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This study investigated the energy transfer of a fully developed freely decaying homogeneous isotropic
turbulence of a Hall magnetohydrodynamic medium from the perspective of the interaction between the ion
cyclotron (IC) and whistler (Wh) modes. The variables were decomposed using generalized Elsässer variables
(Galtier, J. Plasma Phys. 72, 721 (2006)), which are given by a combination of velocity and magnetic fields. To
analyze the energy transfer between these coupled variables, an analytical-mechanical approach was introduced
that guaranteed both the Galilean covariance and the detailed energy balance for each decomposed mode. A
remarkable asymmetry of the energy transfer between the IC and Wh modes was found. In the present study,
almost one-sided energy transfers from the IC to the Wh modes were observed. In addition, a shell-to-shell
transfer analysis revealed relatively weak inter-mode interactions with nonlocal features, while the intra-mode
interactions were both intense and local.
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1. Introduction
Among magnetohydrodynamic (MHD) models, Hall

magnetohydrodynamics (HMHD) has long been investi-
gated as a simple one-fluid MHD model that contains a
two-fluid effect [1]. From the perspective of fully devel-
oped turbulence research, a wide variety of approaches
have been adopted. These include wave turbulence for-
mulation and interaction analysis [2], nonlinear energy-
transfer analysis of DNS data [3], spontaneous chiral sym-
metry breaking [4], formation of coherent structures and
comparison with those found for standard one-fluid MHD
model [5], sub-grid scale modeling for LES [6], and
analytical-mechanical analysis of wave/chaos timescales
for homogeneous isotropic turbulence [7].

This study’s authors previously identified a reduction
of nonlinear interactions of the u×ω and ∇× ( j× b) terms
[8], which was later revealed to comprise part of com-
pensating behaviors of interactions due to whole quadratic
terms [9]. These results strongly suggest that the behaviors
of the magnetic and velocity fields are strongly coupled.
The generalized Elsässer variable (GEV) seems a plausi-
ble candidate as an analysis tool, because it was shown
that the GEV is based on the analytical-mechanical struc-
ture of the HMHD, i.e., the eigenfunction of the helicity-
based particle-relabeling operator, which was derived from
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the consideration of system symmetry and related conser-
vation laws [10]. By applying the GEV to the turbulence,
the GEV transfer-function spectra were obtained and com-
pared with those based on the velocity and magnetic fields
[11]. However, the analysis method used had limitations in
terms of the decomposition of the GEV mode. Thus, this
study further elucidates the basis of mode decomposition.

This paper is organized as follows: Section 2 and 3
present explanations of the basic equations and the prin-
cipal features of the GEV and the decomposition method,
respectively; the mathematical foundation of the energy-
transfer analysis method is reviewed in Section 4; the
energy-transfer functions (ETF) decomposed according to
the contribution of the ion cyclotron (IC) and whistler
(Wh) components are analyzed in Section 5; Section 6
investigates the detailed energy transfer between the de-
composed modes; and concluding remarks are presented
in Section 7.

2. Basic Equations
In the HMHD system, the velocity field u and the

magnetic field b in the normalized unit obey the follow-
ing equations:

∂tu + (u · ∇)u = −∇P + j × b + ν�u, (1)

∂t b = ∇ × ((u − α j) × b) + η�b, (2)

∇u = ∇b = 0, (3)
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where P, j := ∇ × b, ν, α and η are the generalized pres-
sure, the current density field, the kinematic viscosity, the
parameter specifying the relative strength of the Hall term
effect, and the resistivity, respectively. In the following,
the pair of the velocity and magnetic fields is denoted by
�Z := t(u, b) and is termed the �Z variable. The basic equa-
tions (1)-(3) are symbolically denoted by

∂t �Z = �Q(�Z, �Z) + D̂�Z, (4)

where �Q, D̂�Z are the quadratic and dissipation terms, re-
spectively1 [11].

