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Self and mutual inductances of toroidal-field (TF) coils are empirically expressed by linear combinations of
three coil-shape parameters: elongation, aspect ratio, and triangularity, based on their calculation results with the
Neumann formula. A regression function was also obtained for calculating rough values of self-inductances of
toroidal-shape structures such as a vacuum vessel in a Tokamak-type fusion reactor. An analysis for their eddy
currents induced during fast discharge of TF coils is presented for showing as an application example of these
formulas.
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1. Introduction
Analyses for electromagnetic dynamics of TF coils

are required for estimating thermal and mechanical im-
pacts on related reactor structures during their fast dis-
charge in emergency conditions such as loss of supercon-
ductivity (quench) or loss of cyclic symmetry [1, 2]. The
most important quantities required for these analyses are
self and mutual inductances of TF coils used in their cir-
cuit equations [3].

The self inductance of TF coil set becomes larger with
increasing its size as in the case of fusion demo reactors [4]
that have enormous magnetic stored energy to be thermally
and safely dissipated during the fast discharge [2]. These
inductances are accurately and numerically evaluated by
the well-known Neumann formula [5]. The Neumann for-
mula, however, requires us to carry out many complicated
line integrals along conductor-current paths distributed in
3D-space.

Estimation of eddy currents induced in toroidal-shape
structures such as a vacuum vessel during the TF-coil fast
discharge is also important for consideration of their struc-
tural integrity and often analyzed prior to structural anal-
yses with a general purpose numerical calculation code
such as ANSYS [6] or a dedicated code for transient elec-
tromagnetic analyses such as EDDYCAL [7]. These elec-
tromagnetic structural analyses are not easy because they
need detailed 3D-modeling of structures and long compu-
tation time and therefore it would be necessary to verify
and understand their results consisted of massive numeri-
cal data by preliminary simple analyses.
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In the simplified analysis for eddy currents, they can
be estimated by setting up circuit equations that include
circuit constants for TF coils and related structures, i.e.,
their resistances, self and mutual inductances. These cir-
cuit constants should also be easily evaluated for conve-
nience from dimensions given in their design drawings.

In this paper, we will present empirical formulas
for evaluating self and mutual inductances of TF coils
and toroidal-shape structures with defining their cross-
sectional shape parameters such as elongation, aspect ra-
tio, and triangularity. For showing an example of applica-
tion of the simplified inductance calculation, we will also
demonstrate an analysis of eddy currents induced in TF-
coil structures and the vacuum vessel in the fast discharge
of TF coils of a fusion demo reactor, JA DEMO [4], for
rough estimations of their thermal and mechanical impacts.

2. Inductance of Toroidal Structure
2.1 General formula

A mutual-inductance between toroidal-shape struc-
tures would be approximated by calculating coupled
toroidal magnetic flux inside their poloidal current center
lines (CCL). The mutual inductance Mi j between the i-th
and j-th structures with a volume Vi is then estimated from

Mi jI j ≈ Ni

∫
i
BdS = Ni

∫
i
B(R)dRdZ

≈ μ0NiNjI j

2π
(Hi + Hi

′)ξi,
(1)

with the inductance factor

ξi =
1

Hi + Hi
′

∫
i

( |Z(R)|
R
+
|Z′(R)|

R

)
dR for Vi ⊆ Vj,
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where I is the poloidal current, N the number of turns, B ≈
μ0NjI j/(2πR) the toroidal magnetic flux density generated
by j-th current, R and Z are radial and axial coordinates
of a point on the CCL, respectively, H the height of CCL
(maximum value of Z) and the prime (‘) denotes quantities
below its equatorial planes (see Fig. 1).

We have Mi j = Mji ≈ (μ0NiNj/2π)(Hi + Hi
′)ξi from

Eq. (1) and the self-inductance Li = Mii. The formula for
calculating the inductance factor ξi was analytically de-
rived based on the geometry shown in Fig. 1, which is pre-
sented in Appendix A.

