
nonlinear frequency chirping in realistic tokamak geome-
try can then be performed on a laptop PC.

In the presence of multiple modes k = 1, . . .Nmode,
with toroidal mode numbers nk and initial seed frequencies
ω0k, the field model in Eq. (1) can be written as

ξ̃(ψP, ϑ, ζ, t) =
Nmode∑
l=1

Ak(t)
∑

m

ξ̂k,m(ψP)eiΘk,m(t), (13a)

Θk,m(t) = nkζ − mϑ − ω0kt − φk(t); (13b)

where ξ̃ is the complex-valued ideal MHD displacement
vector and ξ̂k,m(ψP) is the radial profile of each poloidal
Fourier harmonic m, here written as a function of normal-
ized poloidal flux 0 ≤ ψP ≡ ΨP/ΨP,edge ≤ 1 that increases
monotonically from the center (0) to the edge (1) of the
plasma. The imaginary unit is denoted by i, and Θk,m is the
complex phase at a given point in time and space, here ex-
pressed in toroidal coordinates (ψP, ϑ, ζ) with poloidal and
toroidal angles ϑ and ζ. Our convention is that the physical
electric and magnetic field perturbations E and δB are the
real (cosine) component of the complex signal, so that the
potentials Φ and δA, and, thus, the ideal MHD displace-
ment ξ = �{ξ̃}, are the imaginary (sine) components.

Reduced field models based on Eq. (13) have been
implemented in codes such as ORBIT [17, 18, 37], HAGIS
[38, 39] and MEGA [40, 41], which have then been used to
study nonlinear EP-Alfvén wave interactions and chirping
in realistic geometries. The reduced number of degrees
of freedom in the field dynamics enhances physical trans-
parency, and the low computational cost combined with a
set of free parameters (Table 1), permits detailed physics
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studies through extensive parameter scans that are not fea-
sible with self-consistent simulations. Meanwhile, the full
geometric complexity of the EP orbits is retained, allowing
us to explore practically relevant conditions with respect to
spatio-temporal scales and geometric nonuniformity.

While global beating gave us an excuse to ignore per-
turbations of the mode structure in Eq. (13), the implicit
assumption made in the field Eq. (2) of the existence of
a global “mode” that can oscillate well in a wide range
of frequencies is a rather strong and disputable simplifi-
cation of the Alfvénic plasma response. The dynamics in
the reduced system (2) do show some preference for res-
onant frequencies at the radius of the mode’s peak: We
observe that an off-peak seed resonance tends to be pro-
duce stronger and more rapid chirps in the direction of the
mode’s peak (hence the asymmetry in Fig. 2 (b)). However,
we are missing entirely the effect of continuous spectra of
shear Alfvén waves, and their band gaps that may contain
discrete eigenmodes. The radial structure ωA(ψP) of these
spectra is known to affect chirping by providing a preferred
trajectory for the chirps (e.g., see Refs. [42–44]) and by
contributing to the field damping [45]. For the time being,
we choose to ignore these effects without further justifica-
tion other than saying that this simplification appears to be
acceptable for our purposes. Other factors that can play a
role but are ignored here include fluid nonlinearities, col-
lisions and sources of EPs. Due to these limitations, the
scope of our study is constrained to the qualitative features
of chirping in the semi-perturbative limit, with no inten-
tion to make quantitative predictions for experiments. Fur-
ther considerations related to nonperturbative effects can
be found in Appendix D.1.

3.2 Equations and parameters
In the present work, we use the ORBIT code [17] with

the reduced δ f field-particle interaction model derived by
Pinches et al. [38], extended by Chen et al. [18], and refor-
mulated by White et al. [13,19]. First simulations of chirp-
ing using ORBITwere reported in [13,37]. We use the same
MHD equilibrium as in those recent papers, which resem-
bles a plasma of the conceptual reactor FIRE with reduced
field strength B0 = 0.49 T at the magnetic axis located at
R0 = 2.15 m. The profiles characterizing the magnetic
geometry are shown in Fig. 8. The following Eqs. (14)-
(22) are normalized by the deuteron cyclotron frequency
Ωc0 = QeB0/M (inverse time unit) and the magnetic flux
density B0 (field strength unit) at the magnetic axis.

The time-independent axisymmetric magnetic field B
of the torus and time-dependent perturbations that resem-
ble ideal incompressible electromagnetic flute modes are
represented in Boozer coordinates as

B = g∇ζ + I∇ϑ + BΨP∇ΨP (equilibrium), (14a)

δB = ∇ × αB (perturbation), (14b)

α̂k,m =
(nq − m)
(gq + I)

Φ̂k,m

ω0k
(ideal MHD),

Fig. 8 Equilibrium parameters and profiles for the magnetic
field in Eq. (14a). This is the same case as in Ref. [13].

=
(m − nq)
(mg + nI)

ξ̂Ψk,m

q
(radial

displacement), (14c)

where α = δA ·B/B2 = δA‖/B represents the parallel com-
ponent of the perturbed vector potential, Φ is the electro-
static potential, q(ψP) = dΨ/dΨP is the field line helicity
(tokamak safety factor), and Ψ the toroidal flux16. The co-
ordinate surfaces ψP = const. and ϑ = const. of the equi-
librium field B can be seen in Figs. 7 (b,c) (orange lines).
The fluctuating potentials α and Φ are decomposed like ξ
in Eq. (13a). The radial profile of the contravariant radial
component ξ̂Ψk,m = ξ̂k,m ·∇Ψ/B0 of the ideal MHD displace-
ment vector defined in Eq. (13) is given as input (specified
below).

The stepping equations for the amplitude and phase
appearing in the Fourier representation of Eq. (13) are17

dAk

dt
=
−�2A0

ω0kDk

Np∑
j=1

∑
m

wk, j�{S k,m, j} − γdAk, (15a)

dφk

dt
=
−�2A0

ω0kAkDk

Np∑
j=1

∑
m

wk, j�{S k,m, j}, (15b)

with the on-axis Alfvén velocity �A0, particle index j, and

S k,m, j =
[(
ρ‖B2α̂k,m(ψP) − Φ̂k,m(ψP)

)
eiΘk,m

]
j
, (16)

Dk = 4π2
∑

m

∫
dψP [ξ̂Ψk,m(ψP)]2, (17)

where ρ‖ = �‖/B = (gζ̇ + Iϑ̇)/B2 with the parallel guiding
center (GC) velocity �‖ = �gc · B/B. The GC phase space
is sampled by j = 1 . . .Np particles, whose distribution
G(ψp, ϑ, ζ,K, μ, t) satisfies dG/dt = 0 and whose weights

16Strictly speaking, our Ψ and ΨP are the fluxes divided by 2π.
17Our Eqs. (15)-(17) correspond to those in Ref. [13], except that here

the lengths are not normalized by R0, so the velocity �A0 (normalized by
Ωc0) appears here instead of the frequency νA0 = �A0/R0. Moreover, we
let Dk = 1 since only a single Fourier harmonic m/n = 6/5 is used.
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Table 1 Model parameters used in our ORBIT simulations. Cases (A) and (B) will be examined in detail. The undamped cases (A0) and
(B0) are used for some comparisons in Sec. 4, and Appendix B contains further details. Case (C) is used in Appendix D.4 to
examine the effect of changing the mode peak location relative to the resonance, which can affect the effective seed frequency as
well as the direction and rate of chirping. The values of the gradients G0

F0
∂Pζ F0 (dominant) and G0

F0
∂K F0 (negligible) are those of

the input variables df0dpz and df0de in ORBIT when �A0 = falf = 0.07 and (for historical reasons) F0/G0 = 1 + df0dpz. The
values of γL = γ + γd were measured in the simulations during the phase of exponential growth using Eq. (5).

Case Harmonic Mode profile Drive Damping Remarks
ν0 [kHz] m/n r0/a rw/a

G0
F0
∂Pζ F0

G0
F0
∂K F0 γL/ω0 γd/ω0

(A) 100 6/5 0.65 0.15 2.80164 −0.084898 ⇒ 0.080 0.075 Marginally unstable
(B) 100 6/5 0.65 0.15 2.80164 −0.084898 ⇒ 0.075 0.040 Strongly unstable

(A0) 100 6/5 0.65 0.15 0.46227 −0.014008 ⇒ 0.005 0 (A) without damping
(B0) 100 6/5 0.65 0.15 1.79305 −0.054335 ⇒ 0.035 0 (B) without damping
(C) 100 6/5 0.7 0.15 5.53325 −0.16767 ⇒ 0.081 0.075 (A) with peak shifted outward

w j = δ f j/G are evolved as

dw
dt
=

1
G

dF0

dt
= −

(
F0

G0
− w

)
d ln F0

dt
, (18)

beginning with δ f (t = 0) = 0. Here, δ f represents the
perturbation around the initial reference distribution F0 of
physical guiding centers, and G0 = G(t = 0) is the initial
distribution of simulation particles (= phase space mark-
ers) that will be specified below. The particle trajectories
are determined by solving equations for ρ‖(t), ΨP(t), ϑ(t)
and ζ(t), whose explicit form can be found in Ref. [17] or
Sec. 3.9.2 of Ref. [19]. These equations of motion can be
compactly summarized in Hamiltonian form,

ϑ̇ = ∂PϑH, ˙̃Pϑ = −∂ϑH,

ζ̇ = ∂Pζ H,
˙̃Pζ = −∂ζH, (19)

with the Hamiltonian

H = ρ2
‖B

2/2 + μB + Φ, (20)

and the canonical angular momenta

P̃ζ = (ρ‖ + α)g − ΨP, P̃ϑ = (ρ‖ + α)I + Ψ. (21)

For marker particle loading and phase space diagnostics,
we use the canonical toroidal angular momentum of the
unperturbed system,

Pζ = gρ‖ − ΨP = P̃ζ − αg. (22)

Equations (19) and (20) for the particle motion can be
regarded as exact within the realm of drift-kinetic theory18.
The field-particle coupling is overestimated by the neglect
of the gyroaveraging effect, but otherwise the assumptions

18The polarization drift and the ponderomotive force [46] are ignored.
All other aspects of GC motion are retained to the extent permitted by a
Hamiltonian formulation in Boozer coordinates, which requires neglect-
ing the field component BΨP (denoted by “δ” in Eq. (2.26) of Ref. [19])
that arises from the coordinates’ nonorthogonality. The model is appro-
priate for fast ions interacting with shear Alfvén modes.

made in the derivation hold in the parameter regime con-
sidered here. Meanwhile, Eq. (15) for the field should be
regarded as a toy model because the derivation involves the
neglect of terms containing products of more than one time
derivative, such as ∂2

t Ak, ∂2
t φk, ∂tAk∂tφk. These terms are

not strictly negligible by mere ordering arguments in a sys-
tem exhibiting rapid amplitude pulsations and phase jumps
that are typical for cases with nonlinear chirping (Fig. 7).
In addition, the factorization (13) is based on a neglect
of the background plasma response (continuous spectra,
etc.) as discussed in Sec. 3.1 above. Here, we accept these
caveats and simply postulate that the field mode evolves in
the manner prescribed by Eq. (15).

The model parameters are listed in Table 1. The fluc-
tuating field in our simulations is initiated with a seed fre-
quency of ν0 = ω0/(2π) = 100 kHz and contains only a
single toroidal harmonic n = 5 and a single poloidal har-
monic m = 6, so we omit the mode label k. Its radial profile
has a Gaussian shape,

ξ̂Ψ(r) = exp
(
(r − r0)2/r2

w

)
, (23)

as shown in Fig. 9 (a). Contour plots of the mode struc-
ture in the toroidally rotating poloidal plane at ζ′ = ζ −
ω0
n t = 2πl with integer l are shown in Fig. 7 (b) in cylin-

der coordinates (R,Z, ζ′) and Fig. 9 (b) in polar coordinates
(ψP, ϑ, ζ

′). Due to the large magnetic drifts performed
by the circulating energetic deuterons in our simulations,
which have kinetic energies K ≥ K0 = 85 keV and mag-
netic moment μB0 = 2 keV, this mode has a rich harmonic
content from the point of view of the particles [31], so that
efficient transit resonances [47]

�ω = �nωζ − pωpol, (24)

with various values of p are possible. As one can infer
from the kinetic Poincaré plot in Fig. 9, our seed resonance
has p = 4 poloidal elliptic points. In the (P̂ζ , ζ) plane (not
shown), there are �n = 5 elliptic points, so � = 1. The
quantities ωpol = 2π/τpol and ωζ = Δζ(τpol)/τpol = 2π/τζ
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Fig. 9 Structure of the field mode and seed resonance. The panels on the left show (a) the radial profile ξ̂Ψ(ψP) and (b) gray-scale contours
of the mode structure in the (ψP, ϑ)-plane in the toroidally rotating frame of reference where ζ′ = ζ − ω0

n t = 2πl with integer l. The
dots in (c) represent a uniformly randomized distribution of 100 particles loaded along the line E′ = E− ω0

n Pζ = const. (≈ 75.6 keV)
in the range 0.1 ≤ ψP ≤ 0.5 on the outer midplane ϑ = 0 (horizontal dashed line in (b)). Kinetic Poincaré plots of the particle
trajectories in the perturbed system with fixed amplitude A0 = 10−3 and phase φ = 0 are shown in (b) and (d), with colors
representing energy E = K + QeΦ. The seed resonance for this mode with ω0 = 2π × 100 kHz and m/n = 6/5 is located at
P̂ζ,res = 0.719. It has p = 4 elliptic points in (P̂ζ , ϑ) and �n = 5 elliptic point in (P̂ζ , ζ) (not shown). In the simulations, particles
are loaded uniformly randomized in ψ2

P, whereas here they are uniformly randomized in ψP and followed for 500 transit times τζ0.

Table 2 Default parameters for particle loading and pushing.

Num. of marker particles Np 106

Loading range @ ϑ = 0 [ψP,min, ψP,max] [0.1, 0.5]
Kinetic energy @ ψP,max K0 [keV] 85

Magnetic moment μB0 [keV] 2
Loading duration Tload/τζ0 10
Pushing time step Δtstep/τζ0

1
400 , 1

1000

in Eq. (24) are the angular frequencies for an unperturbed
transit in the poloidal and toroidal directions, respectively.
The toroidal transit period on axis,

τζ0 ≡ 2π√
2K0/M

q0g0 + I0

q0B0︸�����︷︷�����︸
≈R0=2.15 m

≈ 4.7 μs, (25)

will sometimes be used here as a unit of time: t̂ ≡ t/τζ0.

3.3 Initialization and stepping
Table 2 contains the default parameters used for load-

ing and advancing the simulation particles, which is done
using a standard 4th-order Runge-Kutta scheme. With time
steps of size Δtstep/τζ0 = 1/400 (damped cases) or 1/1000
(undamped cases), we obtain an accuracy that is sufficient
for our purposes (see Appendix D.6).

The default number of particles in our simulations
is Np = 106. An approximate quiet start is obtained
by loading only a portion of the simulation particles at
each time step Δtstep during an interval of 10 transit times

τζ0 (see Appendix D.5). The particles are injected at
the outer midplane at ϑ = 0 (horizontal dashed line in
Fig. 9 (b)), where we distribute them along the toroidal
angle and normalized poloidal flux as ζ j = 2πx j and
ψP j = ψP,min + (ψP,max − ψP,min)x1/2

j with uniform random
numbers 0 ≤ x j ≤ 1. With uniform particle weighting
(F0/G0 = const.), this choice yields an approximately uni-
form gradient ∂Pζ F0 ≈ −∂ΨP F0 = const.19

The magnetic moment is fixed (μB0 = 2 keV) and the
kinetic energies are chosen to satisfy [48]

E′ = E − ω0Pζ/n = const., (26)

as shown in Fig. 9 (c). The simulations reported here were
obtained with E(t = 0) = K0 = 85 keV at (ψP, ϑ) =
(ψP,max, 0), so that E′0 ≈ 75.6 keV. During the course of the
simulations, deviations around this value will be on the or-
der of 3%, so we can assume E′ ≈ E′0 = const. Effectively,
we are simulating a thin slice of the phase space structures,
which have a cylindrical shape in the (P̂ζ , E′, ϑ)-space.
Figure 10 shows a 2-D projection in the (P̂ζ , E′)-plane.
The black box indicates a slice of width ΔE′0 = 7.5 keV
as used in a simulation performed for validation purposes
(see Appendix D.2). All simulations discussed in the main
part of this paper were performed with ΔE′0 = 0.

19In the radial direction, the initial marker distribution G0, which mea-
sures the number of simulation particles dN per cell dψP is chosen to
satisfy G0 ∝ dN/dψP ∝ ψP, which is realized by loading particles with
dN/dx = const. and a uniformly randomized variable x ∝ ψ2

p. For uni-

form particle weighting F0/G0 = const., this yields ∂ψP F0 = ∂2
ψP

N ∝
γL = const. With ψP = (r/a)2 this corresponds to an EP density profile
of the form nEP(r) = dN

rdr ∝ dN
dψP
∝ 1 − ψP = 1 − (r/a)2.
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Fig. 10 Phase space structures (e.g., holes and clumps) have the
form of bent cylinders in (P̂ζ , E′, ϑ)-space. This plot
shows a projection of the marker distribution into the
(P̂ζ , E′)-plane, with colors representing δ f . The dynam-
ics are primarily in the vertical direction (E′ = const.),
so we simulate only a thin slice of width ΔE′0 as indi-
cated by the black rectangle. In most cases, only the
center line was simulated; i.e., ΔE′0 ≈ 0. The only ex-
ception is case (A’) in Figs. D1 and D2 of Appendix D.2,
where ΔE′0 = 7.5 keV. In that region, the phase space
structures are approximately perpendicular to the axis of
the modified radial coordinate P̂′ζ = P̂ζ − (E′ − E′0) × C
with C ≈ n/ω0, which is indicated by the long diagonal
arrow.

After loading the markers during the interval −10 ≤
t̂ ≤ −Δt̂, with t̂ ≡ t/τζ0, the kinetic instability is kick-
started at t = 0 with a small perturbation A0. We use
A0 = 10−6 in the marginally unstable case (A). In the
strongly unstable case (B), we sometimes use a smaller
A0 = 10−8 with the purpose of extending the duration of
exponential growth enough to capture the onset of chirp-
ing in the Fourier spectrogram.

A comprehensive characterization of our simulation
model, including convergence and sensitivity tests, is given
in Appendix D. Note that if one starts the instability sim-
ulation with a relaxed non-axisymmetric EP distribution
that has adapted to the initial perturbation of the field, as
in Fig. 4, the system immediately enters the stage of non-
linear beating, effectively skipping the exponential growth
and the first beat. This is demonstrated in Apendix D.3.

4. Structure Formation and Satura-
tion
As a preparation for studying the effects of beating, we

examine in this section the processes of structure forma-
tion, nonlinear saturation and the onset of beating in cases
(A) and (B), whose parameters are given in Table 1. Case
(A) is marginally unstable, with a linear drive γL/ω0 ≈ 8%
only slightly larger than the damping γd/ω0 = 7.5%. Case
(B) is strongly unstable, with γL/ω0 ≈ 7.5% nearly twice

as large as γd/ω0 = 4%. Both cases exhibit strong chirp-
ing and an overview of the observations made in different
stages of these simulations is given in Figs. 11 and 12.

Panels (a) and (c) show the time trace of the ampli-
tude A(t) obtained by solving Eq. (15a). The kinetic drive
plotted in panel (b) was measured by computing the expo-
nential running average γ(t) = 0.01× ΔA(t)

A(t)Δt +0.99×γ(t−Δt)
of the increment ΔA on the right-hand side of Eq. (15a) and
adding the damping rate γd. The above values of the lin-
ear drive γL correspond to γk = γ + γd during the early
phase of (nearly) exponential growth. Panel (d) shows
the spectrogram obtained by Fourier analyzing the signal
s(t) = A(t) sin(−ωt − φ(t)) with a sliding time window of
size Δtwin = 100 τζ0 ≈ 0.47 ms.

The lower parts of Figs. 11 and 12 show five snapshots
of the perturbed EP phase space density as δ f -weighted ki-
netic Poincaré plots. Our Poincaré section is the torodially
rotating plane ζ′ = ζ− ω0

n t = 2πl with integer l, where parti-
cle weights w = δ f /G are accumulated in a histogram-like
fashion on a mesh consisting of 200 cells in the poloidal
angle −π ≤ ϑ ≤ π, and 200 . . . 1000 cells in the radial
range 0.5 ≤ P̂ζ ≤ 0.9. The accumulation was performed
for a short time interval of one toroidal transit, τζ0 ≈ 4.7 μs,
during which each particle crosses the ζ′ = 2πl plane ap-
proximately p = 4 times. The resulting quantity

〈δ f 〉transit (P̂ζ , ϑ, t) =

t+τζ0/2∫
t−τζ0/2

dt′δ f (t′|ζ′ = 2πl), (27)

will be referred to simply as “δ f ”.
In the following subsections, we examine the dynam-

ics occurring during the early part of the simulations, until
the instabilities saturate; namely, the first three snapshots
in Figs. 11 and 12. This includes the birth of hole-clump
pairs and the onset of beating.

4.1 Linear response, phase mixing and halos
In the linearized system, the magnitudes of field per-

turbations, density perturbations and particle displace-
ments bear no meaning. There exists only a trend that is
expressed by the complex frequency ω̃ = ω + iγ whose
value is directly determined by the gradients of the cho-
sen reference state. Strictly speaking, resonant instabilities
(also known as “nonlinear Landau damping”) are never
linear because they always involve finite displacements.
However, nearly exponential growth does occur initially
because the imposed finite-amplitude perturbation spon-
taneously induces flows with a phase relation such that
∂t ln A ≈ ∂t ln δ f (independent of amplitude and position).
This phase relation changes when nonlinearities begin to
dominate over the linear response. This transition can be
clearly seen at the beginning of our simulations in the form
of a marked change in the structure of δ f . In this subsec-
tion, we will take a closer look at this process, because
some of the insights gained will be useful later.
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Fig. 11 Overview of the dynamic stages in the marginally unstable case (A) (same as in Fig. 2). Panels (a) and (b) show time traces of the
field amplitude A(t) and the instantaneous kinetic drive (growth rate γ(t) plus damping γd) during the first 210 transits. Panel (c)
shows A(t) for a larger portion of the simulation (1800 τζ0 ≈ 8.5 ms) and panel (d) shows the corresponding Fourier spectrogram
obtained with a 0.47 ms time window. The vertical dotted lines in (a)-(d) indicate the times at which the five snapshots of the
δ f -weighted kinetic Poincaré plots were taken that are shown in the lower part of the figure. The last two snapshots are the same
as those shown in Fig. 3, except that the contrast at small amplitudes is enhanced here by using a nonlinear color scale (square
root). As in all contour plots of δ f that appear in this work, we have inverted the direction of the P̂ζ axis for easier comparison
with the spectrograms, so that structures with higher frequencies (smaller P̂ζ , larger radii) appear at the top (cf. Fig. D14).

Fig. 12 Overview of the dynamic stages in the strongly unstable case (B) with reduced initial perturbation amplitude, A0 = 10−8. Results
are arranged as in Fig. 11. The first two snapshots of Fig. 11, where the resonance gradually emerges, are very similar in the
present case, so they are not shown again. Instead, we show additional snapshots of δ f during the first two beats (100 � t̂ � 140).

The structure of δ f in the first snapshot (t̂ = 0.5) in
Fig. 11 shows the linear short-time response of the EP dis-
tribution caused by the E × B drift associated with the
abruptly applied oscillating field perturbation. The at-
tribute “linear” refers to the fact that the structure of δ f
reflects only the instantaneous trend of the motion of EP

Vlasov fluid. No appreciable particle displacement has
occurred yet, since only a very short time (few μs) has
passed and the field amplitude is still very small (≈ 10−6).
A zoom-up is shown in Fig. 13 (a), where black contour
lines indicate schematically the structure of the resonance
and the bold black arrows indicate the trend of fluid mo-
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tion. Along the red stripes (δ f > 0), there is a net outward
motion of denser fluid into regions previously occupied by
lighter fluid, causing a local increase of the EP phase space
density. In the blue stripes (δ f < 0), the density drops due
to a net inward flow of lighter fluid.

