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The hybrid method based on the collocation element-free Galerkin method and the boundary element method
has been applied to the 2D steady-state scattering problem of the electromagnetic wave. In addition, the perfor-
mance of the proposed method has been investigated numerically. In this study, the numerical solution of the
proposed method has been obtained by using the GMRES(m) method for the complex linear system. The results
of computations show that the relatively smooth distribution of electric field is obtained regardless of the bound-
ary shape. Therefore, it is found that the proposed method can be used as one of the tools for solving the 2D
steady-state scattering problems of the electromagnetic wave.
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1. Introduction
As is well known, the finite-difference time-domain

(FDTD) method [1] is widely used for electromagnetic
wave simulations and has also yielded excellent results
in the field of the nuclear fusion science [2, 3]. In the
FDTD method, not only a calculation cost per time step
but also a memory usage can be suppressed low. However,
a target domain should be divided into a set of orthogo-
nal meshes before executing simulations. In addition, the
Courant-Friedrichs-Lewy (CFL) condition must be satis-
fied to ensure the numerical stability of the FDTD method.
Therefore, it is difficult to apply the FDTD method to the
problem in which the target domain has the complex struc-
ture. In addition, the FDTD method is an explicit method.
Hence, it requires a large number of time steps until ob-
taining a stationary solution.

As another method for electromagnetic wave simu-
lations, the hybrid method has been proposed. In this
method, the region-type method and the boundary-type
method are applied to the internal and external problems,
respectively. For example, the hybrid method between the
finite element method and the boundary element method is
well known [4,5]. Since the standard hybrid method is one
of implicit methods, a target domain and a boundary must
be divided into a set of elements before executing the sim-
ulation code. However, this operation must be executed in
view of the object shape and the skin effect. Therefore, it
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is time-consuming.
On the other hand, some meshless methods have been

so far proposed [6–9]. The major merits of meshless meth-
ods are listed as follows: the unnecessary mesh generation
and the high-order continuity of the trial functions. If the
concept of meshless method were incorporated into hybrid
method, the above demerit of the hybrid method might be
resolved.

The purpose of the present study is to develop
the hybrid method based on the collocation element-
free Galerkin method (EFGM) and the boundary element
method (BEM) for solving the 2D steady-state electromag-
netic wave scattering problem and to investigate its perfor-
mance numerically.

2. Numerical Method
2.1 2D steady-state scattering problems

For simplicity, we consider a steady-state scattering
problem of electromagnetic waves from a columnar ob-
jects of an arbitrary cross section. Moreover, we assume
that a TE wave enters upon the normal direction toward
the axis of the column. Under the above assumptions, the
2D steady-state scattering problem is governed by the fol-
lowing equations:

−
(
Δ + k2

)
Ez = iωμσEz inΩI, (1)

−
(
Δ + k0

2
)

Ez = 0 inΩE, (2)

where i, ω, μ, σ and Ez denote an imaginary unit,
an angular frequency, magnetic permeability of material
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and an electrical conductivity in the scattering object, z-
component of an electric field, respectively. Moreover, k
and k0 are wavenumbers in the scattering object and the
free space, respectively. In addition, ΩI and ΩE denote a
domain bounded by a simple closed curve ∂Ω and an infi-
nite domain which encloses ΩI, respectively. In this way,
the 2D steady-state scattering problem is reduced to two
Helmholtz equations which are derived from the phasor
form of Maxwell’s equations.

As a boundary condition, we give the following equa-
tions:

[[
Ez

]]
= 0,

[[
1
μ

∂Ez

∂n

]]
= 0, (3)

where n indicates an unit normal vector to the boundary
∂Ω, respectively. Furthermore, [[ ]] means the operator
which denotes a gap of operand across ∂Ω.

In order to discretize the above problem, we must de-
rive both the weak form of (1) and the boundary integral
equation of (2). By assuming that the Dirichlet boundary
condition is imposed on ∂Ω, we can get the following weak
form:

∀w s.t. w
∣∣∣
∂Ω
= 0 : J[w, Ez] = 0. (4)

Here, J[w, u] is the functional defined by

J[w, u] ≡
�
ΩI

∇w · ∇u d2x −
(
k2−iβ

)�
ΩI

w u d2x,

where β ≡ ωμσ. In addtion, ∀w s.t. w
∣∣∣
∂Ω
= 0 denotes an

arbitrary function w(x) that fulfills w = 0 on ∂Ω.
By assuming that the Sommerfeld radiation condition,

(2) is transformed to be equivalent to the boundary integral
equation and, its explicit form is given by

c(y)Ez(y) +
∮
∂Ω

∂w∗ (x, y)
∂n

Ez(x)ds

−
∮
∂Ω

w∗ (x, y)
∂Ez(x)
∂n

ds = EI
z(y), (5)

where c(y) is the shape coefficient. Moreover, w∗(x, y) is
the fundamental solution of −(Δ + k0

2) and EI
z(y) denotes

the electric field of the incident wave at y.