2.2 Shape parameters of toroidal structure
We define the following parameters as being used for

a Tokamak plasma to express the poloidal cross-sectional
shape: elongation κ = H/a, aspect ratio A = R/a, and
triangularity δ = (R − RM)/a, where RM is the radius at
which Z = H, R = (RO +RI)/2 the major radius, a = (RO −
RI)/2 the minor radius with RI and RO being the inboard
and outboard radii, respectively, (see Fig. 1). Using the
defined parameters and the height H, we inversely obtain
these radii as RO = a(A+ 1), RI = a(A− 1), RM = a(A− δ),
and R = aA with a = H/κ.

The TF coil shape (or its CCL) is usually expressed
by six arcs in its design [8], as shown in Fig. 1. For a
limiting case of the shape being vertically symmetric with
θ2 = π/2 − θ1 and θ3 = π/2 in Fig. 1, radii and center co-
ordinates of these arcs are given with parameters κ, δ, A,
H, and the arc angle θ1 as

R1 = H

(
cos θ1 + ι(sin θ1 − 1)
cos θ1 + sin θ1 − 1

)
,

R2 = H

(
cos θ1 − 1 + ι sin θ1
cos θ1 + sin θ1 − 1

)
,

R3 = RM − RI = H(1 − δ)/κ,

Fig. 1 Shape definition of TF-coil CCL in poloidal cross sec-
tion, which is usually consisted of 6 arcs.

Rc1 = RO − R1 = (H/κ)(A + 1) − R1, Zc1 = 0,

Rc2 = Rc1 + (R1 − R2) cos θ1, Zc2 = (R1 − R2) sin θ1

Rc3 = Rc2, and Zc3 = Zc2 + R2 − R3,

where ι = (1 + δ)/κ.

Note that ι < 1 and R1 > H because R1 should
be greater than R2 and then θ1 is inversely estimated by
2 tan−1[(R1/H − ι)/(R1/H − 1)]− π/2 for a given radius R1

of outboard curvature, which gives θ1 → 0 for R1 → ∞
with R2 → Hι = RO − RM .

The cross-sectional shape of toroidal structure is thus
defined by parameters κ, δ, A, and θ1 and therefore the in-
ductance factor ξ can be expressed as a function of them.
We carried out a regression analysis with randomly gener-
ating 105 sets of parameters in ranges of 1.5 ≤ κ ≤ 2.0,
1.5 ≤ A ≤ 2.0, 0.22 ≤ δ ≤ 0.5, and 0 < θ1(◦)/90 ≤ 0.7 and
obtained an empirical formula for ξ as

ξ = c0+cκκ+cδδ+cA1A+cA2A2+cθ(θ1/90)+ε, (2)

with c0 = 4.933, cκ = 0.03728, cδ = 0.06980, cA1 =

−3.551, cA2 = 0.7629, and cθ = −0.06298. The standard
deviation of the relative error ε/ξ was then estimated to be
0.12%.

2.3 Self inductance of TF coil set
We calculated the self and mutual inductances of TF

coils with the Neumann formula for the following various
values of parameters: κ = 1.5, 1.6 and 1.7, δ = 0.2, 0.35
and 0.5, A = 1.5, 1.6 and 1.7, and θ1(◦) = 40, 50 and 60, all
of which totally give 81 parameter combinations and CCL
shape variations shown in Fig. 2 for H = 9.3 m.

In this calculation, we set geometrically imaginable
current cross-sectional area (i.e. winding pack, WP) shown
in Fig. 2 (b) to take its finite size into account, which would
affect especially on estimations of the self-inductance

Fig. 2 Current center lines (CCL) for calculating inductances,
(a) CCL shape variations for used value ranges of param-
eters κ, δ, A, and θ1, (b) Inner-leg cross-sectional structure
around CCL of TF coil, which is drawn only by roughly
satisfying geometric constraint for each calculation case
and plural conductors are distributed within the shadow
region for the inductance calculation with the Neumann
formula.
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value of a single TF coil and the mutual one between adja-
cent coils. The typical sensitivity (δL/L)/(δw/w) of the self
inductance L of the TF-coil set was estimated for the frac-
tional size change (δw/w) of WP to be ∼5% in the toroidal
direction and 6 - 9% in the radial direction.

The self-inductance of the TF-coil set is then ex-
pressed by L = LOξN with LO = (μ0/π)(NT FC NC)2H,
where ξN is the inductance factor given by the calculation
with the Neumann formula, NT FC is the number of TF coils
and NC that of turns per coil.