Returning to the full-size snapshot in Fig. 11 (left):
The periodicity of δ f (ϑ) indicates that a p = 4 resonance
dominates in the region P̂ζ � 0.62 and a p = 5 resonance
dominates in the region P̂ζ � 0.62. The p = 4 seed reso-
nance will appear at P̂ζ,res = 0.718 as indicated by a hori-
zontal dashed-dotted line. However, in the first snapshot at
t̂ = 0.5 in Fig. 11 this resonance is not visible in the struc-
ture of δ f yet. This may be interpreted as a consequence
of the fact that the short time interval that has passed cor-
responds to a large uncertainty Δν ∼ 1/τζ0 ≈ 200 kHz in
frequency. Another (closely related) interpretation is that
phase mixing (discussed below) has not had enough time
to become effective in the frequency band we are looking
at; it requires dozens of transits to become noticeable.

Of course, the most efficient coherent accumulation of
phase space density perturbations does occur near the reso-
nance, where the particles move more or less in phase with
the field mode. For instance, after 10 transit times, the res-
onance width becomes approximately Δν ∼ 1/(10τζ0) ≈
20 kHz, which corresponds to 0.7 � P̂ζ � 0.74 (cf.
Eq. (D6)) and is precisely the region where δ f is large in
the second snapshot at t̂ = 10.5 in Fig. 11.

Outside that (near-)resonant layer, the magnitude of
δ f is smaller by an order of magnitude and represents the
nonresonant ideal MHD displacement in Eq. (D4). The
corrugated structure of δ f in the off-resonant domain as
seen in the second snapshot at t̂ = 10.5 in Fig. 11 may be
interpreted as a superposition of patterns produced by two
effects that reflect the emergence of nonlinearities:

• One effect is phase mixing of the remnants from the
initial perturbation in δ f that was produced by the
abruptly imposed field at t = 0. Phase mixing is
realized by the radially sheared poloidal propagation
(horizontal arrows in Fig. 11) of the phase space struc-
tures due to the convective nonlinearity ϑ̇∂ϑδ f .
• The second effect is that δ f in our Poincaré plots in-

creasingly shows the cumulative response; namely,
the time integral of the weight Eq. (18).

Phase mixing, also known as “Landau damping”, causes
a progressive tilting and thinning of the off-resonant red
and blue stripes in our snapshots of δ f . However, this is
visible only for a short time because the second effect —
the cumulative δ f response — eventually dominates.

Consequently, the meaning of the patterns we see
in δ f -weighted Poincaré plots changes when the system
leaves the linear and enters the nonlinear regime. Let
us elucidate this change of meaning using Fig. 13, which
shows zoom-ups of (a) the first snapshot (t̂ = 0.5) and (b)
the third snapshot (t̂ = 150.5) of Fig. 11, highlighting the
differences between the linear and nonlinear δ f structures.

Fig. 13 Illustration of the meaning of patterns in kinetic
Poincaré contour plots of the EP phase space density
perturbation δ f . The data are taken from (a) the first
and (b) the third snapshot of Fig. 11 for case (A). Here,
only three of the resonance’s four periods are visible.
Black lines indicate schematically the effective posi-
tions of phase space islands and neighboring flow con-
tours that one would obtain after waiting infinitely long
with the field amplitude A and phase φ fixed. Bold ar-
rows indicate the flow direction. The island width is
sort of realistic in (b) but strongly exaggerated in (a). In
fact, the island does not really exist in this fully nona-
diabatic stage of the simulation. Here and in the fol-
lowing, we sketch “effective islands” only to indicate
the phase of the field and the instantaneous direction
of the associated flow lines. The phases in (a) and (b)
have been aligned by using the modified poloidal angle
ϑ′ = ϑ−ϑ0 + λϑΔν0t, where λϑ is the wavelength of the
central island (2-headed arrow), Δν0 is the prompt fre-
quency shift (cf. Appendix D.4), and ϑ0 = 0.105π aligns
the O-point with ϑ′ = 0. Halos in (b) are indicated by
alternating “+” and “–” signs.

When compared to the linear short-time response in
Fig. 13 (a), one can see that the vertical stripes outside the
resonant layer in Fig. 13 (b) are shifted to the left by −λϑ/4
above the resonance (P̂ζ < 0.718) and to the right by +λϑ/4
below the resonance (P̂ζ > 0.718), so that the sign of δ f
inside those stripes flips across the resonance. Here, λϑ
is the poloidal wavelength of the p = 4 resonance, whose
value is about λϑ ≈ 0.365π in the center of Fig. 13 (b) as
indicated by the two-headed arrow. (For our GC drift or-
bits, the value of λϑ in Boozer coordinates increases from
the outer midplane ϑ = 0 towards ϑ = ±π.)

While the structure of the δ f pattern has changed in
the way we have just described, the structure and phase of
the resonance, which is schematically illustrated by black
contour lines in Fig. 13, remains the same in panels (a) and
(b) in the frame where the (promptly shifted) resonance
is stationary. Thus, the δ f -weighted Poincaré plots in the
nonlinear regime (b) do not represent the instantaneous
trend as in (a), but the accumulated modulations in the EP
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phase space density relative to the background. In other
words, the nonlinear δ f patterns in (b) tell us where dense
fluid (red) and light fluid (blue) has been accumulated until
that time; i.e., the history of transport. The red arrows in
Fig. 13 (b) indicate where dense fluid has recently moved
radially outward (resulting in a local density increase), and
the blue arrows indicate where light fluid has moved radi-
ally inward (resulting in a local density reduction).

Another consequence of this cumulative nature of the
nonlinear δ f patterns is that they are fairly robust. A partic-
ularly impressive example of this robustness is the fact that
the off-resonant stripes indicated by alternating “+” and
“–” signs in the third snapshot (t̂ = 150.5) in Fig. 11 and
in Fig. 13 (b) are almost perfectly vertical. These robust
nonlinear density modulations, which seem to emanate ra-
dially from the nearest hole and clump wave fronts, will in
the following be referred to as halos.

The values of δ f inside the halos is small, so we use a
nonlinear color scale (square root) when we want to visu-
alize them clearly. Their amplitude tends to decrease with
increasing distance from the resonant δ f structures, which
can be attributed to phase mixing. However, the shearing
effect of phase mixing is almost invisible. This implies that
the density modulations that constitute these halos are de-
coupled from the particle motion along ϑ. Thus, the halos
are of an entirely collective nature.

The halos exhibit a large degree of phase-locking with
respect to the field oscillations that, in turn, are controlled
by the dominant resonant δ f structures. This implies that
the halos can tell us the effective locations of O- and X-
points as in Fig. 13 (b), so they are a welcome substitute
for kinetic Poincaré plots like that in Fig. 4 (a), which are
not applicable when the field varies rapidly in time. For in-
stance, the halos will help us to analyze the effect of phase
jumps associated with beating (Sec. 5.1).

The processes that we have described in this subsec-
tion are universal for resonant field-particle interactions
(regardless of growth) and, therefore, are qualitatively the
same in all cases studied here. Due to this reason, we have
omitted the phase mixing stage in Fig. 12 and, instead, in-
cluded additional snapshots of the saturation stage that will
be discussed next. The subsequent dynamics depend on the
parameters, so we choose to proceed with a comparison be-
tween the saturation processes with and without damping
in the marginally unstable and strongly unstable case.

4.2 First saturation with and without damp-
ing

Beating and nonadiabatic chirping begin during the
first peak of a resonant instability, so it is instructive to ex-
amine the saturation process in some detail. We will do so
here by comparing damped cases (A) and (B) that do chirp
with undamped cases (A0) and (B0) that do not. The latter
are obtained by setting γd = 0 and reducing the gradient
F′0 ∝ γL such that the growth rate γ = γL − γd remains the

same.
For the marginally unstable cases (A) and (A0), with

γ/ω0 ≈ 0.5%, Fig. 14 (a) shows the evolution of the field
amplitude A(t) during the first 2 ms. After growing at the
same exponential rate, the instability in case (A) saturates
at a low amplitude of A ≈ 6 × 10−6 at time t̂ = 154.5
(0.73 ms). Panels (b) and (c) show the structure of the
phase space density perturbation δ f in a portion of the
(P̂ζ , ϑ) plane when A ≈ 6 × 10−6 in both cases (A) and
(A0). The corresponding perturbations of the radial profile
of the EP density distribution, F(P̂ζ) = F0 + δ f , measured
across the O-point (red) and across the X-point (blue) are
shown in panels (f) and (g). A ϑ-averaged density profile
(green) is also plotted.

One can see that the O-point profiles in Fig. 14 (f) for
the damped case (A) and in panel (g) for the undamped
case (A0) have both significantly reduced gradients at the
seed resonance, with the profile of (A) appearing some-
what flatter than in (A0). Note that the vertical axes of
panels (f) and (g) have different scales, which differ by a
factor F′0(A)/F′0(A0) ≈ 16. Flattening a steeper gradient
requires a larger perturbation δ f , which is indeed an or-
der of magnitude larger in case (A) than in case (A0) on
the left-hand side of Fig. 14, where the field amplitudes are
equal. Recalling that the energy released during the inter-
change of denser and ligher EP Vlasov fluid that is repre-
sented by δ f has all been transferred to the field wave, the
fact that the values of δ f in cases (A) and (A0) differ by an
order of magnitude for equal field amplitudes, reflects the
fact that the field in the damped case (A) has lost nearly all
the energy that it had previously received from the initial
EP density gradient.

In contrast to the undamped case, the field in the
damped case does not possess enough energy to reverse
the radial displacement of the particles. Equivalently, one
may say that only a small amount of trapping occurs be-
fore the field’s energy is exhausted and its amplitude drops
to a small value. This explains the differences seen in the
structure of δ f in panels (d) and (e) on the right-hand side
of Fig. 14: While the EP phase space fluid revolves around
the resonance in the undamped case (A0) in panel (e), the
first-generation hole and clump waves in the damped case
(A) in panel (d) has departed radially from the resonance,
closely followed by a second-generation hole-clump pair
that has formed during the second pulse of the field.

This multi-layered structure of the near-resonant δ f
patterns in panel (d) makes it difficult to determine the ef-
fective locations of O- and X-points, and this is where the
halos introduced in Sec. 4.1 above come in handy. The
halo-based O- and X-points are indicated in panel (d) by
dashed and dotted lines, respectively. If one takes into
account that the effective resonance has shifted by Δϑ =
−λϑΔν0Δt = −0.365π × 0.4 kHz × 0.43 ms ≈ −0.06π (cf.
Fig. 13) during the time between snapshots (b) and (d), it
becomes clear that the O- and X-point locations are effec-
tively reversed. This is the consequence of a phase jump
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Fig. 14 EP phase space density perturbation during the saturation of (A) damped and (A0) undamped instabilities in the marginally
unstable cases with γ/ω0 = 0.5%. Panel (a) in the center shows the time traces of the field amplitude A(t). The situation at low
amplitudes A ≈ 6×10−6, where case (A) peaks for the first time, is shown on the left-hand side. The situation at higher amplitudes
around 3 × 10−5, where case (A) peaks for the second and case (A0) for the first time, is shown on the right-hand side. Panels
(b)-(e) show contour plots of δ f (P̂ζ , ϑ), and panels (f)-(i) show the corresponding perturbed EP density profiles F(P̂ζ) = F0 + δ f :
one measured at the poloidal angle of the O-point, one at the X-point, and one poloidal average. The effective locations of O- and
X-points were inferred from the halos (cf. Sec. 4.1) and are indicated, respectively, by dashed and dotted vertical lines in panels
(b)-(e).

Fig. 15 EP phase space density perturbation during the saturation of (B) damped and (B0) undamped instabilities in the strongly unstable
cases with γ/ω0 = 3.5%. The results are arranged as in Fig. 14. The initial perturbation amplitude in these simulations was
A0 = 10−6, so the first saturation in case (B) occurs earlier here than in Figs. 12, 20, 24 and 27, where we used A0 = 10−8.

Δφ = π that was performed by the field during the am-
plitude minimum between snapshots (b) and (d), around
t ≈ 0.9 ms, which will be examined in detail in Sec. 5.1.

The dynamics in the strongly unstable cases (B) and
(B0) in Fig. 15, with γ/ω0 ≈ 3.5%, seem to be qualitatively
similar to the marginally unstable cases (A) and (A0), but
everything is faster and larger in both magnitude and spa-
tial extent. Here, the saturation amplitudes differ only by
about a factor of 2, and the magnitudes of δ f differ by a
factor of about 2. . . 3, consistently with the ratio of the ini-
tial gradients, F′0(B)/F′0(B0) ≈ 2.

After the undamped instabilities in cases (A0) and
(B0) saturate, their amplitudes remain near the level of

the first peak. At the instant of saturation, Figs. 14 (i) and
15 (i), show an O-point profile that is flat around the reso-
nance. In fact, the profile near the O-point can be expected
to flatten for the first time after half a bounce cycle. Indeed,
the first flattening of the O-point profile near the resonance
can be seen long before the amplitude A(t) reaches its first
peak. In case (A0), with the resolution of our diagnostics,
this occurs at about 30% of the peak amplitude (shortly af-
ter the profile snapshot in Fig. 14 (g)), and in case (B0) this
occurs at about 18% (before the snapshot in Fig. 15 (g)).
At first glance, this might look like an overshoot, but that
is not necessarily the case because, in order for the net out-
ward flow of EPs (= net energy transfer to the mode) to
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cease, it does not suffice to flatten the gradient only along
a thin line across the O-point. A sufficient amount of pro-
file flattening has to occur in a sufficiently wide portion of
the effective island’s poloidal length λϑ, which is the dis-
tance between X-points along the resonance line as indi-
cated in Fig. 13 (b). The structure of δ f inside the phase
space islands in Figs. 14 (e) and 15 (e) implies that A(t)
stops growing only after the deeply trapped particles have
completed about 1 to 11/2 revolutions20 around the nearby
O-point (see also Fig. B1). In other words, the steady-state
level around which the field amplitude A(t) subsequently
oscillates is reached when a majority of the particles have
more or less returned to or passed their initial positions.
This observation is corroborated by the time traces of indi-
vidual particles as shown in Figs. B2 (a,b) of Appendix B
and is consistent with Dewar’s theoretical prediction [7].

Another noteworthy observation is that the saturation
in the damped cases (A) and (B) occurs only after the den-
sity profile across the O-point has been flattened substan-
tially. This is especially remarkable in the strongly damped
marginally unstable case (A) in Fig. 14 (f): since that case
would be linearly stable if the initial density gradient had
been just a little less steep, one might naïvely think that
the instability would saturate as soon as the gradient at the
resonance has been reduced below that threshold, which
should require only a small perturbation in δ f . This, how-
ever, does not happen and it reflects the fact that, even
during the phase of approximately exponential growth, the
instantaneous stability of the perturbed system is a more
complex problem than the linear stability of the initial ref-
erence state, whose gradient is uniform along the reso-
nance. In the perturbed state, the gradient ∂F/∂Pζ with
respect to the action variable P̂ζ varies along the angle vari-
able ϑ, which is precisely the feature we discussed in the
previous paragraph, where we were saying that saturation
in the undamped cases required the gradient to flatten in a
certain range of ϑ around the O-point. In the damped cases,
that range of ϑ is shorter, requiring only a small amount of
revolution (trapping) around the resonance.

4.3 Potentially misleading density profiles
and the cause of pulsations and phase
jumps

As mentioned in Sec. 2.2, we emphasize again that
density gradients ∂Pζ F can have a stabilizing or destabiliz-
ing effect only when there are flow lines in phase space that
are directed uphill or downhill, respectively. Those lines of
flow are not always easy to determine when the field’s am-
plitude and phase evolve rapidly, and without that informa-
tion, it can be difficult to interpret the role of the gradients
correctly. For instance, the gradients seen in a radial cross-
section at an O-point are relatively ineffective for resonant

20The first revolution is part of the resonant trapping process, but its
duration is longer than the bounce period τb because the first revolution
includes the formation process of the field’s effective potential well.

drive or damping, because they are oriented transversely to
the lines of flow at that location (even after phase jumps by
±π). Instead, it is primarily the degree of profile flatten-
ing in the region between the O- and X-points that deter-
mines at what stage a resonant instability ceases to grow
(saturates), as mentioned in the previous section. A simple
direct link between destabilizing gradients and the growth
of the field perturbation exists only in the linear regime,
where the gradient is still uniform and the relative phases
are such that ∂t ln A ≈ ∂t ln δ f regardless of magnitude and
position. The relative phases between the field and the den-
sity waves in δ f at different radii begin to change well be-
fore the instabilities saturate, and the evolution of the field
is then determined by the field’s spatial correlation with
δ f ; namely, the integral in Eq. (2), where gradients do not
appear explicitly. The gradients enter the field equations
only in a complicated implicit way through the time inte-
gration of the equations of motion — or, equivalently, the
Vlasov Eq. (4) — that yield δ f .

These considerations show that radial profiles like
those shown in the lower parts of Figs. 14 and 15 should
be interpreted with great caution. For instance, it might
be tempting to hypothesize that the steep gradient at the
X-point in Figs. 14 (f) and 15 (f) is the force that causes
the ±π jump in the field’s phase φ(t) during the subsequent
amplitude minimum and allows its amplitude A(t) to grow
again to a large value during the next pulse, where the O-
and X-point positions are switched [13]. However, upon
closer inspection this intuitively appealing hypothesis turns
out to be self-contradictory: As illustrated in Fig. 16 (a),
the form of δ f around the X-point is such that the gradi-
ents would actually be stabilizing when the X-point would
be replaced by an O-point. This is because the counter-
clockwise flows would have to move dense fluid (red) up-
hill and light fluid (blue) downhill. Even if one considers
a gradual phase shift, a contradiction arises: Energy may
be extracted from the X-point gradient if the flow contours
would shift to the right (ϑ̇ > 0) as illustrated in Fig. 16 (b),
which corresponds to a negative phase shift in the field
(φ̇ < 0). However, as we will show later, the first phase
jump in our simulations is towards the left (ϑ̇ < 0, φ̇ > 0;
cf. Fig. 17 (b)), which can be attributed to an asymmetry
in our simulation setup that strengthens the leftward mov-
ing pump waves; namely, the clumps traveling downhill
towards the mode’s peak.

In other words, from the energetic point of view, one
may say that phase jumps and subsequent pulses occur not
because but in spite of the steep X-point gradient. This
statement holds not only at the time of the amplitude peak
shown in Fig. 16, where we illustrated the situation for a
hypothetical phase shift. The X-point gradient continues
to play a stabilizing role all the way to the amplitude min-
imum, where the actual phase jump occurs (cf. Fig. 19).

This indicates that something else must be driving the
amplitude pulsations and phase jumps, and our suspects
are the counter-propagating EP fluid packets of increased
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Fig. 16 Schematic illustration of how the perturbed EP distribu-
tion δ f near the effective X-point in Fig. 15 (b) would be
affected by the hypothetical phase space flows (arrows)
that one would obtain (a) by exchanging O- and X-
points, or (b) by slightly shifting the flow contours right-
ward (ϑ̇ > 0, φ̇ < 0). The situation in (a) corresponds to
a phase jump by ±π and the situation in (b) corresponds
to a negative phase shift by about Δφ ≈ −π/3.

(δ f > 0) and decreased (δ f < 0) density that can be seen
in panel (b) of Figs. 14 and 15. In this work, we choose
to interpret the rapid field pulsations and phase jumps as a
consequence of the beats that result from the superposition
of multiple density waves in δ f that simultaneously drive
the field wave. This is more easily said than proven in
general, but at least in the limit of two-wave beating, one
can demonstrate that our ansatz is consistent with Eq. (15),
as shown in Appendix A.

4.4 Primordial hole-clump pairs, frequency
splitting and the onset of beating

The packets of dense and light fluid in Figs. 14 (b) and
(c) may be regarded as a primordial hole-clump pair. The
hole wave propagates faster than the seed wave, and the
clump wave lags behind, which means that there are now
two pump waves in EP phase space density δ f with el-
evated and reduced frequencies ω+ and ω− as was illus-
trated schematically in Fig. 5. The similarity between pan-
els (b) and (c) in Fig. 14 implies that such a pair of pump
waves exists transiently also in the undamped case during
the first cycle of hole-clump revolution around the O-point.
Their effect is analyzed in Appendix B, where we present
evidence for transient frequency splitting. In cases with
strong damping, the frequency splitting is sustained and
the superposition of the two pump waves produces a beat-
ing pump wave signal, to which the electromagnetic field
wave responds likewise.

In the limit of symmetric beating between a pair of
pump waves with equal amplitudes but opposite signs (cf.
Eq. (A5)), their combined signal is sin(ω+t) − sin(ω−t) =
2 cos(ωt) sin( 1

2Δωt) with base frequencyω = 1
2 (ω++ω−) ≈

ω0 and pulse frequency Δω = ω+ − ω−. Using Eq. (D6)
in Appendix D.7, we can estimate the magnitude of fre-
quency splitting and the initial pulse length of the beat,

τpulse = 1/Δν = 2π/Δω ≈ 2 × 10−3 ms/ΔP̂ζ , (28)

Table 3 Estimates based on Eq. (28) of the frequency shift and
beat pulse length corresponding the maximal radial sep-
aration ΔP̂ζ of the primordial hole-clump pair during
the first pulse in cases (A) and (B).

Case (A) (B)
Hole-clump separation ΔP̂ζ � 0.005 � 0.07

Frequency split Δν (upper bound) � 2.5 kHz � 35 kHz
Pulse length τpulse (lower bound) � 0.4 ms � 0.03 ms

from the hole-clump separation in phase space, ΔP̂ζ . The
results are summarized in Table 3.

In the marginal case (A), we have ΔP̂ζ � 0.005 at
the time of amplitude peaking in Fig. 14 (b), which corre-
sponds to a frequency split of Δν � 2.5 kHz and a pulse
length of τpulse � 0.4 ms. The interval between the first
peak and the first amplitude minimum in Fig. 14 (a) is
about (0.91 − 0.73) ms = 0.18 ms, which corresponds to
a beat pulse length of 0.36 ms close to that estimated from
the hole-clump separation. This observation supports our
interpretation of the first amplitude minimum as being a
consequence of interference between the two pump waves
constituted by the primordial hole-clump pair.

In the strongly unstable case (B), we have ΔP̂ζ � 0.07
in Fig. 15 (b), which corresponds to an upper bound of
Δν � 35 kHz for the frequency splitting, and a lower
bound of τpulse � 0.03 ms on the pulse length. A glance
at the spectrogram in Fig. 12 (d) shows that the actual fre-
quency splitting at the time where the instability in case
(B) saturates is significantly smaller than the upper limit
of 35 kHz. A detailed measurement shows that Δν at that
time is only about 10 kHz (cf. Fig. 20 (f)), which corre-
sponds to a pulse length of τpulse ≈ 0.1 ms. This value
is consistent with the interval between the first peak and
the first amplitude minimum in Fig. 15 (a), which is about
(0.58−0.54) ms = 0.04 ms and corresponds to a beat pulse
length of ≈ 0.08 ms. As in case (A), this supports our
interpretation of the first amplitude minimum as being a
consequence of pump wave beating. The fact that the ac-
tual values of Δν and τpulse in case (B) differ significantly
from their respective upper and lower bounds in Table 3
also makes sense. The upper and lower bounds should
yield accurate estimates only in the limit of marginal in-
stability, which was indeed true for case (A) discussed in
the previous paragraph. With increasing departure from
marginality due to reduced damping as in case (B), the ini-
tial frequency splitting should become smaller as particle
trapping becomes stronger and inhibits the phase slippage
of the hole and clump waves with respect to the seed res-
onance. Eventually, in the absence of damping, sustained
frequency splitting does not occur (Δν→ 0), whereas ΔP̂ζ

(= island width) can be large.
The small (retarded) frequency splitting at early times
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means that weakly damped scenarios like our case (B)
should undergo a relatively abrupt large frequency splitting
at later times, when the large primordial hole-clump pair
escapes the grasp of the seed resonance. In contrast, the
onset of chirping should be a more gradual process in the
marginally unstable case (A) with strong damping, where
nearly no trapping occurs and phases slip when the hole-
clump pair is still small. These expectations are confirmed
numerically and supported by theory in Sec. 5.2 below.

5. Analysis of the Role of Beating
In the above overview Figs. 11 and 12, the snapshots

of the EP phase space density perturbation δ f taken after
the saturation of the instabilities show the following pro-
cesses:

(i) the formation of hole-clump wave pairs (until the
third snapshot),

(ii) the radial propagation of hole and clump wave fronts,
in whose wake a turbulent belt forms (fourth snap-
shot), and

(iii) solitary hole and clump vortices (fifth snapshot).

