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We extended the global gyrokinetic code GKNET (GyroKinetic Numerical Experiment of Tokamak) to non-
circular shaped plasmas with analytical magnetic equilibria, which satisfy the Grad-Shafranov equation up to the
second order with respect to aspect ratio. The extended version allows us to set the equilibria with non-unity
elongation and non-zero triangularity, where the finite Shafranov shift is consistently determined. The allocated
mesh follows the magnetic field line with periodic boundary conditions along the poloidal and toroidal directions
so that the calculation cost for solving the gyrokinetic quasi-neutrality condition can be reduced by utilizing 1D
FFT and MPI_ALLtoALL transpose technique. Based on the developed code, we studied the effect of elongation
and triangularity on linear Ion Temperature Gradient (ITG) instability with adiabatic electrons in a non-circular
shaped Tokamak by paying attention to the symmetry breaking of mode structure due to global profile effects.
It is found that elongation reduces ITG instability owing to the effective reduction of flux-surface averaged ion
temperature gradient and increases the asymmetry characterized by the Bloch angle θb. On the other hand,
when elongation is approximately unity, triangularity weakly affects the growth rate, while negative triangularity
stabilizes ITG modes and increases the asymmetry in a large elongation regime.
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1. Introduction
The control of plasma shaping is important to achieve

high-performance plasmas, which sensitively influences
on MHD instability. Some Tokamak experiments have
shown that an increase in elongation and triangularity leads
to the higher β stability limit [1] with keeping higher con-
finement [2], indicating that plasma shaping affects micro-
scale instability and associated turbulent transport [3–5]
coupled with coherent macro-scale flows, such as zonal
flow and Geodesic Acoustic Mode (GAM) [6].

By means of the rectangular (R, Z, ζ) version of our
global gyrokinetic code GKNET [7, 8], which uses a new
real space field solver based on the diagonalization of zonal
flow equation, we investigated plasma shaping effects on
the collisionless damping of GAM. We found that not only
elongation but also triangularity is effective in increasing
the damping rate of GAM regardless of the sign, either
plus or minus [9]. In this case, we employed the Miller
equilibrium [10]. This equilibrium is a local parameterized
model on a flux surface, which can be applied to local gy-
rokinetic analyses [3–5]. On the other hand, it does not
globally satisfy the Grad-Shafranov equation so that elon-
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gation is assumed to be approximately unity, triangular-
ity and Shafranov shift are small, which are independent
from safety factor profile in our previous study [9]. This
assumption limits the parameter regime for studying global
plasma shaping effects.

From the numerical point of view, the rectangular ver-
sion uses the fixed boundary condition in the poloidal plane
and the allocated mesh points do not follow the magnetic
flux surface. It usually increases the calculation cost for
solving the gyrokinetic quasi-neutrality condition.

To resolve this problem, in this study, we intro-
duced analytical magnetic equilibria that satisfy the Grad-
Shafranov equation up to the second order with respect to
aspect ratio. Based on this version of GKNET, we studied
the effect of elongation and triangularity on ITG instability
with adiabatic electrons.

2. Analytical Magnetic Equilibrium
We employ the magnetic equilibrium with a non-

circular plasma shape with non-unity elongation, non-zero
triangularity and Shafranov shift [11], which is obtained by
solving the Grad-Shafranov equation in the limit of small
aspect ratio, i.e., ε ≡ r/R0 → 0, by taking into account for
plasma shape and extrapolating the equilibrium to r = a0.

c© 2020 The Japan Society of Plasma
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Here, r is the radial coordinate, a0 and R0 are the minor
and major radii, respectively. The solution of the Grad-
Shafranov equation is then given by

R = R0 + r cos θ − Δ(r) + S 2(r) cos θ

+ S 3(r) cos 2θ − S 3(a0), (1)

Z = r sin θ − S 2(r) sin θ − S 3(r) sin 2θ, (2)

where Δ(r) is the Shafranov shift, S 2(r) and S 3(r) are the
shaping functions related to the elongation κ and triangu-
larity δ, which are given by

Δ(r) =
∫ r

0
Δ′(r̄)dr̄, (3)

Δ′(r) =
a2

0q(r)2

2qbR0r

⎡⎢⎢⎢⎢⎣ a2
0

qbr2
log

(
q(r)
qa

)
− 1

q(r)

