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We are developing a Lagrange (LG)-Monte-Carlo (MC) scheme for three-dimensional (3D) SOL/Divertor
plasma fluid modeling. By using test particles, the scheme is suitable for handling 3D complex geometries. The
semi-implicit treatment of the pressure gradient term enables us to improve the robustness of the coupling of
the continuity and the momentum equations. Detailed numerical checks of the integrated scheme of LG-MC
have been done for a simple 1D geometry. Benchmark tests between the new LG-MC and a conventional Finite-
Volume scheme were carried out and good agreement was obtained. A first test calculation for a 3D cylindrical
geometry has been also successfully done.
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1. Introduction
To understand plasma transport in the SOL/Divertor

region is one of the most significant challenges for fu-
sion reactors. Aiming at that, several numerical stud-
ies have been done with plasma fluid codes, such as B2
[1–3], B2.5 [4], SOLDOR [5], EDGE2D [6], LINDA [7]
etc. In most of the studies, however, the fluid models are in
two-dimension (2D), assuming axial symmetry of devices.
Since the symmetry does not hold even in tokamaks due
to 1) implementation of resonant magnetic perturbation
(RMP) field and 2) presence of some non-axisymmetric
structures such as gas pumping/puffing ports, there has
been a great demand of a three-dimensional (3D) plasma
fluid code.

One scheme to handle 3D complex geometries is the
so-called Monte-Carlo scheme (MC) which uses “fluid
pseudo particles” to solve the transport equations. This
is used for example in E3D [8, 9] and EMC3 [10, 11]. We
also developed a Monte-Carlo code to solve the transport
equations [12] and obtained correct solutions for diffusive-
dominant cases. To extend the scheme to convective-
dominant cases, we started developing a semi-Lagrange
scheme (LG) [13]. Due to its semi-implicit treatment of
the pressure gradient term, LG turned out to be more suit-
able for the convective-dominant problem.

In LG, diffusive parts are treated by updating weights
of the pseudo particles, which will be explained in Sec. 3.3.
However, treating them by random walk steps, i.e., with
MC, has an advantage in complex magnetic configuration,
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like configurations with ergodic magnetic fields. There-
fore, we developed the Lagrange-Monte-Carlo scheme
(LG-MC), adding diffusive parts treated by MC coupled
with LG. To validate numerical algorithms of LG and LG-
MC, a 1D benchmark test for the three schemes, a Finite
Volume scheme (FV), LG, and LG-MC, was done.

After confirming the validity of 1D LG and LG-MC
through the benchmark, the LG-MC code was extended to
a 3D cylindrical geometry. This paper is constructed as fol-
lows. In Sec. 2, 1D basic equations along the field line are
given. In Sec. 3, starting with LG, we give a description of
numerical algorithm for LG-MC. Results of the 1D bench-
mark test will be presented in Sec. 4. Finally we introduce
the result of the 3D LG-MC code in Sec. 5 and conclude
the paper in Sec. 6.

2. Basic Equations (1D)
Assuming a typical SOL/divertor geometry of a toka-

mak, the spatial coordinate of the 1D model, x, is taken
along the magnetic field from the stagnation point (x = 0)
to the divertor plate (x = Lx) (See Fig. 1). Four variables,
the plasma density n, the fluid velocity along the magnetic
field V , the ion and the electron temperatures, Ti and Te,
are solved by the set of plasma fluid equations for hydro-
gen ions (H+) and electrons, originally derived by Bragin-
skii [14]:

∂n
∂t
+
∂

∂x
(nV) = S n = S input + nnn〈σv〉ion. (1)

∂

∂t
(mnV)+

∂

∂x

(
mnV2 + p − 4

3
ηi
∂V
∂x

)
= S m,coll. (2)
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Fig. 1 Schematic view of the 1D SOL model.

∂

∂t

(
3
2

pi

)
+
∂

∂x

(
3
2

piV − κi ∂Ti

∂x

)
= S Ti , pi = nTi,

(3)

S Ti = Qinput − pi
∂V
∂x
+ kth(Te − Ti)

+
4
3
ηi

(
∂V
∂x

)2

+
m
2

V2S n − VS m,coll.