Here, the word “front” will be used to refer to the steep δ f
gradients at the inner and outer edges of the turbulent belt
around the seed resonance. These fronts are indicated by
horizontal dashed lines in the fourth snapshot in Figs. 11
and 12. The distinction between interchanging hole &
clump waves on the one hand and “turbulence” on the
other is somewhat arbitrary, based mainly on appearance
in scale and complexity. In both cases, there is a convec-
tive interchange of light and dense packets of EP Vlasov
fluid, with plumes of dense fluid advancing outward and
vice versa. These phase space structures are nonadiabatic
and may be regarded as a semi-perturbative manifestation
of what Wang Tao et al. [44] call “convective branch”21.

All these structures propagate poloidally at character-
istic frequencies that depend on their instantaneous radial
location measured by P̂ζ . Their (increasingly uncoordi-
nated) pumping action drives the oscillations of the field.
As soon as two or more pump waves are present in the EP
phase space density, their interference can cause the field
to beat. Among other interesting features, we will show
shortly that, at least during the first dozen or so beats, the
wave fronts advance radially in pulses that correlate well
with the beating of the field wave.

In Sec. 5.1, we characterize the beats and their feed-
back on the phase space dynamics at the beginning of the
simulations, where the first hole-clump wave pair forms

21In Ref. [44], the “convective branch” was only responsible for rela-
tively minor transient chirps, while the dominant signal was associated
with an MHD eigenmode that was referred to as “relaxation branch”. In
our semi-perturbative model, there are no discrete eigenmodes, but the
seed wave may be regarded as the counterpart of the “relaxation branch”,
and the early nonadiabatic chirps may be regarded as manifestations of
the “convective branch”. The (semi-)adiabatic phase space structures that
are responsible for long-range chirping may then be referred to as “vortex
branch”. Here, all three branches have the same field mode structure.

(i). The ensuing wave front propagation and nonadiabatic
onset of chirping (ii) is analyzed in Sec. 5.2, followed by an
analysis of the formation and detachment of solitary vor-
tices (iii) in Sec. 5.3. While the first three subsections deal
with the collective structures in EP phase space density,
the last Sec. 5.4 is dedicated to an analysis of the motion
of individual simulation particles, which yields informa-
tion about global transport and the internal dynamics of
the large vortical structures that manage to survive in the
presence of a beating field.

5.1 Phase jumps and halo dynamics during
symmetric and asymmetric beats

Amplitude pulsations and phase jumps are ubiquitous
in experimental measurements of chirping modes and in
simulated chirps. The first explicit experimental reports
that we are aware of came from JET [49], where these dy-
namics were interpreted as a signature of chaos. Here,
we do not go to such lengths and interpret the pulsations
and phase jumps simply as a manifestation of beating (as
in Ref. [12] and Appendix A). In this section, we per-
form a detailed analysis of the phase jumps in our sim-
ulations, with focus on the associated phase space dy-
namics and feedback loops. Our results are summarized
in Fig. 17, which shows the dynamics of the field (left)
and EP phase space density perturbations (right) during
the first few beats. The beats consist of amplitude pulsa-
tions as shown in panel (a) and phase jumps between the
pulses as shown in panel (b). The situation is representa-
tive for all our simulations with strong damping, both near
marginal stability and strongly unstable. Here, we discuss
the marginally unstable case (A).

Before we examine the results, we should point out
that, in most simulations, we observe a prompt frequency
shift during the first few transits. This phenomenon is at-
tributed to a self-optimization process and is discussed in
Appendix D.4. The oscillation frequency in case (A) be-
comes ν0 + Δν0 ≈ (100 + 0.4) kHz and the resonance lo-
cation P̂ζ,res shifts from 0.719 to ≈ 0.718. Similarly to the
adjustment made to the poloidal angle ϑ in Fig. 13 above,
the phase φ(t) in Fig. 17 (b) has also been adjusted by a
corresponding offset φoffs = 2πΔν0t. The location of the
promptly shifted effective resonance is indicated by dash-
dotted lines in panels (c)-(i) of Fig. 17.

During pulse #1, the field amplitude in Fig. 17 (a) sat-
urates around t̂ = 150 (0.7 ms), and then it rapidly drops,
here by about a factor of 3. Around the instant of the first
amplitude minimum, at about t̂ = 194.5 (0.9 ms), we ob-
serve in panel (b) a arctan-like phase jump Δφ = +π that
takes about 20 transits (0.1 ms) to complete. Around the
same time, the normalized Fourier spectrum in panel (c)
shows transient frequency splitting into ν+ ≈ 102.4 kHz
and ν− ≈ 98.1 kHz, which corresponds to a radial sepa-
ration of |ΔP̂ζ | � 5 × 10−3 around the resonance and is
comparable to the extent of the phase space density pertur-
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Fig. 17 Onset of beating due to the interference of hole & clump (H&C) pump waves in the marginally unstable case (A). Panels (a) and
(b) show, respectively, the time trace of the field amplitude A(t) (log scale) and phase φ(t)−φoffs(t), where the offset φoffs = 2πΔν0t
cancels the phase drift associated with the small prompt frequency shift Δν0 ≈ 0.4 kHz (cf. Appendix D.4). Panel (c) shows the
Fourier spectrogram whose amplitude has been normalized at each time step. Panels (d)-(f) and (g)-(i) show snapshots of the
phase space density perturbation δ f around the first two minima of the amplitude in (a), where phase jumps by +π and −π can
be observed in (b). The dash-dotted horizontal lines in (c)-(i) indicate the effective resonance location (ν0 + Δν0 = 100.4 kHz,
P̂ζ,res = 0.718). A nonlinear color scale (square root) is used to make the halos visible in (d)-(i). It is important to note that the
arrows in (d)-(i) indicate halo motion, which are collective structures, not tied to particle motion. Arrows are drawn with different
thickness for easier identification. A detailed view of the third amplitude minimum at t̂ = 312 (1.467 ms) between pulses #3 and
#4 can be gained from Fig. 18. The phase jump in the raw signal between pulses #10 and #11 (out of range) was shown in Fig. 7.

bations seen in the contour plots of δ f in panels (d)-(f). A
qualitatively similar behavior can be seen between pulses
#2 and #3, during the second amplitude minimum around
t̂ = 270.5 (1.3 ms), where the spectral peaks are located at
ν+ ≈ 103.0 and ν− ≈ 98.2.

The upper branch ν+ is pumped by a clump wave in
the region P̂ζ < P̂ζ,res (upper part of panels (d)-(i)) and the
lower branch ν− is pumped by a hole wave in the region
P̂ζ > P̂ζ,res (lower part of panels (d)-(i)). According to
the theory in Appendix A, the interference between these
two pump waves causes beating in the kinetic drive on the
right-hand side of the field Eq. (15), to which the field re-
sponds with identical beats. Thus, the amplitude minima
highlighted in Fig. 17 correspond to instances of destruc-
tive interference that occurs when pump waves with oppo-
site signs of δ f (namely, a hole-clump pair) are aligned.
Consistently with Eq. (13b), which yields the condition
pϑ + φ = const. in the Poincaré section nζ −ωt = 2πl with
integer l, we observe positive phase jumps Δφ = +π when
the clump wave dominates (ϑ̇ < 0), whereas Δφ = −π
when the hole wave dominates (ϑ̇ > 0).

There are quantitative differences between the first
and second phase jumps in Fig. 17. During the second
event, panel (a) shows a deeper and sharper amplitude
minimum, and panel (b) shows a phase jump that is more
abrupt and in the opposite direction (Δφ = −π). The spec-
trogram in panel (c) shows us the reason for these differ-

ences between the first and second amplitude minima: the
frequency splitting is asymmetric during the first event,
with a dominant upper branch ν+, whereas relatively sym-
metric splitting is seen during the second event, with an
only slightly (2%) stronger lower branch ν−. This means
that the interfering pump waves have different strengths
during the (asymmetric) first beat, while they are compa-
rable during the (symmetric) second beat.

The beating dynamics of the field wave become in-
creasingly complicated as time advances. For instance,
in the presence of more than two pump waves — pairs
of which may dominate and control the field oscillations
at different times — pulses may overlap and slow phase
jumps may be cut short (|Δφ| < π) by faster ones.

So far, we have discussed the beating phenomenon
only from the point of view of the field behaving as a
driven oscillator. However, in our system there is a feed-
back loop, by which the pulsations and phase jumps of the
field wave acts back on the motion of individual particles as
well as on their collective density waves. One manifesta-
tion of this feedback are the off-resonant halos introduced
in Sec. 4.1, which appear in the form of vertical stripes of
red and blue shade in the snapshots of δ f on the right-hand
side of Fig. 17. We emphasize again that these halos are
nonresonant collective modulations of EP density, which
are not tied to the motion of individual particles. Our ob-
servations indicate that the halo patterns are largely phase-
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locked to the field wave (that, in turn, is controlled by the
resonant phase space structures), which makes these halos
useful for the present analysis of phase jumps.

We distinguish “near halos” (meaning: near-resonant)
and “far halos” (meaning: far off-resonant). Different halo
dynamics are observed during phase jumps associated with
symmetric and asymmetric beats:

(i) Symmetric beat: Positive (red) and negative (blue)
halos abruptly switch places globally during instants
of perfect or nearly perfect destructive interference of
two pump waves. This is realized in Fig. 17 (g)-(i).

(ii) Asymmetric beat: Far halos remain locked to the
dominant pump wave, while the subdominant pump
wave controls only the nearest halo. Phase slippage
is realized here by halos being torn and reconnected
with their neighbors as seen in Fig. 17 (d)-(f).

Scenario (i) is simpler, so we start with Figs. 17 (g)-(i).
While the hole and clump waves counter-propagate along
ϑ at a more or less steady pace (with only minor jolting),
the far halos tend to stay locked in place during the preced-
ing pulse #2, so that they stay behind the resonant struc-
tures that they are attached to. This results in some bend-
ing of the near halos. Towards the end of pulse #2, the
far halos begin to accelerate as indicated by the arrows in
panel (g): The halos above the resonance are attached to
the clump wave and tend to shift to the left as indicated by
the pair of red arrows. Similarly, the halos below the res-
onance are attached to the hole wave and tend to shift to
the right as indicated by the pair of blue arrows. Here, an
arrow’s thickness is used merely to identify it in different
snapshots. When the field disappears at the time of snap-
shot (h), the halos jump ahead of the respective clump or
hole wave. Then they decelerate and more or less freeze
at the new positions seen in snapshot (f). The motion of
the halos corresponds closely to the time trace of the field
phase φ(t) in panel (b), whose sign is determined by that of
the dominant phase space structure. Here, the hole wave
is only about 2% stronger, so the pump waves are almost
equally strong, causing a very abrupt and radially global
phase jump of the halos, which remain attached to the near-
est hole or clump wave front.

More or less symmetric beats do occur fairly often
in our simulations, but more frequently we observe asym-
metric beats, where one of the pump waves dominates, so
that destructive interference is not complete, and ampli-
tude minima are smoother and shallower. This situation,
namely scenario (ii), is realized during the first amplitude
minimum in all of our chirping simulations. Panels (d)-(f)
of Fig. 17 show the corresponding phase space dynamics.
In the present case, the clump wave dominates and we ob-
serve that not only the halos above the resonance follow
the clump wave, but even the far halos below the reso-
nance do so, as indicated by the red arrows in panel (d).
The weaker hole wave controls only the near halo as in-
dicated by the blue arrow in panel (d). During pulse #1,

Fig. 18 Evolution of δ f during the third amplitude minimum
at t̂ = 312 (1.467 ms) in Fig. 17. This event is similar
to that in Fig. 17 (e), but here the signal-to-noise ratio
is larger. As in Fig. 17, the dotted rectangles indicate
the region where halo tearing and reconnection occurs.
The arrows indicate halo motion (decoupled from parti-
cle motion).

all structures are more or less locked in phase, so the ar-
rows in panel (d) indicate only the trend of their relative
motion. When the field is weakened due to partial destruc-
tive interference at the time of snapshot (e), these relative
drifts in ϑ become significant, and a phase jump of magni-
tude π occurs, causing the red and blue halos in panel (f)
to exchange places compared to panel (d). However, this
time, all far halos have moved to the left with the clump,
as one can infer from the positions of individual arrows in
the snapshots. This means that around snapshot (e) the ha-
los below the resonance have been torn and reconnected in
the region that is roughly indicated by the dotted rectangle.
Unfortunately, the signal-to-noise ratio is somewhat low in
Fig. 17 (e), so we show another example of an asymmetric
beat in Fig. 18. Here one can see snapshots taken just be-
fore and just after the instant of halo reconnection during
the third amplitude minimum in Fig. 17 (a).

In summary, we have shown in this subsection how
phase jumps occur during amplitude minima. See also the
movie in Fig. E3 (b). Hole and clump waves and nearby
halos propagate poloidally at a relatively uniform pace that
depends on their distance from the resonance. In contrast,
the motion of the far halos is nonuniform, with a arctan-
like time trace that resembles the evolution of the phase
φ(t) in Fig. 17 (b). In the case of symmetric beating, with
two pump waves of similar intensity, the phase jump is
global along P̂ζ . In the case of asymmetric beating, in
our example dominated by the clump wave above the reso-
nance, the phase jump is realized by tearing and reconnec-
tion of near and far halos on the side of the subdominant
pump wave, in our example on the hole side22. The phase
jumps have important consequences that we will examine
next.

22Halo reconnection always occurs somewhere, but during symmetric
beats it occurs far away from the resonance, outside our field of vision.
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Fig. 19 Illustration of the effect of a phase jump, using the snap-
shots of δ f in Fig. 17 (g)-(i) around the second ampli-
tude minimum in case (A). The solid lines in (a) and (c)
indicate schematically the positions of effective phase
space islands (similarly to Fig. 13). The island width
is somewhat exaggerated. Islands are absent during the
amplitude minimum in (b), so the dashed lines indicate
their past and future forms. Bold arrows indicate the
flow direction. Dotted lines highlight the inclination
of the halos in the vicinity of the resonance (far halos
above and below the visible P̂ζ range are almost verti-
cally straight).

5.2 Feedback loop for pulsed front propaga-
tion and nonadiabatic onset of chirping

In Sec. 4.1, we have asserted that the halos that ap-
pear in our δ f -weighed kinetic Poincaré plots can be used
to identify the effective instantaneous location of O- and
X-points. Here, this procedure is applied to the three snap-
shots from Figs. 17 (g)-(i) that we analyzed in the previous
subsection. Figure 19 shows schematically the effective
phase space islands (black sinusoidal curves) plotted on
top of the phase space density perturbation δ f at the times
of those snapshots: (a) at the end of pulse #2, (b) at the
instant of the phase jump by Δφ = −π, and (c) at the be-
ginning of pulse #3.

The arrows in Fig. 19 (a) show how, at the end of a
pulse in the field amplitude A(t), the fronts of hole & clump
(H&C) waves are approaching the effective X-point, which
means that they are pulled “inward” (towards the reso-
nance line). However, this process is terminated by the dis-
appearance of the field during the amplitude minimum at
the time of snapshot (b), before any significant revolution
around the effective O-point can occur. Around that time,
the H&C waves are free to drift poloidally at their char-
acteristic speeds, as indicated by the arrows in Fig. 19 (b).
When the field is revived in the next pulse, it does so with

opposite phase. This means that the new O-points appear
at (or near) the locations of the former X-points and vice
versa, yielding a situation as illustrated schematically in
Fig. 19 (c). The H&C wave fronts that were previously
drawn towards the resonance have now begun to travel
“outward” (away from the resonance).

This constitutes an important feedback mechanism.
The new location of the effective island contours (repre-
senting flow lines) with respect to the location of the H&C
pair at the time of the phase jump facilitates a further de-
parture of the H&C structures from the seed resonance.
The further outward motion of the clump and inward mo-
tion of the hole transfers energy to the field. The growing
field amplitude makes the effective island larger and the
flow contours steeper, allowing the H&C structures to de-
part even further. This positive feedback continues until
the poloidal drift of the H&C takes them across the effec-
tive O-point, reversing the trend: The flow contours at the
head of the H&C structures point towards the resonance,
making clumps move inward and holes outward, so that the
mode transfers energy to the particles and is, therefore, res-
onantly damped. As mentioned previously in Sec. 4.2, the
additional damping γd makes the process irreversible since
the mode’s remaining energy is already exhausted after a
partial reversal of radial H&C displacement.

This process is repeated during each beat cycle. The
resulting evolution of the system during the first dozen or
so beats of the marginally unstable case (A) is shown in
the left half of Fig. 20. Panel (a) shows the evolution of
the field amplitude A(t), with the first 9 pulses labeled (the
small peak of pulse #1 is hardly visible). Panel (b) shows
that the fronts of the hole and clump waves advance radi-
ally in a pulsed manner that is perfectly correlated with the
pulsations of the field seen in panel (a). One can see that
the radial expulsion of the wave fronts is partially reversed
at the end of most pulses, but the net displacement clearly
increases with time, which is consistent with the discus-
sion in the previous paragraph. Note that there is often a
significant difference in the magnitude of the displacement
of the hole and clump wave fronts during a given pulse, es-
pecially when the amplitude does not drop very far due to
asymmetric beats or due to an overlap between two pulses.

Qualitatively similar behavior is seen in the strongly
unstable case (B) shown in the right half of Fig. 20. The
main differences are the shorter time scale (factor 2. . . 3)
and the much larger amplitude of the first pulse (factor
100). In the marginal case (A), the magnitude of the dis-
placement of the wave fronts during pulse #1 is below
the accuracy of our diagnostics, whereas pulse #1 in the
strongly unstable case (B) does more displacement work
than all the subsequent pulses that are visible in Fig. 20.

The high-resolution DMUSIC spectrograms in panels
(c) and (f) of Fig. 20 show the frequencies that are induced
by those phase space structures. A striking feature of these
spectrograms is that the evolution of the field’s oscillation
frequencies is far from smooth. The interpretation of these
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Fig. 20 Propagation of EP phase space density wave fronts and nonadiabatic onset of chirping during the first dozen pulses of the
marginally unstable case (A) (left) and first half dozen pulses in the strongly unstable case (B) (right). Panels (a) and (d) show
the time traces of the field amplitudes A(t). Panels (b) and (e) show the distance |ΔP̂ζ | of the hole wave fronts (blue) and clump
wave fronts (red) from the seed resonance P̂ζ,res = 0.718. The wave front positions in the δ f -weighed Poincaré data — which
can be seen indicated by dashed horizontal lines in the fourth snapshot of δ f (P̂ζ , ϑ) in Figs. 11 and 12 — were determined
using an automatic threshold-based algorithm. Panels (c) and (f) show high-resolution spectrograms obtained with the DMUSIC
algorithm (see Appendix E.2), using a time window of size Δtwin = 0.094 ms in case (A) and Δtwin = 0.047 ms in the more
rapidly evolving case (B). The horizontal green bars indicate Δtwin for easy comparison with the spectral patterns. The ΔP̂ζ(t)
curves from panels (b) and (e) have also been converted to frequency using Eq. (D6) as |Δν| ≈ |ΔP̂ζ | ×486.8 kHz, and then plotted
as νfront ≈ 100.4 kHz ± |Δν| together with the spectrograms in (c) and (f). Vertical orange lines indicate the times of amplitude
minima, where phase jumps ±π occur. The dashed black curves in (c) and (f) represent fits of the ZC model in our parametrization
(30) using the values in Table 4.

spectrograms requires caution (cf. Appendices B.1 and E),
but at least some features seem to be correlated with the
wave fronts’ radial propagation in a pulsed manner. In
many instances, the frequency varies rapidly during an am-
plitude minimum between successive pulses, so that the
early chirping has a staircase-like appearance23.

The spectrograms in Figs. 20 (c) and (f) also show
copies of the ΔP̂ζ(t) curves from panels (b) and (e), that
have been converted to frequency using Eq. (D6) as |Δν| ≈
|ΔP̂ζ | ×486.8 kHz. One can see that the signals in the spec-
trogram — and, thus, the effective pump wave frequen-
cies — lie well within the range νfront = 100.4 kHz ± |Δν|
spanned by the wave fronts. The separation between |νfront|
and the spectral peaks is smaller in the marginally unstable
case (A) than in the strongly unstable case (B). One reason
is simply that the radial width of the primordial holes and
clumps in case (B) is much larger than in case (A) during

23In case (B), the first few frequency steps in Fig. 20 (f) during the in-
terval 0.50 ms � t � 0.55 ms occur during pulse #1, so on a time scale
that is shorter by about a factor of 3 compared to beating and particle
bouncing. So far, we have not been able to attribute these steps to any
physical feature of δ f , so their cause remains unknown. Statistical noise
associated with the imperfect quiet start may play a role.

the onset of chirping.
In addition, the poloidal drift speed of the pump waves

relative to the seed wave is initially reduced due to stronger
resonant trapping in case (B), whose damping rate γd/ω0 =

4% is smaller than the 7.5% in case (A). Eventually, the
pump waves in (B) escape from the seed resonance and
chirping proceeds similarly to case (A). Thus, the onset of
chirping in case (B) is first retarded with respect to mode
growth and then occurs in a more abrupt manner than in
case (A). This can be seen clearly seen in Figs. 20 (c) and
(f): while upward chirp takes about 1 ms to reach 110 kHz
in case (A), it takes only about 0.1 ms in case (B). This
trend should continue with decreasing γd until, in the ab-
sence of damping (γd = 0), the spectral peaks remain at or
very near the seed frequency (i.e., no sustained chirping),
whereas ΔP̂ζ remains large and represents the half-width
of the phase space island as in Fig. B124.

The pulsed radial propagation of the wave fronts and
the more or less discrete stepping in frequency in Fig. 20
during the nonadiabatic phase of the chirp may be regarded

24Here, we have expressed once more in different words what has al-
ready been mentioned near the end of Sec. 4.4 above.
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as one possible realization of the relay runner paradigm,
a phenomenological model proposed by Zonca & Chen
[8, 50] on the basis of the mode pumping mechanism dis-
cussed by White et al. [51]. In the original model, the
relay runners were identified with the poloidal harmonics
and EP-driven distortions of a shear Alfvén wave packet in
toroidal geometry, as illustrated schematically in Fig. 1 (d).

The physics of evolving mode structures are absent in
our semi-perturbative model, but this caveat can be toler-
ated in the present cases, since we have long-wavelength
modes and large magnetic drifts. The successive (and
phase shifted) pulses in our simulations can play the role
of the relay runners who are taking turns to carry the ba-
tons in the form of phase space density waves. Moreover,
in the marginally unstable case (A), the first dozen or so
pulses have gradually increasing amplitudes, which corre-
sponds to the process of convective amplification [4], ex-
cept that here the radial convection occurs only in phase
space, not in the mode structure. In addition, recall that
we have placed the peak of our field mode at a larger ra-
dius than the resonance (cf. Fig. 9). From the perspective
of the clumps, which propagate radially outward towards
the mode’s peak, the field appears to get stronger with in-
creasing radius, even when A(t) fluctuates around the same
level. This process may be referred to as “preconvective
amplification” as discussed in Appendix D.1. Preliminary
results of parameter scans indicate that this arrangement
significantly affects the preferred direction of chirping. In
the present setup, we observe stronger (more intense and
more rapid) upward chirping, which means radially out-
ward, towards the peak of the mode.

The Zonca-Chen (ZC) model in the form presented in
Ref. [8] predicts that the chirping rate should first acceler-
ate exponentially, then pass through a phase of linear-in-
time chirping, and eventually decelerate exponentially; in
other words, it should evolve like a hyperbolic tangent:

δνZC(t) ∝ exp(γ0t)
1 + exp(γ0t)

=
1
2

[
1 + tanh

(
γ0t
2

)]
, (29)

where γ0 is the linear growth rate, and the time variable t is
such that the chirping begins at t → −∞, and the transition
from accelerating to decelerating chirping occurs at t = 0.

The ZC relay runner model was formulated for mag-
netically deeply trapped toroidally precessing particles
in the short-wavelength limit with small magnetic drifts,
where the particles are passed on from one poloidal har-
monic to the next. However, here we deal with a single-
harmonic long-wavelength mode and EPs with large mag-
netic drifts, so we cannot simply adopt the coefficients
from Ref. [8]. Instead, we use the parametrization

δνZC = ν−∞ +
Δν±∞

2

[
1 + tanh

(
γ0

2
(t − t0)

)]
; (30)

where the height Δν±∞ of the hyperbolic tangent is treated
as an unknown parameter that is fitted separately to the
up- and downward chirping branches in our spectrograms.