⎤⎥⎥⎥⎥⎦
− R0q(r)2

r3

∫ r

0
r̄2β′(r̄)dr̄, (4)
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(1 + κ)(3qa + qb)
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a2
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r3 + 3qar
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δ

4a0(2qa + qb)

⎛⎜⎜⎜⎜⎝qb

a2
0

r4 + 2qar2

⎞⎟⎟⎟⎟⎠ . (6)

Here, we set a quadratic safety factor profile given by
q(r) = qa + qb(r/a0)2. The contravariant components and
covariant bases of magnetic field are given by

Br = 0, Bθ =
ψ′(r)√
g
, Bζ =

F(r)
R2

, (7)

br =
grθψ

′(r)√
gB

, bθ =
gθθψ

′(r)√
gB

, bζ =
F(r)

B
, (8)

where

√
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−1
2
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]
, (13)

ψ′(r) =
rF(r)
q(r)R0

. (14)

Here, β(r) is the ion β-value given by p(r)/[B2
0/2μ0] (B0

is the magnitude of magnetic field on the magnetic axis),
which is assumed to be small because we consider the elec-
trostatic limit in this study. Important input parameters in
Eqs. (7) and (8) are the elongation κ, triangularity δ, and
the coefficients of safety factor profile, i.e., qa and qb, while

Fig. 1 Poloidal cross section of the magnetic surfaces in the case
with β(r = a0) = 0.01, κ = 1.5, and δ = 0.3. Red
line shows an analytical solution given by Eqs. (1) - (14),
and black line shows a numerical solution calculated by
TASK/EQ.

the Shafranov shift is consistently given by the safety fac-
tor and pressure profiles, q(r) and p(r). Note that even in
a concentric circular case with κ = 1 and δ = 0, the mag-
netic flux is modified by the higher order correction terms
in Eq. (13), which leads to the finite Shafranov shift. Fig-
ure 1 shows the typical shape of the magnetic surface in
a poloidal cross section in the case with a0/R0 = 0.36,
β(r = a0) = 0.01, κ = 1.5, δ = 0.3, qa = 0.85, and
qb = 2.18. Red line represents the analytical solution given
by Eqs. (1) - (14), while black line represents that calcu-
lated numerically by TASK/EQ [12]. Since the analytical
solution is obtained in the limit of r/R0 → 0 and extrapo-
lated to r = a0, it is valid on both magnetic axis and last
closed flux surface. On the other hand, the analytical solu-
tion has a small difference with numerical one in the other
region. This originates from the higher order terms with
respect to the aspect ratio in the Grad-Shafranov equation
and the difference is found to be reduced by using a smaller
aspect ratio.

3. Gyrokinetic Equation System for
Shaped Plasma
Based on the model given by Eqs. (1) - (14), we newly

derived the normalized gyrokinetic equation of motion as
follows:

J dr
dt
= v‖

(
∂bζ
∂θ
− ∂bθ
∂ζ

)
∂H
∂v‖
+

(
∂bζ
∂θ
− ∂bθ
∂ζ

)
H
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−
(
∂Hbζ
∂θ
− ∂Hbθ

∂ζ

)
, (15)
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where v‖ is the parallel velocity along the magnetic field
line, μ is the magnetic moment, H = 0.5v2

‖+μB+〈φ〉α is the
gyrokinetic Hamiltonian (〈φ〉α is the gyro-averaged elec-
trostatic potential), and J ≡ √gB∗‖ is the phase space Ja-

cobian (B∗‖ = B + v‖
[
−

(
bθ/
√
gθθR

)
∂rbζ +

(
bζ/rR

)
∂rbθ

]
is

the modified magnetic field). Here, all physical quantities
are normalized as r/ρt0i → r, vt0it/ρt0i → t, v‖/vt0i → v̄‖,
H/Ti0 → H and B/B0 → B̄ (ρt0i and vt0i are the ion gyro
radius and ion thermal velocity at r = 0.5a0, respectively).
Note that the phase space volume conservation;

∂

∂r

(
J dr

dt

)
+
∂

∂θ

(
J dθ

dt

)
+
∂

∂ζ

(
J dζ

dt

)
+
∂

∂v‖

(
J dv‖

dt

)
= 0, (19)

is rigorously satisfied because Eqs. (15) - (18) are derived
analytically from the gyrokinetic Hamiltonian incorpo-
rated with the condition ∇ · B = 0 in the (r, θ, ζ) coordinate
system we defined in Sec. 2. This property is important for
keeping numerical accuracy and stability in full- f gyroki-
netic simulations.