3. Generalized Elsässer Variable
Decomposition
The present study uses three independent methods of

analysis. The first is GEV decomposition, which was
discussed in detail in Section 3 of [11]. The second is
the geometrically partitioned shell decomposition of the
wavenumber space, which was also considered in depth in
Section 3 of [8]. The third is discussed in the next section.

The GEV was first derived by Galtier [2] as the eigen-
function of the operator M̂, which appears in the following
linearized problem of the basic equations (1) and (2) with
a background uniform magnetic field (B0):

∂t �Z = (B0 · ∇)M̂�Z, where M̂ =

(
O I
I α∇×

)
.

(5)

The equation’s eigenvalues, Λs
σ(|�k|), have three kinds of in-

dices: wavenumber (�k ∈ Z3), chirality (σ = ±1), and po-
larity (s = ±1). They are given by Λs

σ(|�k|) = σsλ−s, where
λ = λ(�k) = [(πα|�k|)2 + 1]1/2 + πα|�k|. The corresponding
eigenfunctions, �Ψs

σ, are given by

ion cyclotron (IC) mode: �Ψ+± =
t (λφ±,±φ±) , (6)

whistler (Wh) mode: �Ψ−± =
t (∓φ±, λφ±) , (7)

where φ± = φ±(�k; �x) are the eigenfunctions of the curl op-
erator2 (∇ × φσ = 2πσ|�k|φσ). The mode names are chosen
according to the counterpart linear waves for non-zero B0.
Even when B0 = 0, these eigenfunctions work as orthogo-
nal base functions of the �Z variable space. The �Z variable
is decomposed into the GEV components as follows:

�Z =
∑
�k,σ,s

�Z s
σ(�k), where �Z s

σ(�k) =
〈�Ψs
σ(�k)∗|�Z〉
1 + λ2

�Ψs
σ(�k),

where the symbol 〈∗|∗〉 is the inner product defined by〈
�Z1

∣∣∣∣�Z2

〉
:=

∫
(u∗1 · u2 + b∗1 · b2) d3�x, (8)

and the asterisk denotes a complex conjugate.
This paper focuses on the interaction between the IC

1In this paper, an arrow above a symbol denotes its multifunctional
character.

2In this paper, φσs are assumed to be normalized:
∫
φ∗σ(�p) ·

φσ′ (�p′)d3�x = δ�p,�p′δσ,σ′ , where δ is Kronecker’s delta.

(�Z+) and the Wh (�Z−) components, and the inter-scale in-
teractions. Thus, the �Z variable is decomposed as follows:

�Z =
∑
j∈Z
�Z+j +

∑
j∈Z
�Z−j , where �Z s

j :=
σ=±1∑
�k∈S j

�Z s
σ(�k).

(9)

In this equation, the wavenumber space partitioning shell
S j is defined by the following:

S j :=
{
�k; 2−( j+1)/2 < |�k|/kη(t) < 2− j/2

}
,

where kη(t) := (εB(t)/η3)1/4 is the characteristic wavenum-
ber of the dissipation scale derived from the dissipation
rate of the magnetic field: εB(t) := η

∫ | j(�x, t)|2d3�x. This
partitioning method implies band-pass filtering, which is
analogous to dyadic wavelet analysis [8, 12].

4. Mathematical Preliminaries for the
Detailed Energy-Transfer Analysis
The third analytical method (discussed below) may

seem somewhat pedantic; however, it is essntial for the
strict evaluation of nonlinear energy transfer.

In a previous study, the authors of this paper analyzed
the evolution equation of the total energy given by

1
2

d
dt

〈
�Z
∣∣∣∣�Z〉
=

〈
�Z
∣∣∣∣�Q(�Z, �Z)〉

+
〈
�Z
∣∣∣∣D̂�Z〉

.