∂

∂t

(
3
2

pe

)
+
∂

∂x

(
3
2

peV − κe ∂Te

∂x

)
= S Te , pe = nTe,

(4)

S Te = Qinput − pe
∂V
∂x
− kth(Te − Ti)

+ Ee,ionnnn〈σv〉ion.

The momentum equation is the sum of those of the ions
and the electrons, with the assumption of small mass ratio
(mi � me). Thus, m is the ion mass mi, the viscosity co-
efficient is calculated as a production of the ion viscosity
coefficient η0i and the ion temperature, ηi = η0iT

5/2
i , and

p = pi + pe = n(Ti + Te). In Eqs. (3) and (4), κs (= κ0sT
5/2
s ,

s = i, e) is the heat conductivity, where κ0s is a constant
heat conductivity coefficient. The symbol kth is the coef-
ficient of energy-exchange between the electrons and the
ions. As a collision process, only the ionization is taken
into account in our model at present. The symbols 〈σv〉ion

and Ee,ion represent the rate coefficient and the electron en-
ergy loss by ionization, respectively.

The neutral density nn is modeled by

∂nn

∂t
+
∂

∂x
(nnVn) = −nnn〈σv〉ion, (5)

where Vn is the neutral velocity towards the upstream of
the plasma. By assuming Vn to be a constant, the steady
state solution is given as

nn(x) = nn(Lx) exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lx∫

x

n 〈σv〉ion

Vn
dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (6)

Vn < 0, nn(Lx) = R
n(Lx)V(Lx)

Vn
,

where R is the recycling coefficient.

3. Lagrange-Monte-Carlo Scheme
In the Lagrange-Monte-Carlo Scheme (LG-MC), we

introduce test particles representing a plasma quantity in
the j-th cell, f j, as

∑N f , j

p=1 Wf (p)

ΔVj
= f j,

f = n,M(≡ mnV), εi,e

(
≡ 3

2
pi,e

)
, (7)

where Nf , j, Wf (p), and ΔVj are the total number of test
particles in the j-th spatial cell, the weight for f of the p-th
particle, and the volume of the j-th cell, respectively. In
order to solve the four physical quantities as f in the re-
spective transport equations, four different species of those
particles are prepared. For calculating the pressure gra-
dient, we use staggered grids, i.e., alternating mesh for the
density and the momentum/velocity, to avoid numerical in-
stabilities.

As mentioned in Sec. 1, the difference between LG
and LG-MC is whether the diffusive parts are treated by
changing the weights of the test particles or by random
walk steps, i.e., with a Monte-Carlo scheme (MC). In this
section, after describing the scheme of LG (Sec. 3.1 - 3.4)
and MC (Sec. 3.5 - 3.6) separately, we will explain the in-
tegrated scheme, LG-MC, in Sec. 3.7.

3.1 Basic equations for LG
In LG, Eqs. (1) - (4) are rewritten with the Lagrange

derivative, d
dt ≡ ∂

∂t + V ∂
∂x , as

dn
dt
= −n

∂V
∂x
+ S n. (8)

d
dt

(mnV) = −mnV
∂V
∂x
− ∂p
∂x

+
∂

∂x

(
4
3
ηi
∂V
∂x

)
+ S m,coll. (9)

d
dt

(
3
2

pi

)
= −3

2
pi
∂V
∂x
+ S Ti +

∂

∂x

(
κi
∂Ti

∂x

)
. (10)

d
dt

(
3
2

pe

)
= −3

2
pe
∂V
∂x
+ S Te +

∂

∂x

(
κe
∂Te

∂x

)
. (11)

3.2 Transport of the particles in LG
To treat the convective transport semi-implicitly,

Eqs. (8) and (9) are combined to obtain

mn
dV
dt
= −mVS n− ∂p

∂x
+
∂

∂x

(
4
3
ηi
∂V
∂x

)
+S m,coll. (12)

From Eq. (12), the “new” velocity is obtained at each stag-
gered mesh as

Vnew = V +
Δt
mn

(
−mVS n − ∂p

∂x
+
∂

∂x

(
4
3
ηi
∂V
∂x

)
+ S m,coll

)
.

(13)

The convective transport of the p-th particle from the old
position xold(p) to the new position xnew(p) is described as

xnew(p) = xold(p) + Vμ(p)Δt, (14)
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Fig. 2 Transport of the p-th particle with the interpolated veloc-
ity Vμ(p).

where Vμ(p) is a linearly interpolated Vnew at xold(p),

Vμ(p) =
(δx)e

Δx j
Vnew

j−1 +
(δx)w
Δx j

Vnew
j . (15)

as shown in Fig. 2.