Fig. 21 DMUSIC spectra for the first 5 ms in cases (A) and (B).
The spectral analysis was performed with a longer time
window than in Fig. 20; here Δtwin = 0.47 ms. Blue and
red lines represent the time traces of the hole and clump
wave front frequencies νfront = 100.4 kHz ± |Δν|, as in
Figs. 20 (c) and (f). The dotted black curves represent
the prediction of the BB model (12) with the actual val-
ues of γL and γd for the respective case, but a somewhat
arbitrarily chosen pole location: 1.0 ms in case (A) and
0.3 ms in case (B). The dashed black curves represent
fits of our parametrization of the ZC relay runner model
(30) using the values in Table 4.

Table 4 Parameters for our adaptation of the Zonca-Chen (ZC)
relay runner model in Eq. (30).

Parameter Case (A) Case (B)
γ0 = γL − γd [kHz] 3.14 21.99

t0 [ms] 1.65 0.55
ν−∞ [kHz] 100.4 100.2
Δν±∞ [kHz] +13 (clump), −10 (hole)

The location t0 of the inflection point is also fitted, whereas
the promptly shifted seed frequency ν−∞ = ν0 + Δν0 (Ap-
pendix D.4) and γ0 = γL − γd are measured in the simu-
lations. The parameter values are given in Table 4 and the
fitted curves are shown as dashed black lines in Figs. 20 (c)
and (f). One can see that both in the marginally unsta-
ble case (A) and in the strongly unstable case (B), the time
scale of the chirps is captured well by the tanh(γ0t/2) func-
tion with the nominal growth rate values. The fitted curves
are shown once more in Fig. 21, which covers the first 5 ms
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of the simulations and shows DMUSIC spectrograms ob-
tained with a larger time window, Δtwin = 0.47 ms. For
comparison, the result of the BB model (12) is also shown.

After the hyperbolic tangent levels off, it effectively
measures the width of the turbulent belt that has formed
around the resonance (although that width continues to
evolve). Here, we simply matched the amplitude Δν±∞
of the hyperbolic tangent function to the observed spec-
trum, but a quantitative model based on readily available
parameters such as γL, γd, drift orbit width, field geometry
and mode structure would be desirable. DMUSIC spec-
trograms with high temporal resolution as in Fig. 20 show
only the dominant chirps and tend to follow the vortices. In
contrast, spectrograms obtained with relatively long time
windows as in Fig. 21 show the turbulent belt as a region
characterized by multiple fluctuating spectral peaks that
may be attributed to the nonadiabatic interchange dynam-
ics of hole and clump waves of various sizes as seen in the
region around P̂ζ ≈ 0.7 of the last two snapshots in Fig. 11.

The relay runner model (29) does not capture the long-
range chirps produced by the emission of solitary vortices.
In our simulations, chirping continues beyond the turbu-
lent belt as massive solitary vortices detach and propagate
away from the seed resonance. The detachment process
and the role that beating may play there are examined in
the following subsection.

5.3 Growth, detachment and interference of
solitary vortices

When we discussed phase jumps in Sec. 5.1 above, we
noted that, at the end of a pulse, the far halos tend to lag
behind their H&C wave fronts, so that the near halos tend
to be tilted to the right as indicated by the dotted lines in
Fig. 19 (a). At the beginning of the next pulse, the halos are
located ahead of their H&C waves fronts, so that the near
halos are tilted to the left as indicated by the dotted lines
in Fig. 19 (c). This has an important implication: Since the
clump in Fig. 19 (c) moves into a halo region where the EP
density has already increased above the reference (δ f >

0, represented by the halo’s red shade) and since the field
amplitude is growing at that time, the clump grows in size
as additional dense fluid gets trapped in its neighborhood.
The same holds in reverse for the hole. This leads us to the
topic of this subsection: the formation of massive holes and
clumps and their detachment from the turbulent belt. The
detachment process is gradual and difficult to quantify, so
this will be a mostly observation-based discussion of the
results summarized in Figs. 22-24.

We will be telling the story primarily from the point
of view of clumps because, in our setup, they move into
regions of higher field amplitude, so they tend to domi-
nate the picture. Apart from this imposed asymmetry, the
story may be told in the same way for the holes because
here the only difference between holes and clumps is the
sign of δ f . It must be kept in mind that packets of Vlasov

Fig. 22 Schematic illustration of the formation of EP clump
fragments in the inner plasma (bottom) and their accu-
mulation into a massive clump in the outer plasma (top).
The horizontal axis corresponds to the poloidal angle ϑ.
As in the phase space plots shown in Figs. 23 and 24,
we are in the frame of the electromagnetic (EM) seed
wave, so structures above the seed resonance drift to the
left and those below drift to the right. The yellow-green-
shaded arrows in the text boxes on the left indicate the
action of the EM field wave. The red arrows indicate the
motion of clump fragments. The black arrows indicate
flow patterns in and around the reference clump.

fluid that are part of a clump at one time may be part of a
hole at another time, especially when they are located in-
side the turbulent belt, where they may be advected up and
down between the belt’s boundaries and become clump-
like or hole-like depending on whether the density at that
location was lower or higher initially, at t = 0. After a vor-
tex has detached from the turbulent belt, its interior may
become a “pure” clump or hole, but its surface (boundary
layer) remains transformative when the field fluctuates (cf.
Fig. 1 (c)).

With the conceptual framework put in place, let us
now discuss the vortex formation and detachment process
in some detail. Figure 22 illustrates schematically how we
understand the growth of a clump while it is still embed-
ded in the turbulent belt. The turbulent belt in the center of
Fig. 22 can be thought of as consisting of clump and hole
fragments of various sizes. Here, only the clump fragments
are indicated, which are gradually advected downhill; i.e.,
upward in Fig. 22, towards lower EP density and higher
frequency. The clump fragments originate from the lower
part of Fig. 22, where new clump fragments are flaked off
the EP density profile with every new pulse of the field (re-
call also Fig. 19). Whenever a clump fragment is flaked
off, its place is taken by a hole, which is shown in blue in
the lower part of Fig. 22. Animations of this process (Ap-
pendix E.3) make it appear as if a hole wave front is dig-
ging into the EP profile, advancing uphill with each new
pulse of the field as indicated by the wavy cyan-colored
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Fig. 23 Detachment of solitary vortices in the marginally unstable case (A). Panel (a) shows the Fourier spectrogram obtained with
large time window Δtwin = 0.47 ms. The dotted green parabola is the prediction of the BB model (12). Panel (b) shows the
evolution of the field amplitude A(t) during the interval 2.35 ms ≤ t ≤ 3.9 ms. Four sets of snapshots labeled (I)-(IV) show the
structure of the phase space density perturbation δ f before, during and after the detachment of a massive solitary clump vortex.
The δ f snapshots in set (II) have been aligned with the center of the uppermost clump, so the ϑ-window shown varies, moving
leftward from positive to negative values. Horizontal dashed lines indicate the locations of the hole and clump wave fronts, whose
evolution was shown in Figs. 20 and 21. The white and black circles and black cross symbols in the δ f snapshots indicate the
locations of particles whose trajectories we analyze in Figs. 27 and 28 below. Each particle appears approximately 4 times during
the τζ0 = 4.7 μs interval where the δ f Poincaré maps were accumulated.

arrow drawn towards the center of the hole structure.
While being advected downhill, the clump fragments

may merge or decompose as they are being continuously
interchanged inside the turbulent belt. Large clumps may
already form along the way, but in Fig. 22 we assume that
this occurs at the upper rim of the turbulent belt. The wavy
dark red arrow inside this massive clump structure indi-
cates how it advances outward with each new pulse. At the
same time, neighboring clump fragments may be absorbed
into the larger structure.

Whether or not our reference clump repels or absorbs
a nearby fragment depends on the instantaneous relative
phases of three players: (i) the reference clump, (ii) the
fragment, and (iii) the field wave. The phase of the field
wave is indicated at the top of Fig. 22, where the black el-
lipses indicate the separatrix of the effective phase space
island. O- and X-point locations are also marked. The
bold black arrows depict the direction of the vertical com-
ponent of phase space flows in different parts of the field
wave. The corresponding pattern of phase space flow in
the boundary layer of our reference clump are indicated
by thin black arrows. The green-outlined clump fragments
that happen to be located just behind the center of our ref-
erence clump are attracted and can be absorbed, if they are

able to reach the same altitude on time. Meanwhile, the
yellow-outlined fragments that lie ahead (in the direction
of the poloidal drift) are repelled by the downward flows at
this time. Fragments that are repelled at one time may be
attracted and absorbed later. Overall the reference clump
grows due to a net upward flow of denser EP Vlasov fluid.

Snapshots of this accumulation phase as it occurs in
the actual simulation can be seen in Fig. 23 for case (A)
and Fig. 24 for case (B), where they are labeled as stage
(I). The accumulation process still continues for some time
during stage (II), which we consider to be the detachment
phase. The detachment of a clump or hole vortex from
the turbulent belt is a gradual process, during which in-
teractions with neighboring fragments become less intense
and strong interactions become less frequent. Note that
the δ f snapshots taken during stage (II) still show a clear
correlation between the radial location of the wave fronts
(horizontal dashed lines) and the field pulsations in panel
(b). Thus, the fronts’ radial advancement still occurs in a
pulsed manner (recall Figs. 20 (b) and (e)), suggesting that
beating plays a role in this process.

Although we cannot identify a precise timing, we con-
sider the detachment to be more or less complete in stage
(III). In stage (III) of the strongly unstable case (B), the
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Fig. 24 Detachment of solitary vortices in the strongly unstable case (B). The results are arranged as in Fig. 23. Here, panel (b) shows
the time interval 0.71 ms ≤ t ≤ 2.35 ms.

large first-generation clump is subject to strong distor-
tions, which can be attributed to the presence of a second-
generation clump vortex that has grown large near the first.
These two structures continue to strongly interfere with
each other for some time. Finally, the snapshots for stage
(IV) show the regime where the outermost clump and in-
nermost hole can be regarded as completely detached vor-
tices as they have separated far from and are hardly dis-
torted by other clumps or holes.

The last snapshots in Figs. 11 and 12 (Sec. 4) were
also taken during the fully detached stage (IV), and the
poloidally averaged radial profiles of δ f for those snap-
shots are shown in Fig. 25. Here, the detached H&C vor-
tices have the appearance of radially propagating solitary
waves. An interesting observation can be made in the
marginally unstable case (A): In the wake of the solitary
clump vortex on the right-hand side of Fig. 25 (a), there is
a depression in the EP density profile that we have labeled
zonal hole. The attribute “zonal” refers to the nearly fea-
tureless uniformity of that region, which appears in the last
snapshot of Fig. 11 as a cyanish band that contains no obvi-
ous macroscopically coherent structures and separates the
solitary clump from the turbulent belt. The same is true for
the detached solitary hole vortex on the other side, which is
separated from the turbulent belt by a zonal clump that ap-
pears as a yellowish band in the lower part of the last snap-
shot of Fig. 11. The presence of a zonal hole implies that
the solitary clump vortex has not merely plowed through
the surrounding EP Vlasov fluid but also absorbed some of
it until the time of this snapshot (t ≈ 6 ms). Conversely, the
solitary hole vortex has deepened. In the next subsection,
we will see that the clump begins to disintegrate thereafter.

Fig. 25 Poloidally averaged EP density profiles for the last two
snapshots of Figs. 11 and 12 for cases (A) and (B). The
snapshot at t = 6.01 ms (t̂ = 1277.5) was taken after
solitary hole and clump vortices had detached and be-
came well-separated from the turbulent belt. In case
(A), a band of reduced density (zonal hole) lies be-
hind the solitary clump, and a band of increased density
(zonal clump) lies behind the solitary hole vortex (see
also Fig. 11). Note that the labels “solitary clump/hole
vortices” are not quite accurate: Since we are plot-
ting the poloidally averaged density, the mean value of
F(Pζ) = F0 + 〈δ f 〉ϑ at the radius of a hole or clump
vortex includes fluid elements at neighboring ϑ-values
that originate from different radii. Of course, the lo-
cal value of F(Pζ , ϑ) of each EP Vlasov fluid element
is conserved, as required by the Liouville theorem, but
this is not visible in the profiles shown here.
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Fig. 26 Instances of constructive interference causing large-
amplitude spikes through spontaneous alignment of
phase space structures in the advanced stages of the
strongly unstable case (B), where multiple detached
solitary hole and clump vortices are present. Panel (a)
shows the Fourier spectrogram (Δtwin = 0.47 ms), with
vertical dotted lines indicating the times where rela-
tively large spikes in the amplitude A(t) are observed.
The spikes are shown in panels (b) and (c), and coincide
with the spontaneous phase alignment of multiple pump
waves as shown in the snapshots of δ f in the lower part
of the figure.

It must be noted that even after detachment, the inter-
ference between the spatially separated phase space struc-
tures has noticeable effects. Besides ubiquitous beating,
one manifestation of such an interference is the observa-
tion of relatively large spikes in the field amplitude that
occur when multiple phase space structures happen to have
their phases aligned. According to Appendix A, we expect
large spikes when multiple clumps or multiple holes are
aligned, and it is beneficial when the clumps are out-of-
phase with respect to the holes, or simply more intense.
Two instances of such transient phase alignments can be
observed in Fig. 26. Although transient, such large spikes
may have an influence on the rate at which the hole and
clump vortices advance radially and accumulate (or lose)
material. Similar processes may be relevant for triggering
Abrupt Large-amplitude Events (ALE) [36] whose precise
timing, according to our current understanding, depends
sensitively on the trajectories of multiple players, just like
the events of spontaneous phase alignment in Fig. 26.

It is remarkable that the outermost solitary clump vor-
tex in Fig. 26 retains its structure with p = 4 elliptic points
for a long time even after entering the domain of the p = 5
resonance; namely, the region P̂ζ � 0.6 (cf. the first snap-

shot in Fig. 11)25.
The robustness of the solitary vortices that survive in

spite of the persistent beating of the field wave (which is
caused by the interference between all the pump waves in
the system) indicates that, after detaching from the turbu-
lent belt, their interiors may have attained a certain de-
gree of adiabaticity, with more or less conserved actions
as assumed in so-called waterbag models (e.g., see Refs.
[14–16]). This can be confirmed by examining the motion
of individual simulation particles, which constitutes the fi-
nal part of this study.

5.4 Particle trapping and transport
The δ f snapshots shown in Figs. 23 and 24 contain

black and white circles and black crosses, which indicate
the locations of three selected simulation particles. Dur-
ing the τ0ζ = 4.7 μs time interval used to accumulate
δ f Poincaré maps, each particle appears approximately 4
times at different ϑ. In Fig. 23 for the marginally unsta-
ble case (A), one can see that the particles represented by
the black and white circles are part of the massive clump
structure at the time of snapshot (I), whereas the particle
represented by a black cross is absorbed by that clump at
some later time.

The time traces P̂ζ(t) for these three tracer particles
in case (A) are plotted in Fig. 27 (a), where one can see
that the black cross, here labeled as tracer #3, is trapped
near the clump’s boundary at t ≈ 3 ms, then transported
outward with the clump for several milliseconds, before
being released and deposited at a larger radius at t ≈ 7 ms,
indicating that the clump has begun to shrink. The time
t ≈ 6 ms where the clump begins to shrink coincides with
the time where the clump enters the domain P̂ζ � 0.6,
where the presence of the next resonance with p/n = 5/5
becomes noticeable in the δ f halos (see the first snapshot
in Fig. 11). That timing also coincides with a reduction
in the clump’s radial propagation speed (= chirping rate),
which had been remarkably linear at earlier times, as can
be seen more clearly in the inset panel in Fig. 27 (a)26.

The time traces P̂ζ(t) for three tracer particles in case
(B) are shown in Fig. 27 (c). Here the rate of radial propa-

25The vortex is even able to travel beyond P̂ζ = 0.55, where no simu-
lation particles have been loaded. Although not shown here, we find that
this initially empty region of phase space is subsequently filled by parti-
cles that leak from the massive clump vortex. However, the δ f simulation
becomes invalid in that region because outward propagating Vlasov fluid
elements can no longer be replaced with inward propagating ones. When
this boundary effect feeds back on the phase space marker trajectories, we
expect that it breaks the Liouville theorem. Our sensitivity tests indicate
that this effect remains tolerable for the duration of our simulations.

26The linearity of the first half of the long-range chirp in Fig. 27 (a)
does not seem to be a robust feature of the simulation. The occurrence,
form and number of long-range chirps is sensitive to details. They can
vary significantly when the physical parameters (such as damping and
drive) are changed slightly, and they are even affected by numerical pa-
rameters. This can be seen by comparing the spectrogram of case (A) in
Fig. 11 (b) with those in Figs. D1, D10 and D12 (a) in Appendix D. All
these simulations were performed with the same values of γL and γd as
in case (A).
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Fig. 27 Time traces of the radial position P̂ζ(t) and rotating frame energy E′(t) of three tracer particles labeled #1, #2 and #3 in case (A)
(top) and case (B) (bottom). One tracer is trapped in the center, one in the bulk, and one near the boundary of the first-generation
solitary clump vortex. The inset in panel (a) shows a portion of the data tilted such that the dashed line becomes horizontal to
highlight the constancy of the clump’s radial propagation in that time window. The zoomed-up inset in panel (c) is meant to show
more clearly the rapid modulation caused by the field’s beating. For the reader’s convenience, the approximate bounce periods
τb during some stages of the evolution are shown as text labels. See also Fig. 28 for the full time traces of νb(t) for each tracer
particle. The vertical axis on the right-hand side of panels (a) and (c) have been converted to frequency ν using Eq. (D6).

gation (and chirping) can be seen to decrease continuously.
As in case (A), the clump begins to lose particles as soon as
it enters the domain P̂ζ < 0.6. First, the outermost tracer
#3 (orange curve) is detrapped at t ≈ 8 ms, followed by
tracer #2 (red curve) at t ≈ 10.5 ms. The innermost tracer
#1 (blue curve) remains trapped until the end of the sim-
ulation. Note how tracer #3 gets temporarily trapped by

the second-generation clump around t ≈ 10 ms and by the
third-generation clump after t ≈ 13 ms, as these follow
closely behind the first clump. As it happens, the fate of
tracer #3 was that the secondary trapping event moved this
particle radially back inward.

These observations show the extent of global transport
caused by the propagating solitary phase space vortices,
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Fig. 28 Evolution of the bounce frequencies νb of tracers #1, #2 and #3 whose time traces P̂ζ(t) were shown in Fig. 27. For orientation and
comparison, panels (a) and (e) show again the chirps observed in case (A) (left) and case (B) (right) using a Fourier time window
of size Δtwin = 0.47 ms. Panels (b)-(d) and (f)-(h) show Fourier spectrograms of P̂ζ(t) using Δtwin = 3 × 0.47 ms = 1.41 ms.

which bears similarity to the physical picture of so-called
“bucket transport”, with the addition that — besides the
chirping φ̈ [6] — the pulsations of the field amplitude A(t)
assist with the transmission of untrapped particles around
the bucket by widening the nonadiabatic boundary layer
that would constitute only a singular separatrix in the limit
of a field wave with fixed amplitude and phase, and an iso-
lated single resonance (see Fig. 1).

Another closely related and important piece of infor-
mation that we can gather from Fig. 27 is the following.
In both cases (A) and (B), one can see that particles that
are located near the vortex center (namely, tracer #1) re-
main there for the entire duration of the simulation. Simi-
larly, particles in the bulk of the vortex and particles in the
boundary layer remain there, with the peripheral particles
being the first to escape when the vortex begins to shrink.
This means that these vortices maintain a nested structure.

What we find particularly remarkable about this obser-
vation is that the nested structure of the vortices is main-
tained in spite of the persistent beating of the field wave,
and in spite of the fact that the dynamics in case (A) are
only marginally adiabatic. Let us elaborate these impor-
tant points in some more detail.

The effect of the persistent violent fluctuations of the
field in the form of amplitude pulsations and phase jumps
can be clearly seen in Fig. 27 in the form of high-frequency
modulations of all time traces P̂ζ(t). Typically, we see be-
tween 5 and 7 oscillations per bounce period τb, so the

time scale separation is not all that large27. Moreover, in
the case of tracer #1 (blue curve), which is located near the
clump center in both cases (A) and (B), the perturbations
caused by the beating have amplitudes that are comparable
to the radial excursion of the particle due to its revolution
around the vortex center. In Fig. 27 (a) it is sometimes even
difficult to see the bouncing signal of tracer #1 within the
“beat noise”. Although we are looking only at very few
particles, the overall integrity of the vortices suggest that
other particles behave likewise. The possibility of main-
taining such a nested structure in the presence of strong
perturbations is fascinating and strengthens the stance of
reduced adiabatic models such as the “waterbag” [14, 15];
in particular, when cast in a generalized form, allowing the
structure to shrink or grow [16, 25]. This implies the pres-
ence of a nonadiabatic boundary layer, even when it does
not appear explicitly in the idealized theoretical model.
Thus motivated, let us examine the degree of adiabaticity
in our vortices.

Although it is possible to determine the characteris-
tic bounce periods τb by-eye when looking closely at the
time traces in Fig. 27, the evolution of the bounce frequen-
cies νb of our tracers can be conveniently seen at a glance
from the Fourier spectra that are summarized in Fig. 28.
With Δtwin = 1.41 ms, we have used a fairly large sliding
time window for the Fourier transforms, but one can never-

27The inset in panel (h) of Fig. 28 shows the spectral peak of the beat
signal in case (B) at about 20 . . . 25 kHz, whereas νb ≈ 3 . . . 7 kHz.
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theless see significant variations of the bounce frequencies
over time. Various observations that are interesting but not
immediately relevant here are discussed in Appendix C.2.
What we would like to emphasize here is how the bounce
frequency compares to the chirping rate: The bounce fre-
quency near the clump center, namely for tracer #1 in
Figs. 28 (b) and (f), is approximately νb ≈ (4 . . . 6) kHz
during the first few milliseconds after the clump detaches.
The chirping rates in that part of the simulation can be
readily inferred from Fig. 27, where the vertical axis on
the right-hand side shows the radial position P̂ζ converted
to frequency ν using Eq. (D6). In case (A), the slope is
δP̂ζ/δt = 1

39 ms−1 (as shown explicitly in the inset panel),
so we have δν̇ = 486.8 kHz

39 ms = 12.5 kHz/ms. In case (B), we
have roughly δν̇ ≈ 20 kHz/2.5 ms = 8 kHz/ms. With this,
the adiabaticity parameter δν̇/ν2

b in Eq. (11) becomes

δν̇/ν2
b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
12.5 kHz/ms

(4.5 kHz)2 ≈ 0.6 : Case (A),

8 kHz/ms
(6 kHz)2 ≈ 0.2 : Case (B);

(31)

where the overbar (. . .) means that we are looking only
at the overall trend of the chirp, ignoring rapid fluctua-
tions in δν̇, such as phase jumps. Equation (31) high-
lights in a quantitative manner what may already have
been obvious to experienced eyes from the time traces in
Fig. 27: Our strongly unstable case is more adiabatic than
the marginally unstable case (A), with the latter being only
marginally adiabatic since its δν̇/ν2

b value is not far from
unity. In fact, if it had not been for the observed nested
structure, one may have been tempted to classify case (A)
as nonadiabatic. Instead, it seems that an adiabatic treat-
ment of the detached solitary clump vortices (and presum-
ably also the solitary hole vortices) can be justified in both
cases that were analyzed here, near and far from marginal
stability, and with fairly strong drive γL/ω0 ≈ 8%.

Finally, we examine to what extent the simulation par-
ticles depart from their initial position E′ = 75.6 keV in
the rotating frame energy. Figure 29 shows that the par-
ticle distribution becomes slightly crescent-shaped but re-
mains close to the initial E′ = 75.6 keV line during the first
≈ 4 ms in case (A) and during the first ≈ 2 ms in case (B).
After that, the distribution broadens and reaches a width
of about δE′ ≈ 2.5 keV in both cases. The particle clus-
ters in these broadened energy bands can be clearly associ-
ated with the upward propagating clumps. A more detailed
view of the distribution’s 4-D structure in (δ f , P̂ζ , E′, ϑ)
and (P̂ζ0, P̂ζ , E′, ϑ) space, and how it evolves in time is
given in Figs. C1 and C2 of Appendix C.3.