By substituting the decomposition given by Eq. (9), the de-
composed energy budget equations are obtained as

1
2

d
dt

〈
�Z±j

∣∣∣∣�Z±j 〉 = 〈
�Z±j

∣∣∣∣�Q(�Z, �Z)〉
+

〈
�Z±j

∣∣∣∣D̂�Z±j 〉. (10)

The previous paper analyzed the ETFs,
〈
�Z±j

∣∣∣∣�Q(�Z, �Z)〉
, and

observed the usual energy cascades to smaller scales [11].
However, as the contributions of both the IC and Wh
modes to these spectra remained unresolved, further inves-
tigation was required. Nontheless, it seems inappropriate
to decompose the �Z variable in the quadratic term, �Q, be-
cause the resulting decomposed blocks do not satisfy the
detailed energy balance between the decomposed modes.

To overcome the discrepancy of the previous analyt-
ical method, the differential geometrical consideration of
the nature of quadratic terms was discussed in [7]. A
differential-geometrical analytical-mechanical considera-
tion of the HMHD dynamics leads to the quadratic term
operator (∇̃), which is defined as follows:

∇̃�Z1
�Z2 =

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω1 × u2 − u1 × ω2 − ∇ × (u1 × u2)
+b1 × j2 − j1 × b2 − ∇Pu

∇ × (b1 × (u2 − α j2) − (u1 − α j1) × b2)
− j1 × u2 − u1 × j2 + α j1 × j2 − ∇Pb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(11)

where ω := ∇ × u, Pu, and Pb are appropriate scalar func-
tions to make each component divergence-free. In terms
of this operator, the basic equations (Eqs. (1)-(3)) are sym-
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Fig. 1 A schematic view of the parallel translation of the sub-
component of the generalized velocity along its solution
path.

bolically denoted as (∂t + ∇̃�Z)�Z = D̂�Z.
This bizarre expression is derived from the following

three physically desirable conditions [7]:

1. When �Z1 = �Z2, the terms are reduced to the quadratic
terms of the basic equations (1) and (2): −∇̃�Z �Z =
�Q(�Z, �Z).

2. The substantial derivative of an arbitrary frozen-in
vector field (�ξ) by �Z, (∂t + ∇̃�Z)�ξ, is covariant against
the Galilean transformation.

3. “The advection” by ∇̃�Z preserves the value of the in-

ner product, i.e., the inner product of ∇̃�Z �Z and �Z sat-
isfies the following:〈
∇̃�Z3
�Z1

∣∣∣∣�Z2

〉
+

〈
�Z1

∣∣∣∣∇̃�Z3
�Z2

〉
= 0. (12)

The third condition is crucial for the energy transfer anal-
ysis because this guarantees the detailed energy balance
between the two arbitrary expansion modes.

Physically, the obtained expression defines the defor-
mation of decomposed components of the velocity and
magnetic fields that retain both the Galilean covariance and
energy conservation. Mathematically, the operation is a
metric-preserving parallel translation, i.e., the Levi-Civita
connection on configuration space (Fig. 1).

Using this expression, equation (10) is rewritten as

1
2

d
dt

〈
�Z±j

∣∣∣∣�Z±j 〉 = s′=±∑
l∈Z

〈
j,±

∣∣∣∣�Z∣∣∣∣l, s′〉 +∑
s=±

〈
�Z±j

∣∣∣∣D̂�Z s
j

〉
,

(13)

where the symbol 〈∗| ∗ |∗〉 is defined by〈
j,±

∣∣∣∣�Z∣∣∣∣l, s′〉 := −
〈
�Z±j

∣∣∣∣∇̃�Z �Z s′
l

〉
, (14)

and is referred to as a shell-to-shell ETF hereafter. The
values of shell-to-shell ETF satisfy the detailed energy-
balance condition:〈

j, s
∣∣∣∣�Z∣∣∣∣l, s′〉 = −〈l, s′

∣∣∣∣�Z∣∣∣∣ j, s〉. (15)