3.3 Injection and weight-change of the par-
ticles

The first terms on the right-hand-side (RHS) of
Eqs. (8) - (11) represent compression/expansion of each
quantity f . This effect is automatically included when
we push each particle with the velocity Vμ (See Eq. (15))
and count the number of those particles in Eulerian cells
(See mathematical description in Appendix). Hence, only
the rest of terms should be treated either by 1) adding
new particles or by 2) changing the particles’ weight, Wf .
At present, only the particle source term S n is treated by
adding new particles, while the other source/sink terms
in the momentum/energy equations are treated by weight-
change.

For 1), the number of particles added in the j-th cell
from the source term S n, j is calculated as

Nadd, j =
S n, jΔVjΔt

Wn
. (16)

At each time step Δt, Nadd, j test particles are uniformly
added in each cell.

For 2), taking the momentum equation Eq. (9) as an
example, the weight-change should be described as

Mnew − M
Δt

= −∂p
∂x
+
∂

∂x

(
4
3
ηi
∂V
∂x

)
+ S m,coll. (17)

It should be noted again that the term −M ∂V
∂x on RHS has

been eliminated from Eq. (9), because the effect of this
term is already treated by the convective transport. From
Eq. (17), Mnew is obtained as

Mnew =
Wnew

M Ns, j

ΔVs, j

= M +

[
−∂p
∂x
+
∂

∂x

(
4
3
ηi
∂V
∂x

)
+ S m,coll

]
Δt.

(18)

The new momentum density Mnew
s, j should be represented

by the LG particles in the j-th staggered cell. To satisfy
this, WM of all the LG particles in the j-th staggered cell
are replaced as

Wnew
M =

MnewΔVs, j

Ns, j
, (19)

where Ns, j is the total number of the particles in the j-th
staggered cell after the source particles are added. Simi-
larly, the weights for the internal energy Wεi/e are updated
using the energy equations.

3.4 Setting of boundary conditions in LG
At x = Lx, the following conditions are set.

V(Lx) ≥ Cs(Lx) =

√
Ti(Lx) + Te(Lx)

m
, (20)

for the velocity V(Lx), and

5
2

nVTi+
1
2

mnV3− 4
3
ηiV
∂V
∂x
−κi ∂Ti

∂x
= γinVTi, (21)

5
2

nVTe − κe ∂Te

∂x
= γenVTe, (22)

for the ion/electron total heat fluxes.
To set the condition (22) by LG, we reformulate it as

qecond,req ≡ −κe ∂Te

∂x

∣∣∣∣∣
x=Lx

= γenVTe − 5
2

nVTe, (23)

and replace the third term on RHS of Eq. (11) as

∂

∂x

(
κe
∂Te

∂x

)
= −

qecond,req −
(
−κe ∂Te

∂x

)
Δx

, (24)

when the weight Wεe of the test particles in the last cell are
updated with Eq. (11). The same procedure is done for the
ion heat flux with the required value,

qicond,req = γinVTi − 5
2

nVTi − 1
2

mnV3 +
4
3
ηiV
∂V
∂x
.

(25)

3.5 Monte-Carlo scheme (MC)
The Monte-Carlo scheme (MC) is used for treating

diffusive terms by random walk processes. We consider
a stochastic quantity x(t) obeying an Ito stochastic differ-
ential equation (SDE) written as [15]

dx(t) = a [x(t), t] dt + b [x(t), t] dW(t), (26)

where dW(t) is an increment of a Wiener process, defined
by

dW(t) = W(t + dt) −W(t), (27)

which satisfies the mean value 〈dW(t)〉 = 0 and the vari-
ance 〈dW(t)2〉 = dt. In that case, it can be derived that a
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Fig. 3 Schematic view of the flux boundary condition in MC.

probability density p(x, t) obeys the Fokker-Planck equa-
tion (FPE),

∂p(x, t)
∂t

= − ∂
∂x

[
a(x, t)p(x, t)

]

+
1
2
∂2

∂x2

[
b2(x, t)p(x, t)

]
. (28)

If we take the stochastic quantity x(t) as a particle position,
Eq. (26) denotes a transport process with a drift coefficient
a(x, t) and a diffusion coefficient 1

2 b2(x, t). Then a proba-
bility finding a particle at a position x at a time t directly
corresponds to the probability density p(x, t). By count-
ing particles transported by Eq. (26), we obtain an expected
profile of p(x, t) in each cell.