Based on Eqs. (1) - (18), we developed the new version
of GKNET which is available for simulating non-circular
shaped plasmas. The governing equation system consists
of the gyrokinetic Vlasov equation for the full- f ion distri-
bution function and gyrokinetic quasi-neutrality condition
with adiabatic electron in the R = (r, θ, ζ) coordinate sys-
tem as

∂

∂t
(J f ) +J dR

dt
· ∂ f
∂R
+J dv‖

dt
∂ f
∂v‖
= 0, (20)

−∇⊥ · n(r)∇⊥φ + n(r)
Te(r)

[
φ − 〈φ〉 f

]
=

�
〈δ fi〉αJdv‖dμ, (21)

where f (R, v‖, μ) is the gyro-center total ion distribution
function, n(r) and Te(r) are the flux-surface averaged den-

sity and electron temperature, respectively. These quanti-
ties are normalized as f v3

ti/n0 → f , n/n0 → n, Te/Ti0 →
Te (n0 and Ti0 are density and ion temperature at r = 0.5a0,
respectively). 〈δ fi〉α is the gyro averaged perturbed distri-
bution function and 〈φ〉 f is the flux-surface averaged elec-
trostatic potential, which is obtained by taking the phase
space Jacobian into account for the averaging [13]. Re-
cently so called hybrid kinetic electron model has been in-
troduced to GKNET, while we use the adiabatic electron
model in this study as a first step to study magnetic shap-
ing effects.

In this version of GKNET, we use 3D MPI decom-
position for the (r, θ, μ) domain. The spatial derivatives in
Eq. (20) are discretized by using the fourth-order Morin-
ishi scheme [14, 15] and the time integration is performed
using the fourth-order explicit Runge–Kutta method. The
magnetic field B is calculated from the vector potential
A by using a fourth order finite difference method to nu-
merically satisfy Eq. (19). Equation (21) is 1D Fourier-
transformed along the ζ direction and then 1D Fourier-
transformed along the θ direction after MPI_ALLtoALL
transpose between the θ and ζ directions. Then by using
MPI_ALLtoALL transpose between the r and θ directions
again, we can solve Eq. (19) in the (r, kθ, kζ) space, which
has a tri-diagonal matrix form by applying the fourth-
order finite difference method to the r direction. Note
that the matrix is not decomposed along the r direction
so that LU decomposition can be directly applied with-
out any MPI communication. To take gyro-averaging for
〈δ fi〉α and .〈φ〉α, we make the local Hermite interpolation
on the poloidal plane to calculate the electrostatic potential
on gyro ring and then take 20 sampling points average in
real space without using the Bessel function in the k space.

4. Effect of Elongation and Triangu-
larity on Linear ITG Instability
By means of the linearized version of GKNET, we

study the effect of elongation and triangularity on lin-
ear ITG instability. Here, we choose simulation param-
eters as a0/R0 = 0.36, a0/ρt0i = 100, R0/Ln = 2.22,
R0/LTi = R0/LTe = 6.92 at r = 0.5a0. The safety fac-
tor profile is given by qa = 0.85, qb = 2.18. In this
study, the ion β-value is assumed to be sufficiently small
(β(r = a0) = 0.001). We use the elongation and tri-
angularity, which is linearly sheared in the r direction as
κ = 1 + (κ0 − 1)r/a0 and δ = δ0r/a0, respectively. Figure 2
shows the poloidal cross section of magnetic surfaces for
κ0 = 1 (gray) and κ0 = 1.5 (red). It is observed that the
plasma shape shrinks in the R direction and stretches in the
Z direction by increasing κ0. Here, to study plasma shaping
effects on ITG mode, when we change the plasma shape,
we also change the density and temperature profiles to fix
their scale length at the half minor radius at the low field
side given by R0/Ln(r = rre f ≡ R(r = 0.5a0, θ = 0) − R0)
and R0/LT (r = rre f ), which is the main driving force of
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ITG mode. Figure 3 shows the typical 3D eigenfunction
of the toroidal ITG mode with n = 15 in the non-circular
tokamak configuration with κ0 = 1.5 and δ0 = 0.3. It
is observed that the toroidal ITG mode twisted along the

Fig. 2 Poloidal cross section of the magnetic surfaces in the
cases with κ0 = 1 (gray) and κ0 = 1.5 (red).