Due to this relationship, the energy budgets between the
arbitrary pair of the ( j, s)- and (l, s′)-modes balance each
other:

d
dt

〈
�Z s

j

∣∣∣∣�Z s
j

〉
= · · · +

〈
j, s

∣∣∣∣�Z∣∣∣∣l, s′〉 + · · · ,
d
dt

〈
�Z s′

l

∣∣∣∣�Z s′
l

〉
= · · · +

〈
l, s′

∣∣∣∣�Z∣∣∣∣ j, s〉 + · · · .
Thus, the meaning of the symbol 〈 j, s|�Z|l, s′〉 is the energy
transfer from the (l, s′)-mode to the ( j, s)-mode due to ad-

vection by the plasma motion �Z. In the following, the |l, s′〉
side is referred to as the from (F) mode and the 〈 j, s| side
as the to (T) mode.

Note that the sum of the shell-to-shell ETF overall
scale index (l) and wave mode (s) satisfies the following:

s′=±∑
l∈Z

〈
j,±

∣∣∣∣�Z∣∣∣∣l, s′〉 = 〈
�Z±j

∣∣∣∣Q(�Z, �Z)
〉
, (16)

the right-hand side of which was previously analyzed in
[11]. Therefore, this paper’s principal research objective is
the detailed analysis of the decomposed modes in the left
hand side of this formula.

5. Contribution of Ion Cyclotron and
Whistler Modes to Energy Transfer
This study analyzes the same DNS datasets used in

[8], [9], and [11], in which the basic properties of the ana-
lyzed turbulence fields were reported. To enable a suitable
comparison, the physical quantities of the different time
snapshots of the freely decaying turbulence are normalized
them using the dissipation rate of the magnetic field of each
snapshot εB(t) and the resistivity η.

First, the decomposition of the ETF of the IC (+) and
Wh (−) modes, 〈�Z±j |�Q(�Z, �Z)〉, into the contributions from
the IC and Wh modes was investigated. The decompo-
sition is given by 〈�Z s

j|�Q(�Z, �Z)〉 = 〈 j, s|�Z|+〉 + 〈 j, s|�Z|−〉,
where the ETF for the s′-modes are defined by〈

j, s
∣∣∣∣�Z∣∣∣∣s′〉 :=

∑
l∈Z

〈
j, s

∣∣∣∣�Z∣∣∣∣l, s′〉, (17)

for s, s′ = ±1. In Fig. 2 the ETF for 1 ≤ t ≤ 5 are shown
in terms of their time evolution.

It is remarkable that the nonlinear energy transfer be-
tween the IC and Wh modes (〈 j,−|�Z|+〉 and 〈 j,+|�Z|−〉) is
quite asymmetric (Figs. 2 (b) and (c)). In this case, almost
one-sided energy transfers from the IC to the Wh modes
are observed. In particular, the Wh modes are excited for
almost all wavenumber ranges due to the interactions be-
tween both modes.

Conversely, those between the same wave modes
(〈 j, s|�Z|s〉 for s = ±) have similar energy-transfer pro-
files which indicate usual energy cascades to smaller scales
(Figs. 2 (a) and (d)).

It should be noted that such asymmetry was neither
observed for the bulk ETF, 〈�Z s

j|�Q(�Z, �Z)〉, (see the lower
two panels of Fig. 3 in [11]), nor the the ETF for u and b
(see Fig. 4 of [8]).

The orders of magnitude of energy transfer, i.e., the
significant values of the ETF, are roughly about 0.01εB(t) ∼
0.1εB(t), irrespective of the wave mode species. Energy is
transferred between the Fourier shells and the wave mode
components at comparable magnitudes.

It is interesting that the evolution of IC-to-IC ETF,
〈 j,+|�Z|+〉, reveals that somewhat weak inverse energy
transfer at the large scale components (|�k| ∼ 0.03kη of
Fig. 2 (a)) gradually grows over time. However, such trans-
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Fig. 2 Time series of the ETF spectra for each wave mode,
〈 j, s|�Z|s′〉 for s, s′ = ±1: Both the moduli and abscissa
are normalized using εB(t) and η.