In this manner, we calculate the viscosity part (the
third term on RHS of Eq. (9)) by the random walk of the
particles having the weight WM , and the conductive part
(the third terms on RHS of Eq. (10) and (11)) by that of the
particles having the weight Wεi or Wεe .

3.6 Boundary condition in MC
We set the conductive flux qcond,req (See Eqs. (23) and

(25)) at the boundary (x = Lx) in MC. Since the procedure
is the same for the ion conductive flux and that of electrons,
here we omit the subscriptions i or e. Every time step, we
compute the energy outflux qcond,comp,

qcond,comp =

∑Ncross

p=1 Wε(p)

Δt
, (29)

where Ncross is the number of particles that crossed the
boundary in Δt. First, we nullify the outflux by reflecting
those particles to the domain. Since each of those parti-
cles should keep the spatial length of the step, we perform
mirror-reflection, calculating the reflected position xmir as

xmir = Lx − (xout − Lx) = 2Lout
x , (30)

where xout is the position after crossing the boundary
(xout > Lx) (See Fig. 3).

If the particle has a different weight after being re-
flected,

Wmir
ε (p) ≡ kWε(p), 0 < k < 1, (31)

Fig. 4 Flow Chart of LG-MC.

the net flux q becomes non-zero, such as

q =

∑Ncross

p=1 Wε(p) −Wmir
ε (p)

Δt
= (1 − k)qcond,comp.

(32)

The weight Wmir
ε (p) to set q = qcond,req is

Wmir
ε (p) = kWε(p) =

(
1 − qcond,req

qcond,comp

)
Wε(p). (33)

This is the procedure to set the boundary condition, the
conductive flux qcond,req at x = L. However, in the case
qcond,comp < qcond,req, instead of performing the weight-
change by Eq. (33), we simply absorb all the Ncross parti-
cles. This is the way to make qcond,comp maximum without
introducing unphysical negative weight of the particles. By
this transient treatment, qcond,comp gets larger, and the re-
flection treatment with Eq. (33) is performed again when it
becomes larger than qcond,req.

3.7 Integration of LG and MC
In LG, as described in Sec. 3.3, the diffusive terms are

treated by changing the weights of the test particles (See
Eq. (17) for the viscosity term). On the other hand, we
have shown in Sec. 3.5 that they can also be treated by MC,
which leads to the LG-MC scheme.

As shown in Fig. 4, we simply add the random walk
process after the convective transport in LG-MC. The time
step is determined by the convective transport in LG while
it is restricted by the heat conduction in MC. This means
the required time step of MC is smaller than that of LG in
most of cases. Therefore, several iterations are done in MC
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after one step of LG, so that it satisfies

ΔtLG = NMCδtMC , (34)

where ΔtLG, δtMC , and NMC are the time step of LG and
MC, and the number of iterations in MC, respectively.

4. A 1D Benchmark Test
To validate LG and LG-MC, a benchmark test was

done with three schemes (FV, LG, LG-MC) for the 1D
geometry shown in Fig. 1. For simplicity, the volume
sources, S input and Qinput, were given in the whole domain
and the momentum source S m,coll and the recycling coef-
ficient R were set to be 0. To save the calculation cost,
the electron temperature was not calculated, being set as
Te = Ti. Table 1 shows the parameters in the benchmark
test. Boundary conditions at x = 0 m are set as V0 = 0 m/s,
∂Ti/∂x = 0.

To get a final result of each scheme, one should check
time-convergence and mesh-convergence. This means that
the final result should be stationary and should not change
by using finer mesh. In addition, for LG and LG-MC,
particle-convergence has to be checked as well, which
means the final result should not change by increasing the
number of particles. The sequence of the checking proce-
dure is 1) time-convergence, 2) particle-convergence, and
then 3) mesh-convergence.