We first compared ξ given by Eq. (1) to ξN for all pa-
rameter combinations, which is shown in Fig. 3 (a). The er-
ror of ξ was then within the range of −1.5 < (ξ−ξN)/ξN (%)
< 0.9. Next, we assumed ξN ≈ ξ+Δξ with Δξ = C0+Cκκ+
Cδδ + CAA and had optimum coefficients C0 = 0.05808,
Cκ = −0.05846, Cδ = −0.02906, and CA = 0.03008. In
this case the error is reduced to |ξ + Δξ − ξN |/ξN < 0.2%
(see Fig. 3 (b)). Here we ignored the dependence of induc-
tance on the arc angle θ1 because CCL shapes are hardly
changed for its value range.

We also let ξN ≈ ξ′ = C′0 +C′κκ +C′δδ +C′AA with-
out using ξ, finding optimum coefficients C′0 = 3.026,
C′κ = −0.03238, C′δ = 0.1091, and C′A = −1.093,
which gave the error |ξ′ − ξN |/ξN < 1.4% (see Fig. 3 (c)).
This evaluation is the simplest method to find rough self-
inductance values without calculating ξ whereas the sec-
ond one (Fig. 3 (b)) gives very accurate values.

To verify these regression functions (empirical formu-
las), we calculated the self inductance of the ITER TF-coil
set, which is reported to be 17.3 H in Ref. [2]. The ITER

Fig. 3 Comparisons of approximated inductance factors to ξN
and mutual inductances to M̂k for all combinations of pa-
rameters, where we assume (a) ξN ≈ ξ, (b) ξN ≈ ξ + Δξ
with Δξ = C0 + Cκκ + Cδδ + CAA, (c) ξN ≈ ξ′ =
C′0 + C′κκ + C′δδ + C′AA, and (d) M̂k ≈ M̂∗k = C′′0 +
C′′κκ +C′′δδ +C′′AA.

TF-coil CCL parameters are evaluated to be κ ≈ 1.57,
δ ≈ 0.341, A ≈ 1.68, θ1 ≈ 70◦, θ2 ≈ 40◦, H ≈ 6.31 m,
NT FC = 18, NC = 134, and LO = 14.7 H. These pa-
rameter values gave the self-inductance as LOξN = 17.3 H,
LOξ = 17.2 H, LO(ξ + Δξ) = 17.3 H, and LOξ

′ = 17.3 H.
Thus, we can immediately find the value of self inductance
with the quantity LO and three TF-coil shape parameters κ,
δ, and A.

2.4 Mutual inductances between TF coils
Mutual inductances Mi j = LOM̂k with k = |i− j|would

also be estimated by equating

M̂k ≈ M̂∗k = C′′0k +C′′κkκ +C′′δkδ +C′′AkA,

where the normalized value M̂k was found by using the
Neumann formula with the number of TF-coils NT FC = 16
selected for JA Demo design [4], i.e., i, j = 1 - 16, 0 ≤
k = |i − j| ≤ 8, and M̂16-k = M̂k for k > 8. Table 1
presents optimized coefficients for each k and calculated
values of M̂∗k are compared to M̂k in Fig. 3 (d) for all cases,
where the error was estimated to be |M̂∗k−M̂k |/M̂0 < 0.7%,
(0 ≤ k ≤ 8).

Note that coefficients for k = 0 presented in Table 1
are not for the self inductance of TF coil set described in
Sec. 2.3 but for a single TF coil.

This result, of course, is not directly applied to TF-
coil designs with NT FC � 16 such as the ITER TF-coil set
consisted of 18 ones. Mutual inductances for NT FC = 18
can be obtained with the following calculation procedure
by assuming that M̂∗k is a function of x = k/(NT FC/2) with
0 ≤ k = |i − j| ≤ NT FC/2, i.e., 0 ≤ x ≤ 1.

(1) Calculate M̂∗k for k = 0, · · · ,NT FC/2 using shape pa-
rameters of concerned TF coils with NT FC = 16.

(2) Find a regression or spline curve f (x) for plots (xk,
M̂∗k), where xk = k/(NT FC/2) with NT FC = 16.