Fig. 3 Shell-to-shell ETF at t = 5: 〈 j, s|�Z|l, s′〉. Abscissa: T-
mode shell (〈 j, s|), ordinate: F-mode shell (|l, s′〉). Con-
tours are drawn to intuitively represent their amplitude:
green to red indicates energy gain, while blue to purple
indicates energy loss. The contour increment of contours
are set at 0.004εB(t). The unit of measurement of the
color legend bar is εB(t). Normalized wavenumbers are
shown at the abscissa and ordinate.
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fers to larger scales were not detected for the analysis of the
Wh-to-Wh ETF or the bulk ETF, 〈�Z s

j|�Q(�Z, �Z)〉 [11].

6. Inter- and Intra-Mode
Shell-to-Shell Energy Transfer
The decomposition of the bulk ETF into the contri-

butions of the IC and Wh modes (〈 j, s|�Z|s′〉) reveals very
interesting features of mode interaction, while the analysis
of the shell-to-shell ETF 〈 j, s|�Z|l, s′〉 is necessary to eluci-
date the time evolution of the energy budget of each of the
( j, s)-modes.

First, it is remarkable that the same mode interac-
tion (IC-to-IC and Wh-to-Wh) are significantly more in-
tense than those between different modes (IC-to-Wh). The
largest moduli of the IC-to-IC and Wh-to-Wh ETF are
0.16εB(t) and 0.14εB(t), respectively, while the modulus of
IC-to-Wh one is 0.025εB(t).

In addition, both the IC-to-IC and Wh-to-Wh ETF ex-
hibit very sharply aligned peaks on the j = l ± 1 lines
(Figs. 3 (a) and (c)). Physically this implies that the energy
in an observed scale is transferred from and to the near-
est spatial scale components, i.e., the local interactions in
terms of wavenumber space are dominant in the transfer
processes between the same wave modes.

This indicates that the principal turbulent energy-
transfer process is the energy cascade to smaller scales up
to dissipation scales. This has quite similar features to the
fully developed turbulence in a neutral fluid [13], which
suggests that if dissipation is weak, the energy cascade be-
tween the IC-modes is reachable at small scales up to ki-
netic scales.

These energy bucket brigades between the nearest
shells result in considerable cancellations of the shell-to-
shell ETF and produce moderate ETF values; this has long
been known for fully-developed homogeneous isotropic
turbulence of a neutral fluid [13].

Conversely, the significant values of the IC-to-Wh
ETF, which are related to the Wh-to-IC ETF by Eq. (15),
are distributed to rather broader areas, i.e., relatively non-
local features are shown (Fig. 3 (b)).

Despite its relatively small value size, the cancellation
of the IC-to-Wh ETF associated with summing up with re-
spect to F-modes are also small; therefore, the order of
magnitude of the IC-to-Wh ETF become close to those of
the IC-to-IC or the Wh-to-Wh modes.

Another remarkable feature of the shell-to-shell IC-
to-Wh ETF is that their moduli take large values at rela-
tively small wavenumber regions, i.e., the dominant inter-
actions between the IC and Wh modes occur at larger spa-
tial scales. Conversely, smaller-scale motions of the IC and
Wh modes gradually become less influential each other.

One possible explanation is as follows. Applying
Eq. (5), the characteristic frequencies of the IC (�p) and
Wh (�q) modes are roughly estimated by |b · �p|/λ(p) and
|b · �q|λ(q), respectively. Assuming both that dominant in-

teractions are local, p ∼ q, which implies λ(p) ∼ λ(q), and
that they occur when these modes have close timescales,
|b · �p|/λ(p) ∼ |b ·�q|λ(q), the wavenumber vectors satisfy the
relationship∣∣∣∣∣∣ b · �pb · �q

∣∣∣∣∣∣ ∼ λ(p)λ(q) > 1.