For FV, we will show only the final result later. Here
we first show results of the mesh-convergence test of LG
which was done after confirming the time- and particle-
convergence. For all the schemes, equidistant mesh was
used. This means the length of a cell is simply defined by
Lx/Nx, where Nx is the number of mesh in the domain. As
shown in Fig. 5, there is almost no shift between the result
with Nx = 100 and those with Nx = 200, which means it
is already mesh-converged with Nx = 100. (The results
of the flow velocity are missing just because the difference
between the two cases is too small to see.)

To discuss particle-convergence, we define Np ≡
Nparticle/Nx, where Nparticle is an input parameter for LG
and LG-MC. In LG and LG-MC, total number of the parti-
cles Ntotal is controlled in a range Nparticle/2 ∼ 2Nparticle

Table 1 Parameters for the 1D benchmark.

Parameter Value
Lx 5 m
S input 2.5 × 1022 m−3s−1

Qinput 0.18 MW m−3

S m,coll 0 kg m−2s−2

γi 3.5
Vn 1.55 × 104 m/s (thermal velocity for 2.5 eV)
Ee,ion −25.0 eV (including excitation energy)
R 0

in the following manner; If Ntotal > 2Nparticle, a half
of the particles are randomly killed and the rest have a
twice larger weight, which is so-called Russian roulette
method [16]. With this method, conservations are statis-
tically satisfied. If Ntotal < Nparticle/2, each particle is di-
vided into two particles with a half value of the original
weight. In Fig. 5, all the results are with Np = 8000, be-
cause the particle-convergence was confirmed with Np =

8000 in each case.
From here, we show results from the convergence tests

of LG-MC. The mesh-convergence of LG-MC was con-
firmed by Fig. 6. Before checking the mesh-convergence,
the particle-convergence of the each mesh case was tested.
The results of the particle-convergence test for the case
with Nx = 200 are shown in Fig. 7. Compared to LG
(Np = 8000), more particles were needed to obtain the
particle-convergence.

To check time-convergence of the calculation, the rel-
ative difference of the profile f was defined as

d f
f
≡

∣∣∣∣∣∣
f new − f old

f old

∣∣∣∣∣∣ . (35)

Besides, the residual error Res f was calculated. For exam-
ple, Resn of the continuity equation, Eq. (1), was defined
as

Resn ≡ S n − ∂
∂x

(nV) . (36)

The values in Eqs. (35) and (36) were calculated in all
the cells and integrated over the cells and averaged. Fig-
ures 8 and 9 show the time development of those values

Fig. 5 Mesh-convergence of LG (Top: density, Bottom: ion
temperature). Np = 8000.
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Fig. 6 Mesh-convergence of LG-MC (Top: density, Bottom: ion
temperature).

Fig. 7 Particle-convergence of LG-MC for the case Nx = 200
(Top: density, Bottom: ion temperature). Np: number of
particles in a cell.

for the case Nx = 200,Np = 32000. From these results,
we see that all the profiles are time-converged in the case.
(Though we do not show here, the time-convergence was
confirmed in this manner for all the cases.)

From Fig. 5 to Fig. 9, we obtained the final results of
LG and LG-MC. To validate the final result of LG-MC
(Nx = 200, Np = 32000), we confirmed conservation laws

Fig. 8 Time development of the difference of the profile f in a
time step d f / f , defined in Eq. (35).

Fig. 9 Normalized Residuals of the profiles defined in Eq. (36).

Fig. 10 Particle Conservation of the converged solution of LG-
MC. Black points: particle flux, Red line: integration of
the particle source term.

of the each equation, i.e., integrated form of Eqs. (1) - (3)
(See Figs. 10 - 12).

Figure 13 shows the final results of the three schemes
that are averaged in the last time steps. While FV and LG
agreed well, a difference remained between LG and LG-
MC.

To see the difference quantitatively, we define the dif-
ference of each profile f as follows.

difference ≡
∣∣∣∣∣ fLG−MC(x) − fLG(x)

fLG(x)

∣∣∣∣∣ × 100[%]. (37)

As shown in Fig. 14, the difference is less than 5% in
the entire calculation domain. The difference close to the
boundary comes from the boundary setting of the conduc-
tive flux, which was explained in Sec. 3.6. Due to the
mirror-reflection at the boundary, more energy particles are
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Fig. 11 Momentum Conservation of the converged solution of
LG-MC. Red points: dynamic pressure, Green points:
static pressure, Blue points: viscosity flux, Purple
points: sum of the total pressure and the viscosity flux.
Black line: integration of the momentum source.