(3) Calculate M̂∗k = f (xk) for k = 0, · · · ,NT FC/2 with
NT FC = 18.

Table 1 Optimized coefficients for calculating mutual induc-
tances of TF coils.
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Fig. 4 Mutual inductances estimated for ITER TF coils, where
(a) regression curve for plots (xk, M̂∗k) with NT FC = 16
and M̂∗k calculated for NT FC = 18 and (b) mutual induc-
tances of ITER TF-coils estimated from this regression
curve and those calculated with the Neumann formula.

(4) Calculate the normalized self-inductance L̂ of the TF-
coil set with N′ = NT FC/2

L̂ = NT FC

(
M̂∗0 + 2(M̂∗1 + · · · + M̂∗N′−1) + M̂∗N′

)
.

(5) Calculate mutual inductances with Mi j ≈ M̂∗kL/L̂,
(k = |i − j|), where L is the self-inductance of the TF-
coil set with NT FC = 18.

Figure 4 (a) shows the regression curve for M̂∗k and
estimated mutual inductances for ITER TF coils with
NT FC = 18, where the relative error ε = |M̂∗0− M̂0|/M̂0 for
i = j was 1.4% in comparison to the value calculated with
the Neumann formula (see Fig. 4 (b)). This error magni-
tude of Mii that is the self inductance of the single TF coil
is slightly higher compared to the result shown in Fig. 3 (d)
with ε < 0.7%.

One of this reasons would be reduction in the cross-
sectional area of the TF coil current (winding pack) when
NT FC is increased from 16 to 18 (see Fig. 2 (b)). The size
of the winding pack is decreased by ∼10% in the toroidal
direction and then L is increased by ∼0.5% (see Sec. 2.3),
which gives the increment in M̂0 of 1.4% as mentioned
above with taking account the contribution of the self in-
ductance LOM̂0 to L being ∼36%.

3. Application
Figure 5 shows an example of conceptual design

drawing for JA Demo [4], which shows poloidal cross sec-
tion of the TF coil and the vacuum vessel (VV). We con-
sider poloidal eddy-current inductions in and their influ-
ences on reactor structures in the case of emergency fast
discharge of the TF-coil current. Eddy currents are as-
sumed to be induced in TF-coil structures, consisted of coil
cases and radial plates (see Fig. 5), and the vacuum vessel.

Circuit equations for solving this problem are written
as

L1 İ1 + M12 İ2 + M10 İ0 + R1I1 = 0
L2 İ2 + M21 İ1 + M20 İ0 + R2I2 = 0

, (3)

where I is the current, L the self-inductance, M the mu-
tual inductance, R the resistance, and subscripts 0, 1, and 2

Fig. 5 Conceptual design drawing of TF coil and vacuum vessel
in JA Demo, where closed line and dots denote roughly
dawn poloidal current center line of each structure.

Table 2 Roughly estimated CCL-dimensions of TF coil, its
structure, and vacuum vessel of JA DEMO.

denote values of the TF-coil conductor, the coil structure,
and the vacuum vessel (VV), respectively. Initial condi-
tions are I1(0) = I2(0) = 0 and the conductor current of
the TF coil is assumed to be exponentially decayed with
the time constant τd, i.e. I0 = IOP exp(−t/τd), where IOP

(= 83.2 kA) is the normal operating current.
We need values of self and mutual inductances to

solve the circuit equations. To find these values, we
roughly drew a (almost handwritten) CCL for each struc-
ture along its contour as shown Fig. 5 (indicated by a
closed line and dots), measured its dimensions, and esti-
mated values of parameters κ, δ, A, and H, which are pre-
sented in Table 2. Note that CCL dimensions of the TF coil
and its structure have nearly the same values, i.e., H1 ≈ H0,
ξ1 ≈ ξ0 and the coil structure and the VV are regarded as
single-turn coils (N1 = N2 = 1).

Self and mutual inductances of these structures are
written from Eq. (1) by

L0 ≈ (μ0/π)N
2
0 H0ξ0,

1405078-4



Plasma and Fusion Research: Regular Articles Volume 15, 1405078 (2020)

Table 3 Inductance matrix Mi j for reactor structures of JA
DEMO shown in Fig. 5 (in H).