Time traces of E′(t) for a few tracer particles are
plotted in panels (b) and (d) of Fig. 27. For case (A),
Fig. 27 (b) shows that E′ is well conserved during the first
4 or 5 bounces. Oscillations, whose frequency seems to
match the bounce frequency νb, become clearly notice-
able at about t ≈ 3 ms, which coincides with the stage
where the first massive clump starts to detach from the tur-
bulent belt (cf. Fig. 23). Starting around t ≈ 5 . . . 6 ms,

Fig. 29 EP transport in the E′-P̂ζ plane, where E′ = E−ω0P̂ζ/n
is the particle energy in the frame moving with the seed
wave. Several snapshots of the particle distribution are
shown for case (A) (top) and case (B) (bottom). More
details can be found in Appendix C.3, Figs. C1 and C2.

where the clump begins to shrink and interact with the
p/n = 5/5 resonance, we observe nonsinusoidal oscilla-
tions with a magnitude on the order of 1 keV and long peri-
ods of about 3 . . . 4 ms, the cause of which is still unknown.
In Figs. 27 (b) and (d), there seems to be an overall trend
for E′ to decrease in time, and the crescent-shaped bending
of the full distribution as seen in Fig. 29 is probably related
to this trend.

Note that the magnitude of high-frequency beat noise
is smaller in the time traces of E′(t) than in the time traces
of P̂ζ(t), so that the curves in panels (b) and (d) of Fig. 27
appear significantly smoother than in panels (a) and (c).
This implies that there is a significant cancellation between
beat-induced fluctuations in E and P̂ζ . This observation
leads us to conclude that beating may not be the primary
mechanism that leads to the decoupling of E and P̂ζ and,
thus, the breaking of the E′ = E − ωPζ/n = const. condi-
tion. Therefore, we suspect that the solitary vortices them-
selves may be the primary cause for the perturbations in E′;
in particular, their radial propagation (chirping and plow-
ing through surrounding material) and direct mutual inter-
actions (e.g., when their nonadiabatic boundary layers in-
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terfere or overlap).
The E′ values of the three tracers in Figs. 27 (b) and

(d) vary less in case (B) than in case (A), but this trend is
not seen in Fig. 29, where the full particle distribution is
scattered more broadly in case (B) with weaker damping
than in case (A) with stronger damping. Presumably this
is due to the larger number of more closely spaced vortices
in case (B). If conditions were equal, we expect that the
variations in E′ should decrease with decreasing damping
rate, because γd = 0 yields effectively constant E′ as can
be confirmed in Fig. B3 of Appendix B for case (A0).

The E′ line broadening seen in Fig. 29 has been repro-
duced with 2.5 times shorter time steps, which gives better
energy conservation, so we may assume that its cause is not
a numerical one. In particular, the crescent-shaped distor-
tion that dominates during the first few milliseconds of the
simulations seems to be a robust physical feature. We sus-
pect that this (small) modification of E′ is a consequence
of chirping, as it affects the domains of holes and clumps
alike. However, this hypothesis remains to be tested.

At present, a systematic limitation of our simulations
prohibits a meaningful study of the observed E′ line broad-
ening. Recall from Fig. 10 that the phase space structures
have the form of elongated cylinders in (Pζ , E′, ϑ)-space,
which we have effectively truncated by loading particles
only along a line with E′ ≈ E′0 = 75.6 keV = const. This
means that our simulations using the δ f method do not ac-
curately represent dynamics in the E′ direction, where no
marker particles have been loaded, because the continuity
of GC phase space and, thus, the condition dG/dt = 0 un-
derlying Eq. (18) is violated. This does not immediately
make the entire simulation unphysical, but it can produce
artifacts, and the “ghost chirp” in Fig. 2 (b) may be one
such artifact (see Appendix C.4). For the scope of the
present work, this does not seem to be a problem. The
line broadening reaches only δE′/E′ ≈ 3% in 10 ms, and
we show in Appendix D.2 that similar dynamics are ob-
tained when marker particles are loaded in a band of width
ΔE′0 = 7.5 keV that fully encompasses the broadened dis-
tribution in Fig. 29.

6. Summary, Discussion and Outlook
When multiple field fluctuations with the same polar-

ization are simultaneously present in the same spatial do-
main of a plasma, their linear superposition causes beat-
ing in the combined signal s(t) = A(t) sin(−ω0t − φ(t)),
here measured relative to a reference wave with frequency
ω0. The beats consist of pulsations in the amplitude A(t)
and jumps by ±π in the phase φ(t). The pulse length of
the beats, their magnitude, and the time scale of the phase
jumps depend on the separation between the frequencies
and the relative amplitudes of the interfering waves.

The amplitude and phase modulations associated with
beating may contain useful information about possible
nonlinear couplings between the interfering waves. This

has been exploited, for instance, in studies of coexisting
EP-driven Alfvén modes and rotating kink/tearing modes
[52–54]28. Since different modes generally have differ-
ent spatial structures, such cases exhibit not only temporal
modulation but also spatial modulation. The spatial inter-
ference may add to the complexity of the dynamics.

Beating can occur as a passive side-effect, merely pro-
ducing spectral sidebands. However, the beats of the field
can also play an active role in the dynamics through direct
or indirect feedback on the particles and/or field pertur-
bations. One prominent example is spectral line splitting
in regimes where chirping is suppressed by strong scat-
tering [32, 33]. Beating is an integral part of that process,
where spectral broadening occurs in a well-organized fash-
ion through limit cycle bifurcations (see also the introduc-
tory discussion in the last paragraph of Sec. 2.7).

In the present study, we examined the role of beating
in cases with strong chirping in a “collisionless” plasma;
i.e., in the absence of drag or scattering. In contrast
to the discrete line splitting seen in the above-mentioned
scattering-dominated cases, scenarios with strong chirping
exhibit a high degree of temporal incoherence, as a large
portion of the phase space tends to be dominated by tran-
sient convective dynamics. Coherent vortex structures tend
to form only after a significant delay (millisecond scale).

Our beats can be viewed as the linear modulation of
one field mode that is driven by multiple sources (density
waves) in the phase space of one particle species (here,
energetic deuterons). Although the fundamental process
underlying this phenomenon is the exchange of energy be-
tween particles and field waves, the observations are per-
haps most easily interpreted as a collective effect; namely,
as the result of beating between multiple pump waves in
phase space density that jointly drive the field oscillation.
This physical picture was introduced in Sec. 2.2 and sup-
ported by the mathematical analysis in Appendix A. The
purpose of this study was to clarify how the beating of the
field acts back on the pump waves, and what role beating
plays in the formation and evolution of solitary vortices
in phase space, which are responsible for long-range fre-
quency chirping and associated particle transport.

The system considered was an ideal incompressible
electromagnetic flute mode in realistic tokamak geome-
try and with an initial frequency in the shear Alfvén band
(ν0 = ω0/(2π) ∼ 100 kHz) that interacts with circulating
energetic deuterons with kinetic energies around 80 keV.
The use of a semi-perturbative model, namely a fixed spa-
tial mode structure, constrains the validity of our numerical
analysis to the long-wavelength limit, namely low toroidal
mode numbers n ∼ O(1), whose poloidal harmonics tend to
have a large radial width and would undergo only relatively
little distortion. Such low-n modes are typically driven by

28When the frequency difference is large, as for high-frequency Alfvén
and low-frequency tearing modes, the slowly evolving modes may also
be treated as a stationary non-axisymmetric perturbation of the reference
state (or equilibrium) around which the high-frequency modes oscillate.
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energetic particles (EP) with large magnetic drifts. Al-
though the phase space structures responsible for chirp-
ing remain within the range of these magnetic drifts, the
drifts’ large radial extent makes the chirp-induced trans-
port global and, therefore, practically relevant.

In the following subsections, we summarize the main
insights that we have gained in this work and discuss possi-
ble implications and directions for further study. Conclud-
ing remarks are made in the last Sec. 6.6.

6.1 Halos reveal phase relations and may
fuel the growth of holes and clumps

We demonstrated the existence of robust nonresonant
modulations in EP phase space density δ f that we call ha-
los. They are visible as radially elongated stripes of alter-
nating sign (δ f ≷ 0) in δ f -weighted kinetic Poincaré plots
accumulated over a short interval of one toroidal transit
time, here τζ0 = 4.7 μs. These halos are interesting for
several reasons, which we summarize here.

In order to correctly interpret the phase space dynam-
ics, it is often essential to compare the phase space struc-
tures seen in contour plots of δ f with the instantaneous
flow lines of the EP Vlasov fluid. In principle, the flows are
determined by the instantaneous amplitude A(t) and phase
φ(t) of the field, but reconstructing the flow lines from that
information is difficult in realistic geometry and with large
magnetic drifts. For instance, when trying to estimate lo-
cations of X- and O-points along ϑ at a certain time t, we
cannot simply shift the initial field pattern forward in time
using the relation Δϑ = φ(t)/m, because the magnetic drifts
turn that relation into something more complicated. Con-
ventional (long-time) kinetic Poincaré plots are not appli-
cable in a rapidly varying field, and inferring the locations
of effective O- and X-points through visual inspection of
near-resonant δ f patterns also becomes difficult after the
first beat, because those patterns become complicated.

Our observations indicate that far off-resonant halos
(Fig. 13 (b)) are strongly correlated with the instantaneous
phase of the field, so they can be used to track the effective
locations of O- and X-points. On that basis, it is possible to
determine at least the radial direction of the flows at each
poloidal angle. Here, this technique has been used mainly
during the early stages of a chirping simulation, where soli-
tary vortices have not formed yet. It helped us to estimate
flow lines in phase space and interpret the processes asso-
ciated with the onset of beating and chirping. The effect of
more or less abrupt phase jumps between successive pulses
of the beating field can be observed clearly, and the halos
have revealed details about that process (Fig. 17).

Besides being an indicator of the phase relation be-
tween field and density waves, we suspect that the halos
may also play an active role in the dynamics: The phase re-
lation between halos and density wave fronts is such that,
during the beginning of a pulse, a halo of increased den-
sity (δ f > 0) lies ahead of the clump wave, and a halo of

reduced density (δ f < 0) lies ahead of a hole. We have
argued based on Fig. 19 that this may facilitate the infla-
tion of these structures, making them grow larger with each
pulse of the beating field.

Although we can explain halos as collective density
modulations, the reasons for why they exist in this partic-
ular form and why they evolve in the way they do remains
to be understood. On the one hand, the halos are attached
to the hole and clump wave fronts, so we usually see two
counter-propagating halos. On the other hand, the halos are
closely linked to the phase φ of the field. In that respect,
the halos are similar to the equilibrated stationary modu-
lations of phase space density in Fig. 4 (b), which are also
phase-locked collective structures, not tied to the motion
of individual particles. The close connection with the field
phase is also manifested in the fact that halos can move
ahead of or lag behind the hole and clump wave fronts that
they are more or less attached to. Overall, the halos seem
to be a manifestation of the feedback between collective
phase space structures and the field. It would be interest-
ing to take this “explanation” from the philosophical to the
scientific level.

6.2 Feedback loop for staircase-like nonadi-
abatic onset of chirping

One of the most pronounced effects of beating was
observed during the nonadiabatic onset of chirping dur-
ing the first few milliseconds of our simulations (Fig. 20).
Based on our interpretation of the field dynamics as being a
consequence of a superposition of multiple pump waves in
EP phase space, we have identified the following feedback
mechanism (Sec. 5.2, Fig. 19):

• The emergence of two pump waves with frequencies
ω+ and ω− causes the field to beat, with amplitude
pulsations of order 100% and phase jumps by ±π.
• These beats drive the pump waves further away from

the seed resonance by making the effective phase
space islands (= flow contours) pulsate with alternat-
ing effective O- and X-point positions.
• The resulting increase in the frequency difference
Δω = ω+ − ω− causes more beats per time. More-
over, new pump waves (hole-clump pairs) are gener-
ated with each beat.
• The increased radial transport also pumps more en-

ergy into the field perturbation, whose growth in-
creases the size of the islands (= steeper flow con-
tours) and the step size of the radial displacements.

Initially, this feedback causes an exponential acceleration
of the up- and downward chirps ω+(t) and ω−(t). High-
resolution spectrograms obtained with the DMUSIC algo-
rithm indicate that the frequency advances in a somewhat
discontinuous fashion (Fig. 20)29. The staircase-like on-

29Qualitatively similar behavior known as “parametric ladder climb-
ing” has been reported in other systems [55].
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set of chirping is consistent and often correlated with the
pulsed radial expansion of the pump wave fronts. How-
ever, the increasing frequency difference Δω also leads to
a shorter pulse length τpulse = 2π/Δω and reduced en-
ergy transfer to the field. The shorter pulses and saturating
field amplitude yield smaller steps in frequency, the conse-
quence being a deceleration and saturation of the chirps.

Exponential acceleration followed by exponential de-
celeration is the nature of a hyperbolic tangent. In a sim-
plified limit of their general theory [1], Zonca & Chen have
constructed a phenomenological “relay runner” model [8],
that predicts nonadiabatic chirping of the form

δω(t) ∝ tanh(γ0(t − t0)/2); (32)

where t0 is the point of inflection and γ0 = γL−γd the initial
growth rate (linear drive γL minus field damping γd). This
formula matches the overall trend and time scale of the
early staircase-like nonadiabatic chirps in our simulations,
both in the marginally unstable and strongly unstable cases
(Figs. 20 and 21). The magnitude of the chirping range had
to be fitted with a free parameter, because the original re-
lay runner model was formulated for a different scenario
than ours: The model coefficients in Ref. [8] were derived
for magnetically deeply trapped EPs and short wavelength
modes, where the batons in the form of resonant pump
waves in phase space density are relayed by neighboring
poloidal harmonics of a toroidal Alfvén wave packet in
a process of convective amplification [4], as illustrated in
Fig. 1 (d). In the future, it would be beneficial to formulate
reduced quantitative models of nonadiabatic chirping for
various scenarios.

In our case, there was only a single long-wavelength
mode (m/n = 6/5) interacting with circulating EPs that
perform large magnetic drifts. The relay runners were re-
alized here by successive pulses (beats) of the same mode
with alternating phase φ. In close proximity to marginal
stability (γL − γd � γL), namely in case (A), the first sat-
uration of the resonant instability occurred at a very small
amplitude (Fig. 14), and successive pulses gradually rose
to higher levels (Figs. 17 and 20). This can be regarded
as a proxy for the above-mentioned convective amplifica-
tion process, except that in our semi-perturbative model
the convection occurred only in EP phase space, without
shifting the peak of the field mode. However, from the per-
spective of the clumps, the local field did appear to be “pre-
convectively” amplified, because we placed the seed reso-
nance off-peak, so that the clumps’ radial propagation took
them into regions with a stronger field. See Appendix D.1
for further discussion on nonperturbative effects.

6.3 Zonal and vortical structures
In the wake of the pump wave fronts that are ob-

served during the nonadiabatic onset of chirping, a turbu-
lent belt forms, whose dynamics are reminiscent of radi-
ally sheared convective interchange and wave-breaking on

various scales. Although complicated in their detailed ap-
pearance, the phase space structures exhibit a certain de-
gree of radial stratification (e.g., see the last snapshots in
Figs. 11 and 12). Considering that the overall dynamics
are fed by background gradients (generally, in combina-
tion with sources and sinks), one may describe the overall
transport of material and energy with equations that govern
only the zonal component and ignore the angular depen-
dence. That idea has been realized in the theory by Zonca
& Chen [1, 4], a specific form of which describes the evo-
lution of so-called “phase space zonal structures (PSZS)”.
A quantitative comparison with the transport occurring in
the turbulent belt in our simulations would be interesting.
One complication that might cause discrepancies is that
the assumption of two disparate spatial scales (background
plasma and mode structure) may be violated in our case,
since we deal with long-wavelength instabilities compara-
ble to system size.

Generally speaking, a representation in terms of PSZS
only as illustrated in Fig. 1 (d), without any angular de-
pendencies, would yield reliable quantitative predictions
for transport of particles and energy only if suitable trans-
port coefficients can be calculated. Obviously, these coef-
ficients will be very different in strongly turbulent regimes
involving many modes, in cases with intermittent soliton-
like avalanches, and in scenarios with propagating vor-
tices subject to a beating field mode as we have simulated.
In fact, the effective transport coefficients may even vary
within one scenario. For instance in our case, transport
coefficients are likely to differ between the near-resonant
turbulent belt and the inter-resonant region occupied by de-
tached solitary vortices. The results reported in this work
may contain information that can be used in the construc-
tion of suitable transport coefficients for reduced models,
such as the PSZS paradigm.

From an observational perspective, the formation of
massive vortical clump structures involves a gradual ag-
gregation of smaller fragments that flake off on the high-
density side of the turbulent belt and are advected downhill
towards the clump wave front (see the cartoon in Fig. 22),
with the reverse being true for holes. Beating plays a key
role in this process and a feedback loop similar to that iden-
tified during the nonadiabatic onset of chirping (summa-
rized in Sec. 6.2 above) is present here as well:

• Radially sheared poloidal motion of pump waves
(holes and clumps) causes the field to beat.
• The beating field causes the hole and clump wave

fronts to advance radially in a pulsed manner and
spawns new clump and hole fragments with each
pulse. The broadening of the spectrum and increas-
ing number of pump waves causes more (and more
complicated) beats.
• By driving radial convection of the fragments, the

beats also facilitate their accumulation into “mas-
sive” (wide and deep) holes and “massive” (wide and
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dense) clumps.

In other words, the beating enhances mixing between
radially stratified layers of pump waves (hole and clump
fragments), with net transport occurring due to the initial
density gradient. One the one hand, the stronger mixing
tends to inhibit the early detachment of vortical structures.
On the other hand, it can fuel the growth of massive holes
and clumps, especially at the boundaries of the turbulent
belt. The larger value of |δ f | inside a massive structure
makes it a more powerful pump wave (cf. Eq. (2a)). When
driven by a few dominant massive structures, the beats of
the field may become more regular and more intense. Ul-
timately, this may facilitate the detachment of a massive
clump or hole, because it is likely that some material will
have to stay behind during the detachment. A massive vor-
tex structure is more likely to remain intact and detached
after loosing some material than a smaller one, because it
has more influence over the auto-resonant field oscillations
(due to larger integrated |δ f | in Eq. (2a)), thus, perpetuating
its own stability by prolonging phase locking.

Although a higher degree of on-average phase locking
to the field makes a vortex more robust, too much phase
locking may lead to enhanced resonant particle trapping
and, thus, inhibit chirping. Here, phase slippage is facili-
tated by strong field damping. In addition, beating (due to
the presence of other pump waves) and chirping [6] both
contribute to the maintenance of a relatively wide nonadi-
abatic boundary layer (Fig. 1 (c)), which prevents the vor-
tices from falling into a state of adiabatic stagnation.

We also observed the formation of truly zonal struc-
tures (indicated in Figs. 11 and 25). After the first solitary
clump vortex in the marginally unstable case (A) had de-
parted from the turbulent belt, it left behind a region of re-
duced density that we have called “zonal hole”. Similarly,
a “zonal clump” was observed behind the first solitary hole
vortex on the other side of the turbulent belt around the
seed resonance. No such structures were visible in the
more strongly unstable (less damped) case (B). It may be
worthwhile to investigate in a future case study under what
conditions such zonal holes and clumps form and what role
they play. For instance, one may speculate that such zonal
modulations of the EP density profile play a role in the for-
mation and radial propulsion of subsequent generations of
hole and clump vortices. Meanwhile, the leading solitary
vortices that have produced those zonal perturbations will
experience a reduced EP density gradient across their ra-
dial width. This may contribute to the reduction of their
radial propagation speed and, thus, their chirping rates.

6.4 Robust nested vortices in the presence of
strong beating

Even before complete detachment, the internal struc-
ture of hole and clump waves was found to resemble, on
average, concentric nested layers of circulating flows. Es-
pecially in the marginally unstable case (A), this obser-

vation was somewhat surprising, because the adiabaticity
parameter defined in Eq. (31) has a value close to unity
in this case: δν̇/ν2

b ≈ 0.6. It would not have been sur-
prising to see this case dominated by nonadiabatic dynam-
ics, where long-lived vortices do not form and where phase
space structures tend to be of collective nature, in the sense
that different particles would constitute these structures at
different times. In such a scenario, there would be no bal-
listic “bucket” transport.

Moreover, we expected that the amplitude pulsations
and phase jumps associated with ubiquitous beating would
scramble the interior of any apparently coherent phase
space structures and, if not prevent their formation, at least
reduce their life time. Therefore, we were fascinated by
the fact that prior simulations of such chirping systems
(with varying degrees of complexity) routinely show the
presence of long-lived phase space vortices. In particu-
lar, our curiosity was raised by the fact that the observed
beats of the field are characterized by instantaneous growth
rates γ = d ln A/dt = Ȧ/A and phase shift rates φ̇ that can
be comparable to and even larger than the oscillation fre-
quency of the seed wave,

max |γ| ∼ max
∣∣∣φ̇∣∣∣ � ν, (33)

which seems to contradict assumptions like |γ| ∼ |φ̇| � ν

that are attached to theories of adiabatic chirping; namely,
the separation of time scales needed to construct adiabatic
invariants. In the theoretical derivations, this problem had
been sidestepped by considering only one solitary vortex
structure at a time (see Eq. (23) in Ref. [24]). By ignoring
explicitly the interference between multiple pump waves,
beating is taken out of the picture, leaving only slowly
evolving amplitudes and phases.

One of our main results, reported in Sec. 5.4, is that we
(re)confirmed the robustness of the phase space vortices in
our simulations and showed that, on average, their interiors
maintain a nested structure (i.e., good adiabatic constants
of motion), in spite of persistent strong beating.

One may argue that this is not surprising since the
largest and fastest changes in A(t) and φ(t) occur at times
of destructive interference, when A(t) is small and, there-
fore, may hardly affect the particle motion. In addition, un-
trapped phase space structures in a collisionless plasma can
be destroyed only by phase mixing, and one might think
that the phase mixing times would be much longer than the
typical beat periods. However, we did not find order-of-
magnitude estimates sufficiently convincing, because for
realistic tokamak geometry and with realistic parameters
for the particle motion and field oscillations, the separation
of time scales is often vague, and it was certainly vague in
the cases we have simulated here. For instance, Fig. 7 (a)
shows that the pulse period τpulse associated with the beats
is only a couple of wave periods T0 = 2π/ω0 long, and the
same counts for the ratio of τpulse and the nonlinear bounce
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times τb in Fig. 27: in our cases, we typically have

τpulse/T0 ∼ τb/τpulse ≈ 5 . . . 7, (34)

which is less than an order of magnitude and numerical
factors of “order unity” (like π) begin to matter. Moreover,
for our largest solitary clump vortices (Fig. 11), whose
width ΔP̂ζ ≈ 0.25 corresponds to a frequency difference
Δν = 12 kHz ≈ ν0/8 (Eq. D6) between the vortice’s inner
and outer edge, has a phase mixing time (cf. Sec. 4.1) that
is even comparable to the beat pulse period,

τpulseΔν � 1. (35)

On top of that, the time traces of the canonical toroidal an-
gular momentum (radial position) P̂ζ(t) for individual par-
ticles in Fig. 27 demonstrated that the “beat noise” can be
comparable to and even exceed the magnitude of the “sig-
nal” of the nonlinear bouncing motion, especially for par-
ticles that are (on average) trapped deep inside the field’s
effective potential well; i.e., near the center of the vortex.

These qualitative and quantitative observations give
the impression that the phase space vortices in our simu-
lations live in a fairly hostile environment. Therefore, we
think that it is remarkable that, even under these condi-
tions with (at best) vague scale separation, the vortices re-
main robust and (on average) maintain their nested struc-
ture over the course of many milliseconds (a hundred beats
and more). This strengthens the stance of “semi-adiabatic”
models. Our results confirm the applicability of the idea
underlying the “bucket transport” model, with the addition
that, besides the chirping φ̈ [6], the beating of the field as-
sists with the transmission of particles through the nona-
diabatic boundary layer. Similarly, our results support ex-
tended “waterbag” models that include an active boundary
layer as in Ref. [16], where the effect of multiple interfer-
ing long-range chirps is also considered.