2.2 Discretization
In this section, we discretize the weak form (4), the

boundary integral equation (5) and the associated boundary
conditions (3). To this end, let us first place the N nodes,
x1, x2, · · · , xN , in ΩI ∪ ∂Ω and, subsequently, the weight
function wi(x) is assigned to the ith node. By using the
weight functions, the Moving Least Squares (MLS) shape
functions φi’s [5, 6] can be determined by

φi(x) = pT(x) M−1(x) bi(x),

where p(x) is a linear basis defined by p(x) = [1 x y]. In
addition, M(x) and bi(x) are given by

M(x)=
N∑

i=1

wi(x) p(xi) pT(xi),

bi(x)=
N∑

i=1

wi(x) p(xi).

By using the resulting MLS shape functions, Ez(x) and
∂Ez(x)/∂n are assumed as

Ez (x) =
N∑

i=1

φi (x) ûi,

∂Ez (x)
∂n

=

N∑
i=1

(n (x) · ∇φi (x)) ûi.

Next, M pieces of boundary elements, Γ1,Γ2, · · · ,ΓM , are
generated by connecting two adjacent nodes on ∂Ω with a
straight line. Thereafter, Ez and ∂Ez/∂n on the eth bound-
ary element Γe are approximated as a linear function. In
the following, {e∗1, e∗2, · · · , e∗N} and {e1, e2, · · · , eM} are the
orthonormal system of the N-dimensional vector space and
that of the M-dimensional vector space, respectively.

From the standard manner of the collocation EFGM
[8], the weak form (4) can be discretized as[

A −
(
k2 − iβ

)
B
]

û +Cλ = 0. (6)

Here, û is defined by

û =
N∑

i=1

ûi e∗i ,

and λ is the M-dimensional unknown vector. In addition,
A, B and C are given by

A =
N∑

i=1

N∑
j=1

�
ΩI

∇φi · ∇φ j d2x e∗i e∗Tj ,

B =
N∑

i=1

N∑
j=1

�
ΩI

φi φ j d2x e∗i e∗Tj ,

C =
N∑

i=1

M∑
p=1

φi

(
xη(p)

)
e∗i eT

p ,

where η(p) is the global number of the pth boundary node.
From the standard manner of the BEM, the boundary

integral equation (5) is discretized. The resulting equation
can be written in this form:

Hu −Gq = f , (7)

where u, q and f are given by

u =
M∑

p=1

up ep,

q =
M∑

p=1

qp ep,

f =
M∑

p=1

EI
z

(
xη(p)

)
ep.
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In addition, H and G are given by

H =
M∑

e=1

M∑
p=1

2∑
l=1

∫
Γe

∂w∗
(
x, xη(p)

)
∂n

ψl(ξ) ds ep eT
ν(e,l)

+

M∑
p=1

c
(
xη(p)

)
ep eT

p ,

G =
M∑

e=1

M∑
p=1

2∑
l=1

∫
Γe

w∗
(
x, xη(p)

)
ψl(ξ) ds ep eT

ν(e,l),

where ψl (ξ) ≡
[
1 − (−1)lξ

] /
2. Moreover, ν(e, l) denotes

the global node number of lth local node in Γe.
Finally, let us discretize the associated boundary con-

ditions. Note that the MLS shape function φi(x) fulfills
φi

(
x j

)
� δi, j, where δi, j is the Kronecker’s delta. In other

words, Ez(xi) � ûi is satisfied. In contrast, the linear in-
terpolation functions, ψ1(ξ) and ψ2(ξ), has the Kronecker’s
delta function property. Hence, (3) can be discretized as

CT û = u, DT û = −μr q, (8)

where D is given by

D =
N∑

i=1

M∑
p=1

(
n(xη(p)) · ∇φi

(
xη(p)

) )
e∗i eT

p .

In addition, μr denote a relative permeability.
Equations (6)-(8) can be written in the following lin-

ear system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A − (k2 − iβ)B C

HCT +
1
μr

GDT O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

û

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (9)

By solving (9), we can obtain the electric feild Ez in
ΩI ∪ ∂Ω. Note that the resulting linear system has not
a diagonal-dominant coefficient matrix. Furthermore, its
matrix also becomes complex and asymmetric. Therefore,
we adopt the GMRES(m) method for the complex linear
system as the solver of (9).