L1 ≈ (μ0/π)H1ξ1 ≈ (μ0/π)H0ξ0 = L0/N
2
0 ,

L2 ≈ (μ0/π)H2ξ2,

M01 = M10 ≈ (μ0/π)N0H0ξ0 = L0/N0 = L1N0,

M02 = M20 ≈ (μ0/π)N0H2ξ2 = L2N0,

and M12 = M21 ≈ (μ0/π)H2ξ2 = L2,

where N0 = NT FC NC (= 16 × 192) and we assumed or
approximated that coils and structures are symmetric with
respect to their equatorial planes, i.e., Hi = Hi

′. The self
inductance of each structure can be evaluated by finding
arc parameters Ri, θi, Rci and Zci, ( j = 1 - 3) described in
Sec. 2.2 and then calculating the inductance factor ξ with
the equations presented in Appendix A or the regression
function Eq. (2). Table 3 presents the inductance matrix
Mi j of the system Eq. (3).

We also need poloidal loop resistances of the TF-coil
structure and the vacuum vessel. The loop resistance of
the coil structure is given by R1 ≈ ηS S LlCCL/(NT FC(S CC +

S RP)) ≈ 1.1 µΩ, where ηS S L is the resistivity of SS316
(∼0.5 µΩm) at low temperature (4.2 K), lCCL (≈ 51 m) the
CCL length, S CC (≈ 0.94 m2) and S RP (≈ 0.55 m2) are
cross-sectional area of the coil case and the radial plates,
respectively.

The loop resistance of the VV was estimated from the
following poloidal line integral

R2 = ηS S H

∮
VV

(2πR(l)Δ(l))−1dl ∼ (ηS S H/ΔVV )ϕ, (4)

to be ∼6.6 µΩ, where ηS S H is the resistivity of SS316
(0.84 µΩm) at high temperature (100◦C), Δ(l)∼ΔVV (∼2 ×
60 mm) the VV thickness, and a formula to calculate the
factor ϕ (≈ 0.94) for a uniform ΔVV is given in Ap-
pendix A. The conceptually designed VV is double-walled
and has 20 mm-thick 64 poloidal ribs with a CCL length of
∼41 m. Assuming their averaged width is roughly 1 m, we
estimated their total loop resistance to be 27 µΩ that re-
duces the VV resistance from 6.6 µΩ to 5.3 µΩ.

Equations (3) are rewritten as

İ1+gİ2+λ1I1 = λ0N0I0 and İ1+ İ2+λ2I2 = λ0N0I0,

where

λ0 = 1/τd (≈ 0.033 s−1 for τd = 30 s),

Fig. 6 Time evolutions of eddy currents induced in TF-coil
structure (I1) and vacuum vessel (I2) (red curves) for
τd = 30 s, where blue curves show approximated solu-
tions for λ2 � λ1, λ0, and the black curve denotes I2

calculated by assuming I1 = 0, i.e., there is no TF-coil
structure.

λ1 = R1/L1 = N2
0 R1/L0 (≈ 0.22 s−1) and

λ2 = R2/L2 = N2
0 R2/(gL0) (≈ 1.8 s−1)

with g = L2/L1 (≈ 0.62). From these values for this case,
we can say that λ2 � λ1, λ0. If I1 � I2, the equations
become

İ1 + λ1I1 = λ0N0I0 and İ2 + λ2I2 = λ1I1,

and then we have approximated solutions

I1 ≈ λ0N0IOP(e−λ1t − e−λ0t)/(λ0 − λ1)

and I2 ≈ (λ1/λ2)I1( I1) for λ2 � λ1, λ0.

Figure 6 shows time evolutions of eddy currents of the
TF-coil structure (I1) and the vacuum vessel (I2). We see
that approximated solutions are well agreed with accurate
ones, i.e., the eddy current of TF-coil structure is hardly
influenced by that of the VV and cannot be ignored for
calculation of the latter.