If one of the solitary clump vortices would be able
to gain full control over the field, the resonance and the
associated effective phase space island would be centered
around that clump permanently. We expect that, in such
a case, the field would stop beating and we should ob-
tain a single smooth long-range chirp. Such non-beating
chirps were also observed in JT-60U experiments as shown
in Fig. 14 of Ref. [12]. With δν̇ ≈ 2 kHz/ms, those lone
chirps are 4 . . . 6 times slower than those studied in the
present work. Efforts are currently underway to reproduce
such a single (non-beating) long-range chirp using ORBIT
with JT-60U equilibria. Those plasmas were driven by on-
axis negative-ion-based neutral beams, so it is likely that
the seed resonances are located near the axis and nonstan-
dard (stagnation) orbits contribute. Such boundary effects
are often important in real-world problems, but have been
avoided in the present study.

6.5 Chirp-induced resonance overlap
The solitary clump vortices in our simulations were

seen to travel far enough to reach the domain of a neigh-

boring resonance. This can be interpreted as a manifesta-
tion of “nonlinear resonance overlap” that does not require
a direct overlap of neighboring phase space islands. The
chirp-induced (or vortex-mediated) resonance overlap al-
lows transfer of material between neighboring resonances
even at fairly low amplitudes of the field perturbation.

The chirp-induced resonance overlap process requires
further study. We observed that the chirping rate is reduced
and the p/n = 4/5 clump vortex begins to disintegrate
when it enters the domain of the neighboring resonance.
It would be interesting to see whether the structure evap-
orates completely, or whether a new p/n = 5/5 structure
forms spontaneously. Such a study may have to deal more
carefully with the boundary effects discussed at the end of
Sec. 5.4 and in Appendix D.2; namely, the E′ line broad-
ening and associated problems with the δ f method.

6.6 Concluding remarks on chirping and
beating

Amplitude pulsations in general and beats in particu-
lar are part of and can have an impact on various processes
in systems governed by resonant interactions and nonlinear
frequency chirping. In this treatise, we have begun to elu-
cidate the influence that beating has on the dynamics (for-
mation and propagation) of collective structures and on the
motion of individual particles in numerical simulations of
strong chirping with different strengths of field damping.

In the presence of a symmetry-breaking perturbation
in the field (a seed wave) and a gradient in the EP distri-
bution, the EP distribution spontaneously develops collec-
tive density perturbations that we refer to as a primordial
(nonadiabatic) hole-clump wave pair. Sustained chirping
occurs when there is a mechanism that facilitates phase
slippage between the hole-clump wave pair and the reso-
nant seed wave. In our simulations, phase slippage resulted
from field damping: When the field constantly loses en-
ergy, it cannot fully reverse the particle displacements, so
that some particles remain untrapped and carry with them
the above-mentioned collective density modulations.

Once phase slippage has set in, beating is both a con-
sequence and driver of chirping, where chirping reflects
the evolution of EP phase space structures. The feedback
mechanism by which beating drives the radial advance-
ment of hole and clump waves consists of

• pulsating effective island widths, and
• alternating O- and X-points locations,

with field damping making the processes irreversible.
A manifestation of this feedback on a longer time

scale (millisecond), comprising many beats and associated
frequency steps (“micro-chirps”), is that the nonadiabatic
onset of chirping takes the form of a hyperbolic tangent:
first accelerating, then decelerating. This behavior has, al-
beit in a different setting, been predicted theoretically [8]
and we find qualitative agreement with our simulations.

Although the beats become increasingly irregular as
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the number of pump waves increases, each beat constitutes
a global perturbation of the field that moves particles in a
globally coherent manner (unlike a stochastic process that
scatters individual particles independently). Perhaps it is
this large degree of spatial coherence (here exaggerated by
the use of a semi-perturbative model) and small degree of
temporal coherence of the beating field that makes it an
effective mechanism for driving the evolution of multiple
coherent phase space structures, from the first primordial
(nonadiabatic) hole-clump pair, all the way to the semi-
adiabatic solitary vortices of the advanced stages of our
simulations. The dynamics are self-sustained as the pump-
ing action of the phase space structures with their different
characteristic frequencies cause the field to beat.

It appears that the overall integrity of vortices and
their radial propagation is maintained not only in spite
of but also owing to ongoing kicks associated with the
rapid amplitude pulsations and phase jumps. Together with
mechanisms that damp the field fluctuations, chirping and
beating prevent the system from falling into a nonlinear
equilibrium state of adiabatic stagnation by maintaining a
nonadiabatic boundary layer around quasi-adiabatic vor-
tex structures. The dynamics in that boundary layer erode
nearby density gradients and facilitate the radial propaga-
tion of the vortices and, with that, long-range chirping and
long-range ballistic transport. Like biological lifeforms —
which tend to die or hibernate in the absence of external
stimuli and without repeated throughput of material — co-
herent resonant structures become dynamic when receiving
stimuli that are partially incoherent and off-resonant. And
like social animals, the resonant structures can stimulate
each other by jointly causing the field to beat.

The system we have studied here was simplified in
many respects — ignoring dynamic adaptations of the field
mode structure, external sources, sinks and collisions —
which can often be important in real MCF plasmas on the
long time scales considered (up to ∼ 10 ms). However,
these simplifications have made our simulations physically
more transparent and yielded insights that would be diffi-
cult to obtain with more realistic but numerically expensive
codes. Even the simplified system poses challenges, some
of which have been addressed (e.g., with our approximate
quiet start technique), while others remain to be tackled
(e.g., dealing with phase space loading boundaries). On the
modeling side, there seems to be potential for a more re-
alistic description of the plasma response (MHD spectra),
field damping, and dynamic changes in the mode structure.
A few ideas were discussed in this paper.

There are also open questions on the physics side,
such as the following. A prompt frequency shift was ob-
served and characterized, but a full understanding remains
to be attained. The role of beating in maintaining a nona-
diabatic boundary layer around solitary vortices was em-
phasized, but there may be more to be uncovered. For in-
stance, the role of the boundary layer dynamics for the ra-
dial propagation of a vortex may deserve further attention.

It is conceivable that the rate at which gradients are eroded
depends on the rate and magnitude at which the boundary
layer around a phase space vortex pulsates due to the beat-
ing field. One may then ask whether semi-adiabatic vor-
tices have energetic or evolutionary (dis)advantages com-
pared to nonadiabatic spreading of phase space turbulence,
elaborating on related thoughts presented in this work.

Our results are relevant for the understanding and pre-
diction of particle transport and confinement in MCF plas-
mas. We have presented evidence showing that the use of
quasi-adiabatic models of ballistic “bucket” transport [6]
may be justified even in parameter regimes where the for-
mal adiabatic ordering begins to fail. This seems to sug-
gest that the effect of beating may be accounted for in a
simplified manner in the transport coefficients of reduced
models.
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Appendix A. Theory of Two-Wave
Beating
Consider the integral on the right-hand side of Eq. (2a)

or, equivalently, the sums in Eq. (15). Express α in terms
of Φ using Eq. (14c) as ω0αB = k‖Φ with k‖ ∝ nq −m, and
write the electrostatic potential in complex form as Φ̃ =
A(t)Φ̂(ψP)eiΘ(t) with Θ(t) ≡ nζ −mϑ −ω0t − φ(t). Ignoring
damping, the equations for the amplitude (15a) and phase
(15b) can be combined as

Ȧ + iAφ̇ =
∫

d5ZgcC0(k‖�‖ − ω0)Φ̂eiΘδ f ; (A1)

where C0 is a real-valued function of ψp. The Jacobian
has been absorbed in the distribution F = F0 + δ f , so∫

d2ZgcF = N is the number of particles (
∫

d5Zgcδ f =
0). Taking the physical density wave signal δ f to be
the imaginary (sine) component of the complex function
δ f̃ = 2C

C0
eiΘorb , we have δ f ≡ �{δ f̃ } = − i

2 (δ f̃ − δ f̃ ∗), where
the asterisk indicates a complex conjugate. The form of
the phase Θorb of the density wave in GC phase space will
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be specified later. Substitution into Eq. (A1) yields

Ȧ + iAφ̇ = −
∫

d5Zgc(ik‖�‖ − iω0 − iφ̇)CΦ̂ei(Θ+Θorb)

+

∫
d5Zgc(ik‖�‖ − iω0 − iφ̇)CΦ̂ei(Θ−Θorb)

− iφ̇
∫

d5ZgcCΦ̂ei(Θ+Θorb)

+ iφ̇
∫

d5ZgcCΦ̂ei(Θ−Θorb). (A2)

The integrals are nonzero only when the complex exponen-
tial is a constant; namely, for phase-matched waves. Let us
assume that this is the case for the difference between Θ
and Θorb, so that Θ − Θorb = β0 + 2πl with β0 = const. and
integer l. The factor (k‖�‖ − ω0 − φ̇) is readily recognized
as the time derivative of the phase difference between the
field and density waves, so that we can write

Ȧ + iAφ̇ =
d
dt

∫
d5ZgcCΦ̂ei(Θ−Θorb)

+ iφ̇
∫

d5ZgcCΦ̂ei(Θ−Θorb). (A3)

Evidently, the integral expression corresponds to A(t).
For simplicity, we ignore all the radial dependencies,

so that Φ̂ = 1. Moreover, the distribution is assumed to
contain particles with only one value of the magnetic mo-
ment μ and to be monoenergetic in the rotating frame with
energy E′ = E − ω

n Pζ . We can then integrate the distri-
bution of phase space density waves δ f over Pζ along the
line E′ = const. In this way, the time-dependencies of all
pump waves are merged into a single signal and we obtain
a combined complex pump wave function

δg̃(t)einζ−ipϑ ≡
�

dPζdKdμ δ f̃ (Pζ , μ,K, ϑ, ζ, t);

(A4)

where p is the number of elliptic points of the resonance
along ϑ.

To be more concrete, suppose that the perturbed
component of the distribution function δ f consists of
two sinusoidal pump waves located at different radii
Pζ : a clump wave with frequency ω+ and a hole
wave with frequency ω−, which can be written as
A0w

± 1±ε
2

[
1 + sin(nζ − pϑ − ω±t)

] ≥ 0 with weights w± =
±1. The parameter −1 ≤ ε ≤ 1 measures the difference in
the pump wave amplitudes. Here, the clump will dominate
for ε > 0 and the hole will dominate for ε < 0. The result-
ing combined complex pump wave function δg̃ is then

δg̃(t) = A0

2(1+ε2)

[
w+(1 + ε)e−iω+t + w−(1 − ε)e−iω−t

]
=

A0

1 + ε2
e−iω̄t

︸�������︷︷�������︸
base wa�e

[
ε cos(Δω2 t) − i sin(Δω2 t)

]
︸�������������������������︷︷�������������������������︸

beat=b(t) exp(−iβ(t))

, (A5)

with mean frequency ω̄ = 1
2 (ω+ + ω−), and frequency dif-

ference Δω = ω+ − ω−. The amplitude is normalized to

Fig. A1 Example for asymmetric beating of two pump waves;
namely a hole and a clump separated by Δν = 10 kHz
and with relative amplitudes differing by 2ε = 0.4.
The plot shows the time traces of b(t) and β(t) from
Eq. (A6).

A0 and constant offsets are ignored. The complex expo-
nential factor in Eq. (A5) represents an effective base wave
oscillating at the mean frequency ω̄, which is not present
in the original signal30. The beat consists of a modulation
amplitude b(t) and phase β(t), given by

b(t) =
[
sin2(Δωt/2) + ε2 cos2(Δωt/2)

]1/2
, (A6a)

β(t) = arctan
(
ε−1 tan(Δωt/2)

)
, (A6b)

in the case of a superposition of a hole-clump pair. The
frequency of the beats is Δω = ω+−ω− (without the factor
1/2), so the pulse length is τpulse = 2π/Δω. An example
with ε = 0.2 and Δω = 2π × 10 kHz is shown in Fig. A1.

Times t0 satisfying Δωt0/2 = πl with integer l cor-
respond to instants of maximal destructive interference,
where the modulation factor b(t) has a minimum and the
rate of phase shift |β̇(t)| is maximal. Maximal constructive
interference occurs at times t1 satisfying Δωt1/2 = π/4+πl.
To avoid confusion, one should keep in mind that destruc-
tive interference between a hole wave and a clump wave
occurs when their phases are aligned at t = t0, because their
weights w± have opposite signs. If we superimpose two
clump waves, the functions i sin(Δωt/2) and cos(Δωt/2)
would switch places in Eq. (A5), and times t = t0 would be
the instants of constructive interference.

Equation (A6b) shows that the total phase shift be-
tween successive pulses of two-wave beating is always ±π
and that the direction of a phase shift is determined by the
dominant pump wave at that time; i.e., the sign of ε. In our
setup, clump and hole waves yield positive and negative
phase shifts, respectively. In the symmetric case ε = 0,
with two pump waves of identical amplitude, the phase
shift becomes instantaneous and has no specific direction
(degenerate sign); the sign of the modulation factor simply
flips abruptly when b = 0 and remains constant at other
times. In the present paper, the term “phase jump” refers
collectively to both smooth phase shifts and sign flips.

30In signal processing, Eq. (A5) is known as “double-sideband modu-
lation” and the effective base wave is called “suppressed carrier”.

1403087-43



Plasma and Fusion Research: Regular Articles Volume 16, 1403087 (2021)

Finally, we determine the response of the combined
field amplitude that, according to Eq. (A3), obeys

A(t) = �
∫

d5ZgcCΦ̂ei(Θ−Θorb). (A7)

Based on Eq. (A5), the phase of the combined pump waves
with resonance number p can be written

Θorb = nζ − pϑ − ω̄t − β(t). (A8)

Note that the integration along GC drift orbits turns
the single poloidal harmonic e−imϑ into a broader spec-
trum

∑
morb

e−imorbϑ, which includes the resonance morb =

p [31]. Letting again Φ̂ = 1 and substituting�
dPζdKdμCe−iΘorb = δg̃∗eipϑ−inζ , we obtain

A = �
∑
morb

�
dϑdζ δg̃∗ei[(p−morb)ϑ−ω0t−φ(t)], (A9)

=
A0b(t)
1 + ε2

�
{
ei(ω̄−ω0)tei(β(t)−φ(t))

}
. (A10)

When the hole and clump wave frequencies are situated
symmetrically around the seed frequency, we have ω̄ =

ω0. Assuming phase matching, φ(t) = β(t) + β0 + 2πl, and
ignoring β0,31 we obtain the result

A(t) =
A0

1 + ε2
b(t), (A11a)

φ(t) = β(t) + 2πl. (A11b)

This shows that the field wave beats in precisely the same
way as the combined pump wave function δg. Since the lat-
ter was a superposition of multiple pump waves, we may
view the combined field wave also as a linear superposi-
tion of multiple harmonic waves with amplitudes Ak(t) and
phases φk(t), each driven by a different pump wave:

A(t)eiΘ(t) =
∑

k

Ak(t)einζ−imϑ−iω0t−iφk(t). (A12)

The response of the field to the concert of pump
waves, as in the process of two-wave beating analyzed
above, may be viewed as an auto-resonance phenomenon;
albeit with one additional twist: Usually, the term “auto-
resonance” is used to refer to the automatic phase locking
of particle bunches or waves in response to (chirped) ex-
ternal drive, as in a synchrotron [56, 57]. However, in the
system we are considering, the prefix “auto” can also be in-
terpreted as “self” because the combined field-particle sys-
tem contains feedback loops that make it self-resonant and
self-propelled in the presence of a source of free energy in
the form of destabilizing gradients. In other words, we are
dealing with auto-resonance in an active medium. When
this field-particle system is “opened”, in our case through

31The value of β0 determines the phase lag between the field and the
mean density wave: ei(ω̄−ω0)t+iβ0 . Presumably, one would have to invoke
the Vlasov equation in order to determine the proper value of β0, but it is
irrelevant for the amplitude modulations and phase jumps.

the introduction of field damping, a directional flow of en-
ergy is established, and nonlinear frequency chirping is one
manifestation of that.

We would like to point out that there exists an alterna-
tive, albeit purely phenomenological, interpretation of the
beats: Loosely speaking, one may also interpret each pulse
of A(t) as a new instability whose phase is shifted by ±π
with respect to its predecessor and successor. This picture
exemplifies the connection between the beats in our simu-
lations and the so-called “relay runner” model of nonadi-
abatic chirping proposed by Zonca & Chen [8], which we
discussed in Secs. 5.2 and 6.2. However, the purely phe-
nomenological nature of this picture in the present con-
text is apparent from the time trace of A(t) in Fig. 7, which
drops sharply before and recovers equally sharply after a
near-zero minimum. This corresponds to a hyperbolic time
trace of the growth rate γ(t) (cf. Fig. D7), and we see no
way to reconcile this with any known form of resonant
drive or damping, where dA/dt should decrease (not in-
crease) when the value of A goes to zero, since the amount
of resonantly transferred energy per unit time should de-
crease with decreasing amplitude A as the interaction be-
comes weaker. At present, the only physically viable in-
terpretation for the observed signals that we can offer is
the beating picture, where the pulses and phase jumps are
the consequence of a superposition of multiple coexisting
pump waves whose amplitudes do not vanish even when
the overall field amplitude does so temporarily during in-
stants of destructive interference. Supported by the above
derivations for the case of two-wave interference, the phys-
ical picture of beating is the foundation for this work.

An important implication of the beating picture is that
the instantaneous growth rate γ(t) of the beating signal
does not represent resonance width. While the growth or
damping rate |γ(t)| associated with the combined ampli-
tude A(t) can become very large (e.g., see Fig. D1 (c)), the
amplitudes of individual components Ak(t) in Eq. (A12)
usually vary relatively slowly. Thus, instead of one γ-
broadened resonance, we have multiple resonances whose
widths correspond to the size of a quasi-adiabatic island
core (if any) plus the width of a nonadiabatic boundary
layer, as illustrated in Figs. 1 (b,c). The beats (or any
pulsations) of the field contribute to this resonance width
through their influence on the boundary layer, where parti-
cles are detrapped and retrapped repeatedly, as shown for
the undamped case in Appendix B.2 and in the movie in
Fig. E3 (d) below. Clearly, this resonance width depends
on the magnitude of the pulsations.

Appendix B. Pulsations of Undamped
Resonances
Figure B1 shows an overview of the field and phase

space dynamics in the absence of damping. The weakly
driven case (A0) on the left and the strongly driven case
(B0) on the right are qualitatively similar, so snapshots of
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Fig. B1 Overview of the field and phase space dynamics during and after saturation of a weakly driven [case (A0), left] and a strongly
driven resonant instability [case (B0), right] in the absence of damping. These simulations were performed with shorter time step
Δt̂ = 10−3 (default: 1/400) to reduce spurious growth. Panels (a) and (c) show the respective time traces of the field amplitude
A(t), and panels (b) and (d) show the corresponding high-resolution DMUSIC spectrograms (twin = 0.047 ms). For each case,
several snapshots of the phase space density perturbation δ f are shown as colored contour plots. For case (B0), the three arrows
labeled “1”, “2” and “3” roughly indicate the observed flow of EP Vlasov fluid in the boundary layer during about half of a
bounce period. A link to the movie for case (B0) is provided in Fig. E3 (d).

δ f are shown mostly for case (B), where the fluctuations
are larger, both in magnitude and spatial extent, so they are
also better resolved with our diagnostic mesh. Figure B2
shows the motion of a few tracer particles in the domain of
these resonant structures.

In Sec. 2.4, we have already given a brief review of
the saturation process of such undamped resonant insta-
bilities and demonstrated that the subsequent pulsations of
the mode amplitude correlate well with the bouncing mo-
tion of particles trapped in the effective potential well of
the field wave. Here, we analyze these dynamics in some
more detail and highlight two interesting features that are
related to the topic of the present work; namely:

(i) We find evidence for variations in the field’s oscilla-
tion frequency and even transient frequency splitting.

(ii) The continuing pulsations of the field amplitude
A(t) maintain a nonadiabatic boundary layer, inside
which marginally resonant particles are repeatedly
detrapped and retrapped.

B.1 Spectral fluctuations
Transient frequency splitting can be seen in the high-

resolution DMUSIC spectrogram in Fig. B1 (d), around
t = 0.3 . . . 0.4 ms, just before the field amplitude reaches its
peak value. During that short interval, the initial 100 kHz
signal seems to split temporarily into ν− ≈ 98 kHz and
ν+ ≈ 103 kHz. The magnitude of the observed frequency
shifts by Δν± ≈ ±2 . . . 3 kHz relative to the seed wave fre-
quency ν0 = 100 kHz, is consistent with the poloidal group
velocity �±ϑ of the primordial hole and clump wave fronts

that can be seen to pass above and below the resonance’s
O-point around the time of the first δ f snapshot for case
(B) in Fig. B1, at t̂ = 70.5 (0.33 ms): our measurement
gives

�±ϑ
λϑ
=
Δϑ±

λϑΔt
≈ ∓0.045π

0.365π × 0.05 ms
= ∓2.5 kHz; (B1)

where λϑ ≈ 0.365π is the poloidal island length in the re-
gion around ϑ = 0 (cf. Fig. 13).

Thus, one may speculate that the pumping action of
these phase space structures is the cause of the observed
transient frequency splitting. The subsequent persisting
frequency fluctuations seen in the two spectrograms in pan-
els (b) and (d) of Fig. B1 may also be associated with the
dynamics of density waves, especially those in the island’s
nonadiabatic boundary layer.

Although the spectral fluctuations appear to be consis-
tent with the dynamics of phase space structures, the spec-
tral data have to be interpreted with care. We were not able
to confirm the frequency splitting phenomenon seen in the
DMUSIC analysis of case (B0) using conventional Fourier
analysis. At present, we cannot rule out the possibility that
frequency splitting as seen in Fig. B1 (d) has origins other
than the motion of the primordial hole and clump waves.

B.2 Nonadiabatic boundary layer
Consider the second and third snapshots of δ f for case

(B0) in Fig. B1 at t̂ = 81.5 and 98.5, where we have drawn
a set of three short arrows that roughly indicate the flow
of EP Vlasov fluid during about half of a bounce period.
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Fig. B2 Motion of well-trapped (“center”, “bulk”) and temporarily trapped (“boundary”) particles in the undamped cases (A0) (left)
and (B0) (right). Panels (a) and (f) show the time traces of the radial position P̂ζ(t). Panels (b) and (g) show the locations of
the particles inside the δ f phase space structures during an advanced stage of the simulations. These δ f -weighted Poincaré
plots were accumulated during one transit period τζ0 = 4.7 μs, during which each tracer particle appears in the Poincaré section
approximately 4 times. Panels (c)-(e) and (h)-(j) show Fourier spectra of the P̂ζ(t) signals obtained with sliding time windows of
size Δtwin = 1.41 ms, where one can infer the bounce frequencies νb of resonantly trapped particles.

The first arrow, labeled “1”, passes near an effective X-
point at (P̂ζ , ϑ) ≈ (0.719,−0.1π) while the field amplitude
is large. The pair of arrows labeled “2” and “3” approaches
the same X-point during an amplitude minimum. The inner
arrow “2” circulates back around the effective O-point of
the resonant phase space structure, while the outer arrow
“3” passes above the effective X-point and continues its
poloidal drift towards the left. This process repeats during
each pulse and can also be seen in the motion of individual
particles, which we discuss in the following.

For both cases (A0) and (B0), we have chosen three
particles, whose trajectories P̂ζ(t) are plotted in panels (a)
and (f) of Fig. B2. Fourier spectrograms of these time
traces are plotted in panels (c)-(e) and (h)-(j), which ef-
fectively show the bounce frequencies (if any). In panels
(b) and (g), we show snapshots of the phase space struc-
tures in δ f after several bounces. The circles and crosses
indicate the positions where the three tracer particles have
appeared in that Poincaré section (which rotates toroidally
with the seed wave) during one transit time τζ0 ≈ 4.7 μs.

• Tracer #1 labeled “center” circulates not far from the
O-point. It has the largest bounce frequency, which is
particularly clear in panel (j) for case (B0).
• Tracer #2 labeled “bulk” is also well-trapped, but cir-

culates closer to the boundary, with a smaller bounce
frequency than the “center” particle.
• Tracer #3 labeled “boundary” lives in the boundary

layer and undergoes repeated detrapping and retrap-
ping. Depending on whether it approaches an X-point
during an amplitude maximum or minimum, it is re-
flected or passes. The Fourier spectra in this case are
unintelligible, but the affective bounce time can be in-
ferred from the raw P̂ζ(t) data in (a) and (f).