Fig. 3 Typical 3D eigenfunction of the toroidal ITG mode with n = 15 in the non-circular tokamak configuration with β(r = a0) = 0.01,
κ0 = 1.5, and δ0 = 0.3.

toroidal direction is excited around r = rre f where the
temperature gradient is the steepest and the corresponding
poloidal mode number is found to be m = 21, which satis-
fies the resonance condition, i.e., q(r = rre f ) = m/n = 1.4.

Figures 4 - 6 show the global eigenfunctions of the lin-
ear ITG mode with n = 15 in the cases with three different
triangularity, i.e., δ0 = 0 (Fig. 4), δ0 = 0.3 (Fig. 5), and
δ0 = −0.3 (Fig. 6). In each case, we set three different
elongation: (a) κ0 = 1, (b) κ0 = 1.2 and (c) κ0 = 1.4.
It is observed that ballooning structures are located at the
low field side in all cases, which results from the toroidal
coupling of a series of eigenfunctions localized at each ra-
tional surface. In addition, it is observed that the struc-
tures exhibit an up-down asymmetry with respect to the
mid-plane, which are tilted in the positive poloidal angle
direction. The tilting angle is widely referred to as the
Bloch angle θb, which results from the first order profile
effect with respect to the expansion ordering of balloon-
ing representation in the toroidal system, i.e., 1/n, where
n is the toroidal mode number. In the ITG case with pos-
itive magnetic shear, since the radial shearing of diamag-
netic drift frequency (i.e., ∂ωd/∂r) is positive, the angle
becomes a positive value according to the non-local bal-
looning theory [16]. In the case of (κ0, δ0) = (1, 0) shown
by Fig. 4 (a), the ITG mode is excited with the ballooning
angle θb = 0.49, where the mode width of the ITG mode
along the r direction is the biggest. With an increase in
elongation, the eigenfunction appears to be more stretched
in the Z direction and shrunken in the R direction, as shown
in Figs. 4 (b) and (c). Note that the ballooning angle is ob-
served to increase to θb = 0.68 for κ0 = 1.2 (Fig. 4 (b)) and
θb = 0.87 for κ0 = 1.4 (Fig. 4 (c)). This observation in-
dicates that larger elongation provides stronger symmetry
breaking of the mode structure owing to plasma shaping
effects, which leads to larger intrinsic rotation [17].

Triangularity is also found to change the balloon-
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Fig. 4 Global eigenfunctions of the linear ITG mode in the cases with δ0 = 0. (a) κ0 = 1, (b) κ0 = 1.2, and (c) κ0 = 1.4 are used as
elongation.

Fig. 5 Global eigenfunctions of the linear ITG mode in the cases with δ0 = 0.3. (a) κ0 = 1, (b) κ0 = 1.2, and (c) κ0 = 1.4 are used as
elongation.

ing structure and the corresponding ballooning angle, as
shown in Figs. 5 - 6. Especially in the κ0 = 1.4 case, the
structure becomes clearly tilted with θb = 1.04 in the neg-
ative triangularity case (Fig. 6 (c)) than that with θb = 0.73
in the positive case (Fig. 5 (c)). This is related to the fact
that while the positive triangularity stretches the tempera-
ture profile in the high field side (see Fig. 5), the negative
one stretches the profile in the low field side (see Fig. 6),
which provides bigger symmetry breaking of ITG modes.

Figure 7 shows the relationship between the growth
rate of linear ITG mode and δ0 in the cases with κ0 = 1
(black), κ0 = 1.2 (red), and κ0 = 1.4 (green). It is found
that the ITG mode is stabilized by elongation, which rates
are γ(κ0 = 1.4, δ0 = 0)/γ(κ0 = 1, δ0 = 0 ∼ 0.61,
γ(κ0 = 1.4, δ0 = 0.3)/γ(κ0 = 1, δ0 = 0.3) ∼ 0.70, and
γ(κ0 = 1.4, δ0 = −0.3)/γ(κ0 = 1, δ0 = −0.3) ∼ 0.47,
respectively. Since R0/LT (r = rre f , θ = 0) at the mid-
plane is fixed in this study, the elongated shape effec-
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Fig. 6 Global eigenfunctions of the linear ITG mode in the cases with δ0 = −0.3. (a) κ0 = 1, (b) κ0 = 1.2, and (c) κ0 = 1.4 are used as
elongation.