The eddy current in the TF-coil structure generates
Joule heat. Each conductor is heated by the Joule heat q
generated in the radial plate (RP), which is estimated per
unit length by

q = ηS S L( fRPI1/N0)2/(S RP/NC) with

fRP = S RP/(S CC + S RP)(∼0.37),

where fRP is the area fraction of the radial plate. For the
peak value of I1 in Fig. 6, Joule heat q is estimated to be
1.8 kW/m per conductor for τd = 30 s and 3.3 kW/m for
τd = 20 s, which would give no small effect on the temper-
ature rising of the conductor in its quench event via heat
conduction through a turn insulation.

The purpose of the calculation of the eddy current in-
duced in the VV is to estimate stresses generated by the
electromagnetic hoop force. The equation for roughly cal-
culating the Tresca stress of the inboard wall is given in
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Appendix B. Using this, we evaluated it for the peak
current of I2 to be 56 MPa for τd = 30 s and 74 MPa
for τd = 20 s, which are lower than the allowable stress
(∼143 MPa) of the VV material (SS316L).

The estimated Tresca stress of 56 MPa for τd = 30 s,
however, is smaller than that (∼100 MPa) obtained by a fi-
nite element analysis (FEA) [9] with nearly the same con-
ditions. One of the reasons is that the FEA excluded the
eddy current (I1) induced in the TF-coil structure in its
modeling, which increases the peak VV eddy current with
a factor 1.32 (= 0.0177/0.0134, see Fig. 6), i.e., the stress
estimated in the FEA should be reduced to 76 MPa. Then
the relative estimation error becomes 26%. This residual
error would be mainly arisen from the VV model shape
drawn in Fig. 5 being quite different from the design draw-
ing of its outboard structure that has maintenance ports.

4. Summary and Conclusions
We have presented a method for easily estimating self

and mutual inductances of TF coils and toroidal-shape
structures, defining their cross-sectional shape parameters.

In Chap. 2, we tried to estimate the self-inductance of
TF-coil set, calculating the toroidal magnetic flux passing
through the cross-sectional area enclosed by its CCL. The
shape dependence of inductances is then expressed by the
inductance factor ξ of a function of shape parameters: the
elongation κ, the triangularity δ, the aspect ratio A, and the
arc angle θ1, and we obtained its empirical formula by a
regression analysis. This formula would be useful to es-
timate the inductance of a toroidal-shape structure for its
poloidal eddy current analysis.

The inductance factor ξ was compared to that obtained
with the Neumann formula for the TF-coil set that has
finite-size current-flow areas and a discontinuous structure
in the toroidal direction. We found that ξ has relative errors
within 1.5% in value ranges of shape parameters treated
in this paper. This relative error was reduced to 0.2% by
adding the correction term expressed by a linear combina-
tion of κ, δ, and A (without θ1). The inductance value with
this accuracy would be sufficient for using in the TF-coil
design and its safety considerations. We also found that
their linear combination directly gives the self-inductance
without calculating ξ, where the relative estimation er-
ror was within 1.4% for its optimized coefficients. These
empirical formulas were verified by calculating the self-
inductance of the ITER TF-coil set to have its known value
(= 17.3 H).

The mutual inductance Mi j (1 ≤ i, j ≤ NT FC/2) was
also expressed by a linear combination of κ, δ, and A with
relative errors less than 0.7%. We obtained its optimum
coefficients for each pair of TF coils with NT FC = 16 and
showed that this result can also be applied to the case of
NT FC = 18 selected for the ITER coil set. A bit of relative
error (∼1.4%), however, appeared in the self-inductance
M00 of a single ITER TF-coil because it becomes thinner

with increasing NT FC , which increases the self-inductance.
In Chap. 3 we demonstrated an analysis for eddy cur-

rent inductions during the fast discharge of the TF coil set
of JA DEMO, calculating self and mutual inductances of
the TF-coil structure and the vacuum vessel (VV), and es-
timated the peak Joule heat generated in the TF-coil struc-
ture and the Tresca stress in the VV inboard wall. Al-
though the result for the VV stress was not well agreed
with the FEA due to a poor modeling of the VV structure,
this simplified analysis would be useful to verify the anal-
ysis model, understand the result, and make a plan for the
large scale FEA.
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Appendix A Inductance Factor
The inductance factor ξ in Eq. (1) is written by