Fig. B3 Time trace of the rotating frame energy E′(t) for the
same three tracers as in Fig. B2 (a) for case (A0).

The behavior of the “boundary” particle was illustrated
schematically in Fig. 1 (b). The nonadiabatic boundary
layer is maintained by the amplitude pulsations seem in
panels (a) and (c) of Fig. B1. Judging by the size of the
structures seen around the X-points in panels (b) and (g)
of Fig. B2, the radial width of this layer seems to be about
1/5. . . 1/3 of the width of the effective phase space island.

Dewar’s theoretical prediction for the bounce fre-
quency of deeply trapped particles [7], νDewar

b = 2.88 ×
γL/(2π) in Eq. (6), gives 1.44 kHz for case (A0) and
10.1 kHz for case (B0). Given the approximations made
in the theory, we consider these estimates to be in good
agreement with the simulation results in Figs. B1 and B2.

Finally, Fig. B3 demonstrates the high degree of en-
ergy conservation in the undamped simulation: |δE′|/E′ ∼
10−5, which is two orders of magnitude better than in the
simulations of damped cases (cf. Fig. 29).
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Appendix C. Other Interesting Obser-
vations

C.1 Splitting of spectral lines (in DMUSIC)
Panels (a) and (b) of Fig. 21 both show a splitting of

some spectral lines, especially those associated with the
upward chirping solitary clump vortices. Another view is
given in the second zoom-up of Fig. E1 (b).

So far, we have seen this phenomenon only in DMU-
SIC spectrograms exploiting the complex frequency plane
as described in Appendix E.2, not in FFT spectrograms or
when DMUSIC is applied only along the real frequency
axis. Since the split strands here are separated by only
about 2 kHz, the splitting is seen only with time windows
Δtwin that have width of about half a millisecond or longer.
More strands tend to appear with larger time windows.
The line splitting seems to become stronger with increas-
ing chirping rate, so it is most easily seen along the spec-
tral lines of massive clumps when they chirp rapidly up-
ward, while traveling radially outward, towards the peak
of the mode. But with sufficiently large time windows,
line splitting can also observed on downward chirps, es-
pecially around times where the chirping rate changes rel-
atively abruptly. As the chirping rate or intensity of the
signal varies, the line splitting pattern may change. For in-
stance, it may alternate between odd and even numbers of
strands, or exhibit an oscillatory pattern.

It remains to be clarified what factors (physical, nu-
merical, post-processing) cause these spectral patterns. For
instance, one may check whether there is a relation to Fres-
nel ripples known to affect chirp spectra32. The patterns
vary depending on DMUSIC parameters, such as the time
window size and the number of damped sinusoids. How-
ever, that does not necessarily mean that it is entirely a
post-processing artifact. The spectrum in complex fre-
quency space may truly (for physical reasons) be so com-
plicated that its appearance changes drastically depending
on how it is being processed and visualized.

If this kind of splitting has physical reasons, a bet-
ter understanding of such spectral patterns may enable us
to extract information about processes such as the accu-
mulation and detachment of massive hole and clumps, or
the internal dynamics of structures such as the solitary
clump vortex that resembles a spiral galaxy in Fig. 3 (b).
At present, however, this is mere speculation.

C.2 Anomalies in bounce frequency spectra
The spectrograms of the bouncing motion of reso-

nantly trapped particles that were shown in Fig. 28 exhibit
rich dynamics, and it may be interesting to analyze the un-
derlying reasons. Here, we merely speculate.

In the stationary case, with fixed amplitude A and
phase φ, it is known that the bounce frequency decreases
monotonically from the O-point to the boundary (separa-

32When we apply a Hann window before the DMUSIC algorithm, the
pattern becomes smoother, but the line splitting as such remains.

trix) of a resonant phase space structure. This has recently
been reconfirmed using ORBIT [5]. However, our simula-
tions show interesting anomalies that violate this rule in
the case of chirping solitary vortices. On the left-hand side
of Fig. 28 for case (A), one can see that, during the period
4 ms � t � 6 ms, tracer #3 near the boundary bounces ap-
proximately as rapidly as tracer #1 in the core of the clump
with νb ≈ 4 . . . 5 kHz; i.e., faster than tracer #2 in the bulk
with νb ≈ 3 . . . 4 kHz. Similarly, on the right-hand side of
Fig. 28 for case (B), one can see that, during and around the
interval t = 8 . . . 10 ms, the tracer #2 in the bulk bounces
with a significantly higher frequency νb ≈ 5 kHz than the
centralized tracer #1, which has νb ≈ 3 kHz.

The reason for this behavior is unclear. We suspect
a connection to the processes that make these vortices
grow, detach from the turbulent belt and propagate radi-
ally (chirp) as discussed in Sec. 5.3. This speculation is
motivated by the fact that the bounce frequencies vary sig-
nificantly during the course of a simulation. The largest
bounce frequencies can be observed in Fig. 28 during the
detachment process and when the chirping rate is large.

The overall trend is that the bounce frequencies de-
crease in time. This observation is in itself surprising,
because these clumps propagate radially outward towards
the peak of the mode, so they are actually experiencing
stronger field oscillations of progressively larger ampli-
tude when A(t) fluctuates more or less at the same level.
This contradicts the expectation that ω2

b ∝ A(t) × ξ̂(ψP).
However, this prediction is based on linear drive, ωb ∝ γL

(cf. Sec. 2.6), so it should be expected to hold only dur-
ing the first bounces after the resonant instability saturates.
Further study is necessary for clarification. One may also
investigate the cause of the relatively rapid oscillation of
the bounce frequencies νb(t) in Fig. 28, which have a time
scale comparable to the bounce period itself.

C.3 EP distribution during long-range
chirps

In Sec. 5.4, we have shown that particles in our chirp-
ing simulations depart from the line E′ = 75.6 keV in
the (Pζ , E)-plane where they have initially been loaded
(Fig. 29). To motivate further study, we include here a
more detailed view of the distribution’s 4-D structure in
(δ f , P̂ζ , E′, ϑ) and (P̂ζ0, P̂ζ , E′, ϑ) space, four snapshots of
which are shown in Figs. C1 and C2 for cases (A) and (B),
respectively. The left half of these figures shows the do-
mains occupied by structures with different values of δ f ; in
particular, holes (δ f > 0, red) and clumps (δ f < 0, blue).
The right half of these figures shows the radial transport
and mixing of phase space.

The crescent-shaped distortion that is centered around
the seed resonance P̂ζ,res ≈ 0.72 seems to be physical, since
it is also present in simulations with particles loaded in a
band of width ΔE′0 = 7.5 keV (see Appendix D.2 below).
We suspect that this crescent is due to chirping, but this
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Fig. C1 Particle transport in (P̂ζ , E′, ϑ)-space in the marginally unstable case (A). This figure provides a more detailed view of the
particle distribution data in Fig. 29 (a) at four snapshot times: t = 2.1, 4.0, 4.5 and 5.5 ms (top to bottom). The colors in columns
(a) and (b) on the left-hand side represent marker weights w j = δ f j/G, so red means that a marker represents an increased phase
space density (δ f > 0) and blue means reduced density (δ f < 0) at that instant of time. The colors in columns (c) and (d) on the
right-hand side represent the initial radial position P̂ζ(t = 0). The dashed lines in columns (b) and (c) represent the inclination
of E′ − (ω − ω0)P̂ζ/n = const. lines for frequencies ω = 2πν at the edges of the crescent-shaped distortion of the distribution
or the tip of the outermost massive clump structure. The values of ν associated with these dashed lines are shown in column
(c). Note that column (b) has a fixed scale in both E′ and P̂ζ , so that one can clearly see the broadening of the distribution from
snapshot (b1) to (b4). In columns (a), (c) and (d), the limits of the E′-axis vary between snapshots, so that one can clearly see
the structures.

hypothesis remains to be confirmed. A physics study of
this and other features seen in Figs. C1 and C2 requires
more careful considerations of boundary effects associated
with the δ f method, as discussed at the end of Sec. 5.4.

C.4 Ghost chirps and resonance overlap
The spectrogram in Fig. 2 (b) contains a downward

chirp labeled “ghost”, which differs from the other down-
chirps in that it does not seem to have a corresponding in-
ward propagating hole structure in EP phase space. Fur-
ther examples can be seen in Fig. D12. These ghost chirps
seem to be somewhat correlated with the long-range up-
ward chirps. According to our observations, a downward
chirping ghost appears whenever an upward chirp exceeds
150 kHz. This coincides with the time after which we ob-
serve enhanced E′ line broadening in Figs. 29, C1 and C2
discussed in the previous Sec. C.3. Indeed, we do not see
any ghost chirps in a simulation with ΔE′0 = 7.5 keV that
we performed for validation purposes (see Fig. D1 (d) be-

low). Therefore, we suspect the ghosts to be a consequence
of boundary effects caused by letting ΔE′0 = 0.

Although the cause of the ghosts seems to be an ar-
tifact of sampling only a part of the GC phase space,
the mechanism of their generation in that particular form
may be physical. The first snapshot of Fig. 11 shows that
a neighboring resonance with p/n = 5/5 elliptic points
dominates the structure of the δ f landscape in the re-
gion P̂ζ � 0.62, which corresponds to ν � 150 kHz.
When the upward-chirping solitary clump vortices with
p/n = 4/5 enter that domain, we expect that these struc-
tures are modulated by the p/n = 5/5 resonance, and that
this modulation produces an image of the original oscilla-
tion at a different frequency. Poloidal transit frequency es-
timates suggest that the resonances are separated by about
ωϑ/(2π) ≈ 210 kHz. This is consistent with the appear-
ance of ghosts around 60 kHz when a clump hits the mark
of 150 kHz. Thus, the ghosts may also be an indication of
the chirp-mediated nonlinear resonance overlap discussed
in Sec. 6.5. In fact, even the enhanced spreading of parti-

1403087-48



Plasma and Fusion Research: Regular Articles Volume 16, 1403087 (2021)

Fig. C2 Particle transport in (P̂ζ , E′, ϑ)-space in the strongly unstable case (B). Arranged in the same way as Fig. C1, this figure provides
a more detailed view of the particle distribution data in Fig. 29 (b) at four snapshot times: t = 0.7, 2.0, 4.2 and 14 ms (top to
bottom).

cles away from the initial line E′0 = 75.6 keV in Figs. 29,
C1 and C2 may at least partially be a consequence of this
kind of resonance overlap.

Note that ghost chirps have also been reported in other
studies. For instance, see the recent analysis of ghost fea-
tures in ion cyclotron emission (ICE) spectra [58].

Appendix D. Characterization and
Verification of the Model

D.1 Background plasma response
The semi-perturbative approach used in this work,

where we prescribe the radial profile of the field mode,
may be regarded as an application of the Rayleigh-Ritz
method: We are probing the system’s frequency response
with an approximate (eigen)mode, thus, reducing the infi-
nite degrees of freedom of the real system to a few vari-
ables; here, the field amplitude A(t), the phase φ(t), and a
bunch of marker particles that sample the EP guiding cen-
ter phase space.

The process of convective amplification [4] in the
form illustrated in Fig. 1 (d) could also be simulated in our
model using Eq. (13) with the mode index k identifying in-
dependent pairs of Fourier harmonics (m, n); i.e., ignoring
the geometric (toroidal, elliptic, etc.) coupling between

different poloidal harmonics m for a given toroidal har-
monic n. This procedure may allow to simulate resonant
instabilities with relatively short wavelengths (which usu-
ally interact best with EPs that have relatively small drift
orbits). Nevertheless, as discussed in Sec. 6.2, even our
present simulations with a single harmonic (m, n) = (6, 5)
can realize a form of convective amplification:

• Firstly, although the peak of the mode does not shift,
the phase space structures are convected radially with
each pulse of the beating field. Successive pulses can
be amplified, especially in cases close to marginal sta-
bility (Fig. 20, left).
• Secondly, by placing the seed resonance off-peak (cf.

Fig. 9), some phase space structures (in our case the
clumps) travel into regions with stronger fluctuations
even if A(t) remains around the same level.

In some sense, the use of an off-peak resonance can be said
to exchange the cause and effect of convective amplifica-
tion: instead of a new peak growing at a new location after
the resonant drive has propagated radially (post-convective
amplification), here the resonant phase space structures ex-
perience a larger field amplitude on one side than on the
other and their resonant drive effectively pre-amplifies the
field further in the direction of the peak (pre-convective
amplification). This may accelerate the growth and radial
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drift of the phase space structures that are predisposed to
propagate towards the peak; in our case the clumps, be-
cause our peak is located in a region of lower EP density
(at a larger radius) than the resonance. We suspect that
the process of pre-convective amplification is not merely
a curiosity of our simulation setup, but may bear practical
relevance, because off-peak resonances are common and
since Alfvén mode profiles seem to have a certain degree
of rigidity, at least in the case of long wavelength modes.

Motivated by the observation of global beating in hy-
brid simulations [12] as discussed in Sec. 2.7, we assume
that, for our current purposes, it is acceptable to ignore
perturbations of the amplitude profile for long-wavelength
modes. However, it is not evident to what extent our ig-
noring of the dynamic adjustments of the phase profile is
justified, since this directly touches the quantity φ(t) re-
sponsible for chirping. This may require further consider-
ation, which we choose to postpone. Discussions concern-
ing the role of the phase profile during interaction between
EPs and shear Alfvén waves can be found, for instance, in
Sec. III D of Ref. [42] and in Refs. [59, 60].

While perturbations of the field mode structure are ig-
nored, the frequency is entirely determined by the resonant
drive in our simulations. We even observe a prompt fre-
quency shift that we attribute to an auto-optimization pro-
cess, which will be discussed in Sec. D.4 below. Although
it is possible to include the MHD plasma response without
directly solving MHD equations, the required extensions
are not trivial. Wang Ge et al. [22] have developed and
successfully applied a reduced model for Alfvénic chirp-
ing that includes the effect of continuous spectra. We have
made no attempt to adopt this model yet, because it re-
quires sophisticated numerical methods to deal with the
small scale structures that inevitably develop in an ideal
MHD formulation. In the end, however, these troublesome
micro-structures seem to have little effect on the chirping
dynamics when the EP’s magnetic drift is significant. Per-
haps, it is worthwhile to develop a reduced kinetic descrip-
tion of the continua, where the ion Larmor radius would
impose a lower bound on the spatial scales. This may re-
duce the numerical obstacles and give an even more real-
istic representation of the continua in the form of kinetic
Alfvén waves, whose wave vector contains also a radial
component (radiative damping) [61, 62]. Another possibil-
ity one may consider is to use a precomputed damping rate
γd(r, ω) that depends on radius and frequency, for instance
using a gyrokinetic solver for the plasma dispersion rela-
tion, such as LIGKA [63, 64]. Moreover, it has been shown
that radial electric fields can also have an impact on the
structure of Alfvén continua in the frequency range of in-
terest [65] and, thus, may affect chirping dynamics.

D.2 Case (A’): Nonzero loading width ΔE′0
The condition dG/dt = 0 underlying our implemen-

tation of the δ f method, namely Eq. (18), does not strictly

Fig. D1 Evolution of case (A’), where particles are loaded in
an energy band of width ΔE′0 = 7.5 keV around E′0 =
75.6 keV as shown in Fig. D2. All other parameters are
the same as in the marginally unstable case (A), where
ΔE′0 = 0. Panels (a) and (c) show, respectively, the
time traces of the amplitude A(t) and growth rate γ(t)
plus damping rate γd/ω0 = 7.5%. The data of case
(A) is also plotted for comparison. Panel (b) shows a
long-time Fourier spectrogram obtained with large slid-
ing time window Δtwin = 0.47 ms, and the dotted green
curves represent the prediction of the BB model (12).
Panel (d) shows a snapshot of δ f (P̂′ζ , ϑ) taken at time

t = 7 ms, using the modified radial coordinate P̂′ζ as

shown in Fig. 10. The full 3-D distribution δ f (P̂ζ , E′, ϑ)
is shown in Fig. D3.

hold in our simulations, since particles are found to travel
outside the region that was initially filled with phase space
markers. This was shown in Figs. 29, C1 and C2. Never-
theless, our choice to load marker particles only along the
line E′ = E′0 = 75.588 kHz = const. in the present study
is justified because the errors remain small and because we
are able to reproduce the essential features of earlier sim-
ulations, where markers were loaded in an energy band of
nonzero width ΔE′0 [13, 37].

This is demonstrated here using the example in
Fig. D1, which was obtained with the same parameters as
our marginally unstable case (A), except that the initial
distribution of marker particles covered a band of width
ΔE′0 = 7.5 keV around the E′ = 75.588 kHz line. This
modified case is called (A’). Figure D1 shows that the
early evolution of the field is nearly identical in cases (A)
and (A’). Differences in the long-term evolution can be
attributed to the high sensitivity of these dynamics with
respect to physical and numerical parameters (e.g., see
Figs. D10 and D12 below).
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Fig. D2 Comparison between the marker particle distributions
in our default case (A), where ΔE′0 = 0, and the mod-
ified case (A’), where ΔE′0 = 7.5 kHz. The number of
particles is Np = 106 in both cases.

Fig. D3 Snapshot of the 3-D particle distribution δ f (P̂ζ , E′, ϑ)
at t = 7 ms in case (A’), where ΔE′0 = 7.5 kHz.

Figure D2 shows that the broadened distribution of
case (A) at t = 10 ms (light blue) lies well within the par-
ticle loading range of case (A’) (gray). The 3-D view of
δ f (P̂ζ , E′, ϑ) in Fig. D3 shows the cylinder-like structure
of the clumps and (albeit partially hidden) the holes. Tak-
ing advantage of this quasi-2-D structure, the simulations
analyzed in this paper were performed for only a vanish-
ingly thin slice of this distribution (cf. Fig. 10).

Figure D2 also shows that the small crescent-shaped
distortion of the distribution that we observed in case (A)
extends all the way to the edges of the 7.5 keV wide ΔE′0
band in case (A’). This supports our assertion made in
Sec. 5.4, that this crescent-shaped distortion breaking the
E′ = E −ωPζ/n = const. condition may be a consequence
of chirping; i.e., variations in the frequency ω. Meanwhile,
enhanced scattering of particles seen in Figs. 29, C1 and
C2, especially in the domain of the clumps, is not visible
in Figs. D2 and D3. Such a diffuse spreading may be oc-
curring inside the ΔE′0 = 7.5 keV window, but we have not
checked this yet. The absence of such diffuse spreading in
case (A’) would suggest that it is a (small) boundary arti-

fact of the δ f method as discussed at the end of Sec. 5.4.
Finally, returning once more to the overview in

Fig. D1, note how the up-chirping clump wave front is
close to the

√
t curve (green dots) of the BB model (12) for

several milliseconds. We would like to emphasize that one
should not interpret too much into this “agreement”, which
seems to be largely accidental, because we have repeatedly
observed that a small change in the parameters can signif-
icantly alter the chirping pattern; for instance, giving rise
to rapid chirps as in Fig. 2 (another example will appear in
Ref. [66]). Disagreements between the BB model and our
simulation results (here the downward chirps, but gener-
ally also the upward chirps) may be easily explained: too
strong drive, too rapid chirping, nonuniform mode struc-
ture and other asymmetries, plasma geometry, large mag-
netic drifts. The point is that an (apparent) agreement in a
single case can be misleading. Sensitivity checks are im-
portant and constitute a large portion of this Appendix.

D.3 Case (A”): Relaxed initial EP distribu-
tion

Our standard initialization procedure was to use an
unperturbed axisymmetric particle distribution and a field
that contains a non-axisymmmetric perturbation in the
form of a traveling wave with initial frequency ν0 =

100 kHz, poloidal mode number m = 6 and toroidal mode
number n = 5. This means that, when a simulation is
started with a destabilizing gradient, two things happen si-
multaneously:

• The perturbation amplitude grows and, with that, the
size of the resonantly perturbed phase space domain.
• The particle distribution adapts to the growing non-

axisymmetric perturbation.

We were curious to see what happens if we let the par-
ticle distribution adapt before we let the instability grow,
so we have launched a simulation from the state shown
in Fig. 433. That state was produced by fixing the field
amplitude at a small value of A = 10−6 and letting the
EP distribution adapt to the perturbed field for 500 transits
(2.35 ms). The subsequent simulation with evolving am-
plitude A(t) and phase φ(t) used the same parameters as
the marginally unstable case (A), and we call this modified
case (A”).

The results are shown in Fig. D4. In panel (a), one can
see that the instability in case (A”) is significantly enhanced
compared to the default case (A). Exponential growth is
not observed, as can be confirmed in panel (c). Instead, the
amplitude grows almost in a straight line. The first pulse,
which saturated at a tiny amplitude of A ≈ 6× 10−6 in case
(A), is effectively skipped. Instead, case (A”) saturates for
the first time at the level A ≈ 3 × 10−5, similar to the peak
value 3.5× 10−5 of the second pulse in case (A). The high-

33Here, we have strong symmetry breaking in the relaxed initial EP
distribution. A related problem, albeit with an unmodulated phase space
density plateau perturbed only by noise, has been considered in Ref. [67].
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Fig. D4 Evolution of case (A”), where the amplitude and phase
velocity of field were fixed for 500 transits (2.35 ms)
before launching the simulations with the same param-
eters as the marginally unstable case (A). The EP dis-
tribution at the beginning of the simulation was shown
in Fig. 4. Panels (a) and (c) show, respectively, the time
traces of the amplitude A(t) and growth rate γ(t) plus
damping rate γd/ω0 = 7.5%. The data of case (A) are
also plotted for comparison. Panel (b) shows a long-
time Fourier spectrogram obtained with sliding time
window Δtwin = 0.47 ms. For the first 0.5 ms, panel
(d) shows a high-resolution DMUSIC spectrogram ob-
tained with Δtwin = 0.047 ms.

resolution DMUSIC spectrogram in panel (d) of Fig. D4
shows effectively immediate frequency splitting, as may
be expected from the preestablished hole-clump pair seen
in Fig. 4. The long-time Fourier spectrogram in panel (d)
of Fig. D4 shows long-range chirping dynamics similar to
those observed in case (A).

In summary, the main consequence of initializing a
simulation of nonlinear frequency chirping with a relaxed
non-axisymmetric EP distribution is that one effectively
skips the exponential growth phase and the first pulse.
Since the primordial (nonadiabatic) hole-clump wave pair
has already been established in case (A”), the simulation
goes straight into beating and chirping. The two initializa-
tion methods used in cases (A) and (A”) — axisymmetric
vs. relaxed EP distribution — are perhaps both unrealis-
tic, and the real situation may lie somewhere in between.
The choice of initialization method does not seem to play a
significant role for most of the dynamics examined in this
work, except for the processes of early structure formation
and first saturation described in Sec. 4.

D.4 Auto-optimization of resonant drive
At first glance, Eqs. (15) and (18) suggest that the

Fig. D5 Dependence of the linear kinetic drive γL on (a,b) the
radial density gradient F′0 ≡ ∂Pζ F0 and (c) the damp-
ing rate γd. The results in panels (a) and (b) are ob-
tained without damping (γd = 0) and the axes are nor-
malized by the values of γL and F′0 in cases (A0) and
(B0), respectively. The dashed lines indicate perfect
linear scaling γL ∝ F′0. Note that the γd scan in (c)
is performed with fixed steep gradients F′0, so the data
points for γd = 0 do not correspond to cases (A0) and
(B0), which have shallower gradients. Panel (d) shows
how the destabilizing gradient F′0 has to be increased
exponentially in order to maintain the same linear drive
γL/ω0 = 8% when the mode’s peak is shifted radially
outward, away from the resonance (cf. Fig. 9 (a)).

linear drive γL = d ln A/dt + γd should vary proportion-
ally with the dominant destabilizing gradient, in our case
F′0 ≡ ∂Pζ F0. Figures D5 (a,b) confirms that this expecta-
tion is approximately satisfied in our simulations without
damping. However, there is a small but noticeable devia-
tion of about 10 . . . 13%. Furthermore, Fig. D5 (c) shows
that γL increases nearly linearly by about 15% when the
damping rate is raised to γd/ω0 = 7.5%, the value of case
(A).