Fig. 12 Ion Energy Conservation of the converged solution of
LG-MC. Red points: convective heat flux, Green
points: conductive heat flux, Blue points: total heat flux,
Black line:integration of the ion energy source term.

Fig. 13 Benchmark results of the three schemes, FV, LG, and
LG-MC. Top: the density and the flow velocity, Bottom:
the ion temperature. (LG: Nx = 200, Np = 8000, LG-
MC: Nx = 200, Np = 32000)

Fig. 14 Difference between the converged solutions of LG
(Nx = 200, Np = 8000) and LG-MC (Nx = 200,
Np = 32000).

accumulated near the boundary. It makes the energy out-
flux larger, making the temperature at the last cell lower.

Though this is a point to be improved, we confirmed
basic validity of LG-MC.

5. Result of 3D LG-MC in a Cylinder
Adding the anomalous transports, the LG-MC code

was extended to a simple 3D cylindrical geometry (See
Fig. 15). The following equations were set, taking the z
axis along the magnetic field. The anomalous transports
were assumed to be by turbulence, thus they were put in
the equations with the same coefficients both in the paral-
lel and the perpendicular directions and their coefficients
are independent each other.

∂n
∂t
+
∂

∂z

(
nV − Da

∂n
∂z

)
(38)

+
∂

∂x

(
−Da
∂n
∂x

)
+
∂

∂y

(
−Da
∂n
∂y

)
= S n.

∂

∂t
(mnV) +

∂

∂z

(
mnV2+ p − 4

3
ηi
∂V
∂z
− ηa
∂V
∂z

)
(39)

+
∂

∂x

(
−ηa
∂V
∂x

)
+
∂

∂y

(
−ηa
∂V
∂y

)
= S m,coll.

∂

∂t

(
3
2

pi

)
+
∂

∂z

(
3
2

piV − κi ∂Ti

∂z
− κi,a ∂Ti

∂z

)
(40)

+
∂

∂x

(
−κi,a ∂Ti

∂x

)
+
∂

∂y

(
−κi,a ∂Ti

∂y

)
= S Ti .

For the implementation, all the parallel transport terms
(except the parallel particle diffusion) and the source terms
were treated just as 1D LG without MC. From 1D LG, the
following changes have been made for the 3D calculation;

1) The particles have 3D coordinates, (x, y, z). After
the convective transport in the z direction, each specie of
the particles are transported by random walk steps in MC
on the x−y planes, according to the corresponding anoma-
lous transport. The anomalous transport coefficients are
given as Da = 1.0 m2/s, ηi,a = min × χi, and κi,a = nχi,
where χi = 0.2 m2/s. All the quantities on the surface at
r = Lr were set as 0.
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Fig. 15 3D cylinder model.

Table 2 Parameters for the 3D cylindrical case.

Parameter Value
Lz 0.6 m
Lr 0.04 m

Lr,in f low 0.02 m
R 0.5

2) Instead of the volume sources (S input and Qinput),
surface sources, i.e., fluxes of particle, momentum, and ion
energy at z = 0 (r =

√
x2 + y2 ≤ Lr,in f low) were given

as Γ(0) = n0V0 = 3.0 × 1018 m−3 × 0.5
√

2T0/m, Π(0) =
mn0V2

0 , and qi(0) = 3
2 n0V0T0 =

3
2Γ0 × 20 eV, respectively.

To set these boundary conditions, the number of particles
representing Γ0 are added into the calculation domain from
z = 0 m to z = V0Δt with the weights WM = mWnV0 and
Wεi =

3
2 WnT0.