Fig. 7 Relationship between the normalized growth rate of the
linear ITG mode and δ0 in the cases with κ0 = 1 (black),
κ0 = 1.2 (red), and κ0 = 1.4 (green).

tively stretches the temperature profile because the inter-
val of magnetic flux surface becomes sparse than that of
magnetic flux at the mid-plane. This means that the flux-
surface averaged temperature gradient, which is the effec-
tive driving force of ITG modes, is also reduced. This
is the main reason why the elongation shows the stabi-
lizing effect. The same idea can be applied to the ef-
fect of triangularity. The flux-surface averaged plasma
width at the low field side (−π/2 < θ < π/2), namely

w̄ = 1/π
∫ π/2

−π/2 w(θ)dθ is w̄(κ = 1.4, δ = 0.3) = 94.9ρt0i

and w̄(κ = 1.4, δ = −0.3) = 98.8ρt0i, respectively (w(θ)
is the plasma width at each poloidal angle). The gap of w̄
between positive and negative triangularity cases becomes

smaller when elongation reaches unity. This means that
the negative triangularity in a large elongation regime can
stretch the temperature profile in the low field side where
the ITG mode is excited, which leads to the bigger stabi-
lization effect. The global profile shearing, which origi-
nates from the inhomogeneity of background profiles, also
stabilize the ITG instability but as a next order [16] and the
effect of Shafranov shift on linear ITG instability in the
electrostatic limit is considered to be small [18] so that it is
natural to conclude that the effective reduction of tempera-
ture gradient stabilizes ITG modes.

5. Summary
We extended the GKNET code to non-circular shaped

plasmas with analytical magnetic equilibria, which satisfy
the Grad-Shafranov equation up to the second order with
respect to aspect ratio and allows us to set the consistent
elongation, triangularity, and Shafranov shift. In this ver-
sion of GKNET, the phase space conservation of the gy-
rokinetic Vlasov equation is analytically and numerically
fulfilled with smaller calculation cost for solving the gy-
rokinetic quasi-neutrality condition by utilizing 1D FFT
and MPI_ALLtoALL transpose technique, so that it has
a capability for long-time and stable simulation of non-
circular shaped plasmas.

Based on this version, we studied the effect of elon-
gation and triangularity on linear ITG instability with adi-
abatic electrons. It is found that elongation reduces ITG
instability owing to the effective reduction of flux-surface
averaged ion temperature gradient and increases the asym-
metry characterized by the Bloch angle θb. On the other
hand, when elongation is approximately unity, triangular-
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ity weakly affects the growth rate, while negative triangu-
larity stabilizes ITG modes and increases the asymmetry
in a large elongation regime.

We have been also introducing a numerical magnetic
equilibrium calculated by TASK/EQ, which allows a more
rigorous treatment of magnetic equilibrium and compari-
son with experiments. These results will be reported in
another manuscript in the near future.

Another future study is the flux-driven simulation of
a non-circular shaped plasma using the full- f version of
GKNET. Since the temperature gradient at the mid-plane
is fixed in this linear study, elongation and triangularity
can change temperature gradient, which indirectly stabi-
lizes/destabilizes ITG modes. To study their direct stabi-
lization effect, flux-driven simulation is one candidate be-
cause we can judge their stabilization effect from the self-
consistently established temperature profile, which is in-
sensitive to the initial one, under the power balance.

The other future work is to introduce the self-
consistent temporal evolution of magnetic equilibrium. In
full-f simulation with kinetic or hybrid electrons, the boot-
strap current is precisely taken into account, which can
modify the safety factor profile and resultant magnetic
equilibrium in time. The temporal evolutions of den-
sity/rotation/pressure profiles can also change the equilib-
rium. By reflecting such effects to the analytical mag-
netic equilibrium, we can do a quasi-electromagnetic full-
f simulation, which can help us to understand the role of
high bootstrap fraction on internal transport barrier forma-
tion [19].
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