Considering that λ(p) = [1 + (παp)2]1/2 + παp monotoni-
cally increases with respect to p, this interaction condition
is satisfied only when |b · �q| is sufficiently small, i.e., the
wavenumber vector of the Wh mode, �q, is almost perpen-
dicular to the ambient magnetic field, b, as the wavenum-
bers increase. This assumes that it becomes more difficult
to satisfy the resonant interaction conditions between these
modes. Thus, the dynamics of the IC and Wh modes be-
come more independent as the spatial scales of the field
structures decrease.

7. Discussion
This study investigates the energy-transfer process

from the perspective of the interaction between the IC and
Wh modes. A remarkable asymmetry of the ETF between
both modes is observed, while their order of magnitudes is
comparable. Further decomposition into the shell-to-shell
ETF revealed that the interactions between the same wave
modes are intense and local, while those between the IC
and Wh modes are relatively weak and nonlocal and occur
at larger spatial scales.

These features suggest that, because of the devia-
tion of the characteristic timescales between the IC and
Wh modes at greater wavenumbers (i.e., at smaller spatial
scales), the Hall term effect reduces the mutual dependence
of the plasma fluid motion and magnetic field dynamics at
smaller scales.

It is noteworthy that this dynamic splitting feature is
independent of the sign of chirality; this is because one of
the basic features of GEV decomposition is that, when the
parity reversal transformation is applied to �Z s

σ, it is trans-
formed to the same wave mode with the opposite chirality
sign: �Z s

σ → �Z s−σ.
The last section of this paper outlines an assumption

to explain the asymmetry of the interaction between the IC
and Wh modes.

Using the following three-mode truncated model,3

triad interaction (see [14]) is considered, i.e., the energy
transfer between the assigned three GEV modes (�k+�p+�q =
�0): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ż∗k = (Λq − Λp)TkpqZpZq,

Ż∗p = (Λk − Λq)TkpqZqZk,

Ż∗q = (Λp − Λk)TkpqZkZp,

(18)

where k, p, and q stand for the indices of the GEV modes
(e.g. k = (�k, σk, sk), Λk = Λ

sk
σk

(|�k|)) [15].
3In this paper, the totally antisymmetric tensor Tkpq is defined by

Tkpq := 2〈�Zk |∇̃�Zp
�Zq〉/(Λp − Λq − Λk) (cf. Ref. [7], Appendix C).
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This model has two constants of motion, the energy E
and the modified cross helicity H [10, 16]:

E = Ek + Ep + Eq, (19)

H = ΛkEk + ΛpEp + ΛqEq, (20)

where E j =
1
2 |Zj|2 ( j = k, p, q). Supposing that the energy

of each mode varies as E j → E j+δE j, the variations (δE j)
satisfy the following two equations:

δEk + δEp + δEq = 0, (21)

ΛkδEk + ΛpδEp + ΛqδEq = 0, (22)

which are solved as follows:

δEk = −Λq − Λp

Λq − Λk
δEp, δEq = −Λp − Λk

Λq − Λk
δEp.

(23)

Suppose that Λk < Λp < Λq, the lowest (k) and highest
(q) modes acquire energies, i.e. δEk, δEq > 0, when the
medium mode (p) supplies energy, δEp < 0. Conversely,
remember that the eigenvalues of the GEV modes satisfy
the following inequality:

Λ−+ < −1 < Λ+− < 0 < Λ++ < 1 < Λ−−, (24)

for arbitrary IC modes (Λ+σ) and Wh modes (Λ−σ) irrespec-
tive of their wavenumbers. This implies that the Wh mode
must become the highest or lowest modes of the triad in-
teraction between the IC- and Wh-modes. Thus, the Wh-
modes seem to have more potential for energy acquisition
than the IC modes; certaily, this requires further analysis
in a future study. This relationship plausibly explains that
energy transfers mainly from the IC to Wh modes.
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