ξ :=
1

H + H′

6∑
k=1

∫ R2k

R1k

|Zk(R)|
R

dR =
6∑

k=1

ξk,

with Zk(R) = Zck + Rck

√
1 − (R/Rck)2, which becomes

ξk =
1

H + H′

⎛⎜⎜⎜⎜⎜⎝Rk

∣∣∣∣∣∣∣
∫ τ2k

τ1k

√
1−τ2

τ + ωk
dτ

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣Zck ln

(
R2k

R1k

)∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠ ,

where ωk = Rck/Rk, τsk = (Rsk − Rck)/Rk = cosΘsk, (s =
1, 2), with

Θ11 = θ1, Θ21 = 0, Θ12 = θ1 + θ2, Θ22 = θ1,

Θ13 = θ1 + θ2 + θ3 = π, and Θ23 = θ1 + θ2.

The integral in ξk is carried out analytically [10] to be

ξk(H + H′)
= Rk

∣∣∣∣[ωk sin−1 τ +
√

1 − τ2 + pkΛ(τ, ωk)
]τ2k

τ1k

∣∣∣∣
+

∣∣∣∣∣∣Zck ln

(
R2k

R1k

)∣∣∣∣∣∣ with pk = 1 − ω2
k

,

where Λ(τ, ωk) =
∫

dτ

(τ + ωk)
√

1 − τ2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√|pk |
sin−1

(
1 + ωkτ

τ + ωk

)
for pk < 0

−
√

1 − τ2

ωk(τ + ωk)
for pk = 0

1√|pk |
ln

⎛⎜⎜⎜⎜⎜⎜⎝
2
(
1 + τωk −

√
pk(1 − τ2)

)
τ + ωk

⎞⎟⎟⎟⎟⎟⎟⎠
for pk > 0.

The quantity ϕ in Eq. (4) that gives the VV loop resis-
tance is also expressed by using Λ as

ϕ =

∮
dl

2πR(l)
≈ 1

2π

∫ √
1 + (dZ(R)/dR)2 dR

R
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=
1

2π

⎛⎜⎜⎜⎜⎜⎜⎝
6∑

k=1

∣∣∣∣∣∣
∫ τ2k

τ1k

dτ

(τ + ωk)
√

1 − τ2

∣∣∣∣∣∣ +
Zc3 + |Zc6|

RI

⎞⎟⎟⎟⎟⎟⎟⎠
=
χ

2π

with χ =
Zc3 + |Zc6|

RI
+

6∑
k=1

|Λ(τ2k, ωk) − Λ(τ1k, ωk)|.

Appendix B Tresca Stress in VV Wall
The Tresca stress σVV generated in the inboard wall

of the vacuum vessel (VV) by its eddy current I2 is given
by σVV = |σθ−σZ |, where σθ and σZ are principal stresses
in toroidal and vertical directions, respectively. Since the
toroidal magnetic field B in the VV wall is given by B ≈
BVVIRVVI/R, the vertical force FVV acting on the VV is
estimated by

FVVZ ≈ BVVIRVVI I2

∫
dR/R

= BVVIRVVI I2 ln(RVVO/RVVI),

where subscripts VVI and VVO denote quantities of in-
board and outboard walls of the VV, respectively. The ver-
tical stress generated in the VV wall is then calculated by

σZ ≈ FVVZ

2πΔVV (RVVI + RVVO)

=
BVVI JVVIRVVI

1 + RVVO/RVVI
ln

(
RVVO

RVVI

)
,

where JVVI = I2/(2πΔVVRVVI) with ΔVV being the VV
thickness is the current density and BVVI ≈ μ0(I0 + I1 +

I2/2)/(2πRVVI) the average magnetic field strength in the
inboard VV wall.

The radial Lorentz force acting on the VV inboard
wall is approximated by −BVVI JVVI and we have

σθ ≈ −(BVVI JVVIΔVV )RVVI/ΔVV

= −BVVI JVVIRVVI .

using the cylindrical thin shell model.
We thus obtain the Tresca stress as

σVV = |σθ − σZ | = ζBVVI JVVIRVVI ,

where ζ = 1+(AVV−1) ln[(AVV+1)/(AVV−1)]/(2AVV ) with
the VV aspect ratio AVV = (RVVO + RVVI)/(RVVO − RVVI).
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