Aiming at applying it to the D-module of
GAMMA10/PDX [17] in the future, similar parame-
ters from GAMMA10/PDX were chosen (See Table 2).
Figure 16 shows results of the 3D LG-MC code in the
cylindrical geometry. The flow velocity V increases near
the wall (z = 0.6 m) towards the ion sound speed (See
Fig. 16 (b)). If there was no particle source there, the
increasing velocity makes the density lower, but due to
the recycling source, the density keeps almost constant
or slightly increases towards the wall (See Fig. 16 (a)).
It can also be seen that both density and velocity are
diffused in the r direction. As for the ion temperature Ti, it
decreases towards the wall (z = 0.6 m) in the region where
r < 0.02 m. Figure 17 shows the density profile on the
x−y plane at z = 0.3 m. It is confirmed from the color map
that the plasma is isotropically diffused from the central
region (r < 0.02 m). Along the r coordinate (See Fig. 18),
the density decays logarithmically in the outer region
(r > 0.02 m), which qualitatively agrees with the analytic
solution of the diffusion equation in the r-coordinate. In
the central region, due to the incoming parallel particle
flux, the decay is slight. As for the velocity in the central
region, it increases towards r > 0 because of decrease of
the density. In the outer region, since ηi,a/min < Da, the
decay length for the velocity is shorter than the density.

Fig. 16 Results of the 3D LG-MC code (r-z plane). (a) density,
(b) flow velocity, (c) ion temperature.

Fig. 17 Result of density in the x − y plane at z = 0.3 m.
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Fig. 18 Result of density along the r-axis at z = 0.3 m.

6. Conclusion
We developed a 3D SOL/Divertor plasma fluid code

with the Lagrange-Monte-Carlo scheme (LG-MC). The
use of test particles enables more flexible choice of nu-
merical cells, compared to a conventional Finite Volume
scheme (FV). This is the advantage of LG-MC for 3D
complex geometries. Through the benchmark test in a sim-
ple 1D geometry with a FV code, validity of the LG-MC
code has been confirmed. Comparing LG and LG-MC, LG
seems to be better for the 1D test case along a magnetic
field line, because it has less noise and shows faster conver-
gence on the number of test particles. However, for future
applications with ergodic magnetic fields for example, MC
has a strong advantage because it can easily handle diffu-
sion also in very complex meshes just by random walks.
As the first test for a 3D case, LG-MC was implemented to
a cylindrical geometry with anomalous transports. We ob-
tained qualitatively reasonable results, which ensures fun-
damental usability of LG-MC in 3D geometries. Even
though the test case was essentially a 2D calculation be-
cause of the axial symmetry, extension of the case to an
asymmetric case can be easily done.

We plan to apply the code to the divertor simulation
experimental module (D-module) of GAMMA10/PDX.
For that aim, the next steps are planned as to 1) solve the
electron temperature, 2) implement the real magnetic field
configuration and the V-shaped target, 3) add source/sink
terms from atomic/molecular processes (charge-exchange,
recombination) into the transport equations, and 4) inte-
grate with a kinetic neutral model.

Appendix. Weight of the Lagrange
Particles

We define two coordinates along one axis. One is the
Eulerian coordinate, x, and the other one is the Lagrange
coordinate on a marker particle, ξ. As a function of ξ and
the tmie t, the position on the Eulerian coordinate x(ξ, t),
the density n(ξ, t), and the velocity V(ξ, t) are set.

The motion of the marker is described as

dx(ξ, t)
dt

= V(x, t). (A.1)

By differentiating the both sides with ξ, one obtains

∂

∂ξ

dx(ξ, t)
dt

=
∂V(x, t)
∂ξ

=
∂V(x, t)
∂x

∂x
∂ξ
, (A.2)

which turns into
(
∂x
∂ξ

)−1
∂

∂ξ

dx(ξ, t)
dt

=
∂V(x, t)
∂x

. (A.3)

Since ξ is not a function of t, the left-side-hand (LHS) can
be replaced to obtain

(
∂x
∂ξ

)−1 d
dt
∂x(ξ, t)
∂ξ

=
∂V(x, t)
∂x

. (A.4)

Substituting this into the form,

d f
dt
= − f

∂V
∂x
, (A.5)

we find

d f
dt
= − f

(
∂x
∂ξ

)−1 d
dt
∂x(ξ, t)
∂ξ

, (A.6)

which leads

d
dt

(
f
∂x
∂ξ

)
= 0. (A.7)

Here, the derivative ∂x
∂ξ

has a simple geometrical meaning:
it is the Jacobian describing squeezing or stretching of the
initial fluid volume, therefore the weight of the particle has
the form f ∂x

∂ξ
. Equation (A.7) shows that the weight is con-

stant. Therefore, we can conclude that the weight for f
should not be changed to take into account the term − f ∂V

∂x
on RHS of Eq. (A.5).
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