Another notable feature of our simulations is that the
gradient F′0 needed to obtain a certain value of γL depends
on the location of the resonance relative to the mode’s
peak. As one can see in Fig. D5 (d), a 3.5 times steeper
gradient is needed in case (C) in order to obtain the same
value of γL/ω0 = 8% as in case (A) after moving the peak
of the mode from ψP,peak = 0.475 to 0.54 (cf. Fig. 9 (a)).
Since its vertical axis has a logarithmic scale, Fig. D5 (d)
shows a nearly exponential dependence of F′0 on ψP,peak,
which may be due to the Gaussian shape of the mode’s ra-
dial profile.

Although we do not fully understand this behavior,
we suspect that it is the result of a self-optimization pro-
cess, where the particle-to-field energy transfer rate is max-
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Fig. D6 A prompt relaxation occurs during the first transit
(4.7 μs), where the amplitude A(t) and phase φ(t) drop
transiently as shown in panels (a) and (b) for case (A).
The relaxation is associated with a prompt frequency
shift Δν0 = ν − ν0, which depends on the destabi-
lizing gradient F′0, the damping rate γd and the loca-
tion of the resonance relative to the mode peak ψP,peak

as shown in panels (g) and (h). The frequency shifts
are measured using high-resolution DMUSIC spectro-
grams, some examples of which are shown in (c)-(f),
where the initial frequency ν0 = 100 kHz is indicated
by a dashed horizontal line.

imized. In a self-consistent simulation as in Ref. [12], both
the spatial structure and the frequency of the MHD mode
are optimized during the initial structure formation pro-
cess. In the semi-perturbative model used here, the mode
structure is held fixed, so only the frequency can self-
optimize, depending on the local gradient F′0, on the rate
of damping γd, and on the radial excursions of the GC drift
orbits across the mode’s profile.

This self-optimization hypothesis is supported by the
observation of a prompt relaxation at the beginning of
most simulations that we have performed. As an example,
Figs. D6 (a,b) shows how the field amplitude A(t) drops
and the phase φ(t) adjusts transiently in the marginally un-
stable case (A). This relaxation lasts only about one transit
time τζ0 ≈ 4.7 μs and causes a prompt shift Δν0 = ν− ν0 in
the frequency of the field oscillations, away from the pre-
scribed value of ν0 = 100 kHz. The shifted frequencies can
be seen in the high-resolution spectrograms plotted in pan-
els (c)-(f) of Fig. D6, which were obtained with the DMU-
SIC algorithm using a short time window Δtwin = 10τζ0 =

47 μs. Note that the frequency shift does no longer change
after the instability has begun to grow exponentially. The
small erratic fluctuations that can be seen in the spectro-
grams may be taken as a measure for the effect of statistical
noise and an imperfect quiet start (see Appendix D.5).

The measured frequency shifts in the marginally un-
stable case (A) and in the strongly unstable case (B) are

Δν0 ≈
{
+0.45 kHz : Case (A),
+0.15 kHz : Case (B).

(D1)

As shown in Fig. D6 (g), the frequency shift is reduced to
zero and becomes slightly negative when the damping rate
γd is reduced to zero while keeping the values of the ra-
dial gradients F′0 fixed. A reduction of the gradients to
those in cases (A0) and (B0) increases the frequency shift
to Δν0 ≈ +0.05 kHz and +0.1 kHz, respectively, as indi-
cated by the small symbols at γd = 0 in Fig. D6 (g). Ani-
mations of the evolution of the phase space density pertur-
bations δ f (P̂ζ , ϑ) in the undamped cases (A0) and (B0) ex-
hibit a corresponding poloidal drift of the effective O- and
X-points of the resonance in the frame rotating toroidally
with the initial frequency ω0/n. The poloidal drift velocity
is consistent with the values of Δν0 obtained using DMU-
SIC, so we may rule out the possibility that this is merely a
signal processing artifact. Although limited numerical ac-
curacy does affect the value Δν0, the phenomenon does not
seem to be entirely numerical, at least for |Δν0| � 0.1 kHz.

As was noted at the beginning of this section, the loca-
tion of the resonance relative to the mode peak matters. As
one can see in Fig. 9 (a) above, the resonance in our simu-
lation setup is located in the region ψP,res ≈ 0.13 . . . 0.33,
whereas the peak of the mode in cases (A) and (B) is lo-
cated at ψP,peak = 0.475. When we move the resonance
further inward (away from the peak) or, equivalently, when
we move the mode’s peak outward (away from the res-
onance) while increasing F′0 such that γL remains con-
stant as in Fig. D5 (d), we observe that the positive fre-
quency shift increases significantly. This is demonstrated
in Fig. D6 (h), where we scan ψP,peak up to the value of 0.54
of case (C) and obtain a prompt frequency shift as large as
Δν ≈ +3 kHz, much larger than in case (A), which has the
same values of γL and γd.

The above-mentioned drift of the O- and X-points in
the undamped cases suggests that the location of the res-
onance has shifted. In the cases studied here, we load
particles only along a line in phase space, where E′ =
E − ω0

n Pζ = const., and the numerical spread around this
line is only about ΔEnum � 3 × 10−3 keV (cf. Fig. D11).
This gives an upper bound on the possible resonance shift
along E′. With Eq. (26) written more conveniently as

E′[kHz] ≈ E[kHz] − ν[kHz]
n

P̂ζ × 0.85, (D2)

and noting that the particle energy E is effectively constant
during the prompt relaxation phase due to the small field
amplitude A � 10−6, we can estimate the radial shift of the

1403087-53



Plasma and Fusion Research: Regular Articles Volume 16, 1403087 (2021)

resonance using the formula

ΔP̂ζ ≈ n × ΔEnum[kHz]
0.85 × ν0[kHz]

− Δν0

ν0
P̂ζ,res. (D3)

For case (A) with Δν0 ≈ 0.4 kHz and P̂ζ,res = 0.719, we
obtain ΔP̂ζ ≈ 2 × 10−4 − 3 × 10−3 ≈ −3 × 10−3. This is
larger by a factor 3 than the observed shift ΔP̂ζ ≈ −10−3 to
P̂ζ ≈ 0.718 of the resonant phase space structures in case
(A). This means that the resonance does no longer lie in
the region populated by marker particles and would imply
that the field-particle interactions are occurring slightly off-
resonantly. More likely, however, is the possibility that our
formula (D3) may not be sufficiently accurate. We suspect
that the discrepancy may be due to the large magnetic drifts
and the radial variation of the Gaussian mode structure in
the domain occupied by the drift orbits (cf. Fig. 9).

Indeed, panels (c) and (d) in Fig. D6 show that the
frequency shift seen in case (A) with ΔE′0 = 0 remains
the same in case (A’), where we have loaded marker parti-
cles in an energy band with a relatively large width ΔE′0 =
7.5 keV. In that case, the first term in Eq. (D3) is approxi-
mately 0.4, which would allow huge frequency shifts, but
the system does not take advantage of his possibility. This
insensitivity of Δν0 with respect to ΔE′0 and the above-
mentioned sensitivity with respect to the relative locations
of the resonance and the mode’s peak (Fig. D6 (f)) supports
our hypothesis that the prompt relaxation is determined by
the slope of the mode structure at the resonance (possibly
in combination with drift effects [42, 43]). This is further
corroborated by observations made in other case studies
(not presented here) showing that (at least with sufficiently
large γd) the prompt frequency shift Δν0 seems to be di-
rected towards the peak of the mode when the resonance is
located off-peak.

This subject requires further investigation. In the
meantime, we choose to speak of “promptly shifted effec-
tive resonances” in the present paper.

D.5 Quiet start and sensitivity
While loading particles only at the outer midplane

(ϑ = 0) suffices for kinetic Poincaré plots, this proce-
dure introduces spurious oscillations in the mode evolu-
tion when applied in a simulation where Eq. (15) is solved.
Spreading the simulation particles uniformly along the
poloidal angle −π ≤ ϑ ≤ π does not suffice either: due
to the mirror force and the large magnetic drifts that can
be seen in Fig. 9 (b), the spurious oscillations remain no-
ticeable throughout the simulation. Their effect is readily
seen in the growth rate, which becomes extremely noisy as
shown in Fig. D7. Long-term effects can be observed in the
EP distribution in the form of spurious radially propagating
micro-structures as shown in Fig. D8 (b).

Although the evolution of the field remains more or
less the same, such spurious oscillations are undesirable
in detailed analyses of phase space dynamics as were per-
formed in this work. Perhaps the most accurate way to

Fig. D7 Noise reduction with quiet start (QS). Time traces of
(a) the field amplitude A(t) and (b) the instantaneous
kinetic drive γk(t) = γ(t)+γd in the marginally unstable
case (A) simulated without and with QS. Two non-QS
simulations were performed: one with particles loaded
only on the outer mid-plane (ϑ = 0) and one with parti-
cles distributed uniformly randomized along ϑ (i.e., not
consistent with the magnetic mirror force and drifts).
The growth rates γ(t) were measured using an exponen-
tial running average: γ(t) = 0.01× ΔA(t)

A(t)Δt+0.99×γ(t−Δt).

Fig. D8 Noise reduction with quiet start (QS). Simulation of the
case studied in Ref. [13], without (left) and with quiet
start (right). Panels (a) and (c) show time traces of the
amplitude A(t). The contour plots in (b) and (d) show〈
δ f − 〈δ f 〉transit

〉
ϑ (P̂ζ , t) where 〈δ f 〉transit is δ f averaged

over one transit time τζ0, and 〈. . .〉ϑ is an average over
the poloidal angle. The quiet start smoothes the am-
plitude and eliminates the propagating micro-structures
seen in (b) that were reported in Fig. 11 of Ref. [13].

deal with this problem is to load particles uniformly in
time along precomputed unperturbed GC orbits [68]. For
the present study, the ORBIT code has been extended with
a routine that approximates this method in a simpler way
as described in Sec. 3.3. As one can see in Figs. D7 and
D8 (d), the growth rates become much smoother and the
spurious micro-structures in EP phase space disappear.

Our quiet start procedure is not perfect and still gen-
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Fig. D9 Sensitivity test with respect to the initial perturbation
amplitude A0. The diagrams show the early evolu-
tion of the amplitude A(t) in the marginally unstable
case (A), starting from amplitudes in the range A0 =

10−6 . . . 10−9. The log-scale panel (a) shows the nearly
exponential growth. The circles in the linearly scaled
panel (b) highlight the points of first saturation. The
dashed blue curve shows the result for A0 = 10−7 with
Np = 107 marker particles (otherwise Np = 106).

erates a certain amount of “statistical noise” (including un-
physical modulations). We believe that this is one reason
for the results in Fig. D9, where the amplitude at the time of
first saturation in the marginally unstable case (A) changes
in a somewhat irregular manner when we reduce the initial
perturbation amplitude A0 from 10−6 to 10−9. This case is
very sensitive to statistical noise because its proximity to
marginal stability causes the first saturation to occur at an
extremely small amplitude, which corresponds to a narrow
resonant structure in EP phase space (see Figs. 4 and 11).

Statistical noise also affects the chirping patterns as
can be seen in Fig. D10, where we show results of case
(A) simulated with different realizations of the quiet start
(a)-(c) and with uniform particle loading (d). Our default
procedure (a) was to load a fraction of the particles at every
time step during the first 10 transits (10τζ0 = 47 μs). With
Δt/τζ0 = 1/400, this makes 4000 loading steps. In (b), we
have loaded particles only every 4th step. In (c), we loaded
particles at each step, but only for 1 transit time instead of
10. The onset of chirping is very similar in all cases, but
after about 2 ms, the patterns vary substantially, although
the overall extent of the chirps remains similar.

D.6 Numerical convergence
The ORBIT code uses a 4th-order Runge-Kutta algo-

rithm to push particles and evolve the fields, so there is
a numerical error associated with the time step Δtstep that
causes the energy conservation condition to be violated by
a small amount. Figure D11 shows snapshots of the parti-
cle distribution in the (P̂ζ , E′)-plane taken at a very early
stage of a simulation of case (A) with quiet start, after only
t̂ = 5 transit times τζ0. Results are shown for simulations
performed with τζ0/Δtstep = 100, 400 and 1000 steps per
transit, where 400 is the default value used in this paper.
One can see that the spread in E′ is δE′/E′0 ≈ 4 × 10−4

for τζ0/Δtstep = 100, which decreases by an order of mag-

Fig. D10 Sensitivity test with respect to quiet start (QS) param-
eters. Fourier spectrograms are shown for four simula-
tions performed with the parameters of the marginally
unstable case (A). Panels (a)-(c) show results of differ-
ent realizations of the QS, and panel (d) shows the re-
sult with particles uniformly randomized along ϑ (non-
QS). The size of the sliding FFT time window was
Δtwin = 0.47 ms. The green dotted parabola represents
the BB model (12) and is shown here only as a refer-
ence for orientation and easier comparison of patterns
in different simulations.

Fig. D11 Numerical convergence with respect to time step Δtstep.
The particle distribution in the (P̂ζ , E′)-plane obtained
after 5 transits is shown for simulations of case (A)
with τζ0/Δtstep = 100, 400, 1000 steps per transit. The
upper diagram shows an enlarged view of the latter two
cases.

nitude to δE′/E′0 ≈ 4 × 10−5 for τζ0/Δtstep = 400, and is
nearly invisible on the scales shown for τζ0/Δtstep = 1000.

Note that the spread occurs only along the E′ axis of
Fig. D11. It does not affect P̂ζ , so it is entirely limited to
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Fig. D12 Numerical convergence with respect to time step Δtstep.
Fourier spectrograms are shown for cases (A) and (B)
obtained in simulations with τζ0/Δtstep = 1000 steps
per transit. The results are similar to those in Fig. 28
obtained with 400 steps per transit. The green dotted
parabola represents the BB model (12) and is shown
here only as a reference for easier comparison between
different cases.

a (small) variation in the particle energy E. Moreover, the
energy spread appears during the first few transit times of
a simulation and remains more or less at the same level
thereafter. This can be seen in the lower part P̂ > 0.65
of Fig. 29 (a). (The broadening of the E′ distribution in
the upper part P̂ � 0.65 of Fig. 29 (a) has other reasons
discussed in Sec. 5.4 and Appendix D.2.) In other words,
the energy conservation error is bounded and the bound is
set by the size of the time step Δtstep.

Figure D12 shows Fourier spectrograms of the long-
time evolution in cases (A) and (B) simulated with
τζ0/Δtstep = 1000 steps per transit instead of the default
400, spectrograms for which were shown in Fig. 28. One
can see that the results are very similar; especially, in the
strongly driven case (B), which is less sensitive to statisti-
cal noise than the marginally unstable case (A). The rapid
downward chirps in the lower part of both spectrograms in
Fig. D12 are the spurious “ghosts” discussed in Sec. C.4.

A higher (or more clearly visible) sensitivity with re-
spect to the time step Δtstep is found in simulations of un-
damped instabilities (γd = 0), where a quasi-steady state is
expected to form. Figure D13 (a) for the weakly driven
case (A0) and Fig. D13 (c) for the strongly driven case
(B0) show that simulations with too large time steps fail
to reproduce the saturation of the kinetic instabilities. In
fact, this is a well-known problem and a standard method
to test codes and choose suitable time steps. In addition,
Fig. D13 (a) shows that unphysical fluctuations in simula-
tions without quiet start can enhance the saturation prob-
lem.

In case (A0), taking τζ0/Δtstep = 1000 steps per transit

Fig. D13 Numerical convergence test with respect to time step
Δtstep and particle number Np. The diagrams show time
traces of the field amplitude A(t) in simulations with-
out damping (γd = 0). Panels (a) and (b) show results
for the weakly driven case (A0) simulated with differ-
ent time steps Δtstep and different numbers of marker
particles Np, respectively. Panel (a) also shows results
obtained with and without quiet start (QS). Panel (c)
show results for the strongly driven case (B0) simu-
lated with Np = 106 markers and different time steps
Δtstep.

Fig. D14 Calibration: Relation between the oscillation fre-
quency ν and the radial location P̂ζ in EP phase space.
Formulas based on a linear fit are given for the abso-
lute value ν(P̂ζ) and for the distance δν(δP̂ζ) from the
seed resonance.
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yields good saturation as one can see in Fig. D13 (a). Even
400 steps per transit yield an acceptable result, with a very
similar oscillation pattern. Figure D13 (b) shows that the
number of simulation particles can influence the oscillation
pattern but seems to have no significant influence on the
saturation (or lack thereof).

In case (B0), simulations with τζ0/Δtstep = 1000 steps
per transit still suffer from spurious growth as one can see
in Fig. D13 (c). However, the results for the first millisec-
ond or so, which we have analyzed in Sec. 4.2 and Ap-
pendix B, seem to be acceptable.

D.7 Calibration
Ideal MHD displacement. The magnitude of the ideal

MHD displacement δr = ξ · ∇r ≈ ξΨ/Ψ′ = ξΨ/(qΨ′P) with
Ψ′P ≡ ∂rΨP of the (nonresonant) bulk plasma can be esti-
mated as follows. Using the relation ψP = ΨP/ΨP,edge ≈
(r/a)2, making explicit the normalization of Ψ̂P,edge =

ΨP,edge/B0, and recalling that ξ̂Ψ = |ξΨ|/A is normalized
to unity (so that A has units of length squared), we obtain

δrmhd

R0
=

Aξ̂Ψ

R0qΨ′P/B0
≈ Aξ̂Ψ

qΨP,edge/B0
× a/R0

2r0/a
,

�
10−3

1.15 × 0.276
× 1/3.7

1.3
= 7 × 10−4, (D4)

for A � 10−3. Meanwhile, the kinetic Poincaré plot in
Fig. 9 (b) shows an island with a half-width of about δψP ∼
±0.03 for A = 10−3. This means that the resonant particles
experience displacements

δrres

R0
≈ δψP

2r0/a×R0/a
≈ 0.03

1.3×3.7
≈ 6 × 10−3, (D5)

that are one order of magnitude larger than δrmhd/R0 for
the nonresonant bulk.

Fig. E1 Comparison between FFT and DMUSIC spectrograms for case (A). Window sizes Δtwin = 0.47 ms (left) and 0.094 ms (right)
were used. For better comparability, the FFT spectra were normalized to their maximal value at each time, so intensity informa-
tion is lost (as in DMUSIC). The panels at the bottom show enlarged portions of the full spectrograms in panels (a)-(d).

Profile of EP reference state F0. The slope of the ref-
erence EP density profile F0(Pζ) is not known precisely,
since our marker loading method gives only an approxi-
mately uniform density gradient and, thus, we do not know
the exact form of F0/G0 ≈ const. The calibration of the
EP profile was performed using Fig. 4 (c), which shows
the first snapshot of case (A’) described in Appendix D.3,
where we have allowed the EP distribution to adapt to the
field perturbation with fixed amplitude A = A0 = 10−6 and
phase φ = 0. The O-point profile of such a relaxed distribu-
tion F̄(Pζ) = F0(Pζ)+ δ f̄ (Pζ) is expected to be flat and we
have calibrated the reference profile F0(Pζ) accordingly.
The resulting profile F0(Pζ) is shown as a yellow shaded
triangle in Fig. 4 (c). The calibration was also confirmed
independently using the undamped cases (A0) and (B0),
where the perturbed profile F̄(Pζ) is also expected to be-
come flat across the O-points (see Figs. 14 and 15).

Pump frequency. The relation between the radial loca-
tion P̂ζ of a phase space structure and the corresponding
oscillation frequency ν in a spectrogram of the field signal
s(t) is shown in Fig. D14. The data points in Fig. D14 were
roughly taken at the approximate centers of large hole and
clump vortices in the advanced stages of the simulation,
which is why there are no data points near the resonance
P̂ζ,res ≈ 0.72. A linear fit gives

δP̂ζ ≈ δν/486.8 kHz. (D6)

Appendix E. Characterization of Di-
agnostics

E.1 Fourier spectra
The Fourier analysis was performed using a Hann-
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Fig. E2 Characterization of DMUSIC spectrograms. Using the
signal s(t) from case (A), whose envelope A(t) is plot-
ted in panel (a), we show the form of the spectrogram
during the onset of chirping for short time windows
Δtwin = 0.096 ms or 0.047 ms, and for different num-
bers K = 3, 5 and 21 of complex sinusoids used in the
decomposition.

Fig. E3 Click on panels (a)-(d) to view animated movies for cases (A), (B) and (B0). Playing the animations directly in the PDF file may
require Adobe Acrobat Reader and VLC to be installed. On some systems, a separate media player may be launched.

weighted sliding time window. The default window size
was Δtwin = 100 τζ0 ≈ 0.47 ms and the spectrum has been
smoothed by extending the array length to Tpad = 16×Δtwin

and padding with zeros.

Y(t, ω) =

Tpad/2∫
−Tpad/2

dτ y(t − τ)H(τ)e−iωτ. (E1)

The Hann window function H(τ) eliminates artifacts from
aperiodicity.

E.2 DMUSIC spectra
DMUSIC is a spectral peak-finding algorithm origi-

nally developed for nuclear magnetoresonance (NMR) sig-
nal analysis by Li et al. [69]. Our application of the method
to fusion plasmas was inspired by Slaby et al. [70], who
used it to visualize continuous spectra of shear Alfvén
waves in initial value simulations.

The strength of the algorithm lies in its applicability to
noisy signals with phases of rapid growth or strong damp-
ing. Its weaknesses are that signal intensity information is
effectively lost and that it can be difficult to attribute phys-
ical meaning to all the features appearing in a DMUSIC
spectrogram. The spectral analyses in this study were per-
formed with sliding time windows with sizes in the range
Δtwin = (10 . . . 300)τζ0 = (0.047 . . . 1.410) ms. For each
value of the real frequency ν, we scanned the imaginary
frequency axis γ and selected the maximal value of the
transform. At each time, the peak value of the spectrogram
was normalized to unity.

Figure E1 shows a comparison between FFT spec-
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trograms and DMUSIC spectrograms obtained with long
and short time windows. With the long time window
Δtwin = 0.47 ms, the spectra have a similar structure, al-
though the DMUSIC spectra are much sharper and seem to
reveal more detail. It is not clear how much of that detail
bears physical meaning. For instance, the splitting of spec-
tral lines seen in the upper part of Fig. E1 (b) (enlarged in
the third panel in the bottom row) remains to be understood
as discussed in Appendix C.1. We use DMUSIC primarily
for the purpose of spectral analysis with high temporal res-
olution (d), where FFT spectra become unintelligible (c).

Our default parameters for DMUSIC are as follows.
We take a portion of N = Δtwin/Δtsample data points from
a uniformly sampled signal, where Δtsample is the sampling
step. We choose N to be even, and the parameter J of Ref.
[69] is chosen to be J = N/2 as recommended by the au-
thors. Typically, we use K = 21 complex sinusoids for the
decomposition. Typically, a real frequency window cover-
ing the range 40 kHz ≤ ν ≤ 180 kHz is sampled by at least
Nν = 201 points. The window size for the imaginary com-
ponent of the frequency is usually −4 kHz ≤ γ ≤ 4 kHz
and sampled by Nγ = 31 points (tests with Nγ = 121 gave
essentially identical results).

The role of the parameters K and Δtwin can be seen in
Fig. E2, which shows spectrograms of the onset of chirp-
ing during the first 2 ms of case (A). The spectrograms are
computed with short time windows Δtwin = 0.094 ms and
0.047 ms. When using a small number of only K = 3 com-
plex sinusoids (b), the spectrogram effectively shows the
instantaneous oscillation frequency. Phase jumps by ±π
that occur around the amplitude minima and have the form
of an arctan function (see Eq. (A6b)) appear here in panel
(b) as rapid up- and downward chirps. Frequency splitting
becomes visible with K = 5 in panel (c), and becomes only
a little richer in detail with K = 21 in (d). With a smaller
time window as in panel (e) and (f), the phase jumps start to
strongly affect the signals even for K = 5 and 21. Further
reduction of the window size would yield a result similar
to that in panel (b) since the number of harmonics that can
be captured decreases, so choosing a large value of K has
no effect for short time windows.

E.3 Animations
Figure E3 contains links to animations for cases (A),

(B) and (B0). Each movie window consists of three pan-
els: one showing a δ f -weighted Poincaré plot of the phase
space structures (left), one for the field amplitude A(t) (top
right), and a Fourier spectrogram (bottom right).
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