3. Numerical Result
In this section, we investigate the performance of the

proposed method numerically. In the following numerical
experiments, ΩI is assumed as either of the following do-
mains:

ΩI =
{
(x, y)|x2 + y2 < 1/4

}
, (10)

ΩI = (−1/2, 1/2) × (−1/2, 1/2). (11)

Furthermore, the incident wave is given by

EI
z(x, y) = H(2)

0

(
k0

√
(x − 1)2 + y2

)
,

where H(2)
0 (x) and E0 denote the 0th order Hankel function

of the second kind and the amplitude of the incident wave,

respectively. In addition, the nodes are uniformly placed in
ΩI ∪ ∂Ω. The weight function is given by

wi(x) = ω (|x − xi|) ,

ω(r) =

⎧⎪⎪⎨⎪⎪⎩
1−6(r/R)2+8(r/R)3−3(r/R)4 (r ≤ R)

0 (r > R),

where R indicates a support radius defined by R = 1.2 h.
Here, h denotes the maximum distance between one node
and the nearest one. Throughout the present study, the
physical parameters are fixed as follows: k/k0 = 6 and
μr = 1. In addition, the judgment of convergence ε in GM-
RES method is fixed as ε = 10−12.

Let us first investigate the influence of the restart co-
efficient m on the convergence property of the GMRES(m)
method. Figure 1 indicates the residual history of
GMRES(m) method. In the following, the iteration number
required for the convergence is called a convergent itera-
tion number. We see from this figure that the convergent it-
eration number is diminished with an increase of the value

Fig. 1 Residual history of the GMRES(m) method for the case
with (10) (N +M = 10201, β = 104). Here, the black, the
red and the blue curves denote the case with m = 1500,
m = 2000 and m = 3000, respectively.

Fig. 2 Residual history of the GMRES(3000) method for the
case with (10) (N + M = 10201). Here, the black, the
red and the blue curves indicate the residual histories for
β = 0, β = 102 and β = 104, respectively.
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Fig. 3 The spatial distribution of Ez for the case with (10) (N + M = 10201). Here, the black curve denotes the boundary ∂Ω.

Fig. 4 The spatial distribution of Ez for the case with (11) (N + M = 10201). Here, the black curve denotes the boundary ∂Ω.

of m. In particular, the GMRES(3000) method is the fastest
among all solvers. This result means that the convergence
property of the GMRES(m) method does not improve by
using the restart. However, the operation count PGM and
the required memory QGM of the GMRES(m) method can
be estimated as follows:

PGM = (N + M)2 [(m + n) + (I + 1)] ,

QGM = (N + M)2 + (N + M)(m + 4) + m2/2,

where I and n are the total restart number and the num-
ber of an iteration after the last restart, respectively. As is
apparent from the above equation, PGM and QGM increase
with an increase of the value of m. Hence, it is desirable to
give the restart coefficient m as large as possible. Through-
out the present study, the restart coefficient m is fixed as
m = 3000.

On the other hand, we investigate the influence of β on
the convergence property of the GMRES(3000) method for
the case with (10). The residual history of GMRES(3000)
method is shown in Fig. 2. We see from this figure that
the residual norm decreases slowly with an increase in the
iteration number regardless of the value of β. Furthermore,
the convergent iteration number required for β = 104 is
much slower than the other two cases. This result suggests
that the precondition needs to be applied to the GMRES(m)
method.

Finally, we investigate the influence of the boundary
shape on the accuracy of the numerical solution. The spa-
tial distribution of the electric field for the case with (10)
and (11) are shown in Figs. 3 and 4, respectively. We see
from these figures that the relatively smooth distribution is
obtained regardless of the value of β. Even if the boundary
shape is changed, the distribution of Ez is gotten smoothly.

From these results, we can conclude that the pro-
posed method can be used as one of the tools for solving
the steady-state scattering problems of the electromagnetic
wave.

4. Conclusion
We have developed the hybrid method of the BEM

and the collocation EFGM for solving the 2D steady-state
scattering problem of the electromagnetic wave and have
investigated its performance numerically. Conclusions ob-
tained in this paper are summarized as follows.

1. By using the proposed method, the relatively smooth
distribution of the electromagnetic field is obtained
regardless of the type of weight functions.

2. It is desirable to give the restart coefficient as large as
possible.

For the case with the large value of β, the electromag-
netic field cannot penetrate into the scattering object. In
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this study, the node location and the number of nodes have
not been changed with an increase of β. Therefore, the
proposed hybrid method has potential for improvements
of the accuracy and the speed. For future study, we will
investigate the influence of the node location and the num-
ber of nodes on the performance of the proposed hybrid
method. In addition, we will apply the precondition to the
GMRES(m) method for improving the solver speed and
also investigate the optical character of complex structure
by using the developed code.
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