## Plasma Potential Measurement in Detached Plasmas by Emissive Probe Considering Space-Charge-Limited Effect

Shogo HATTORI, Hirohiko TANAKA, Shin KAJITA<sup>1)</sup> and Noriyasu OHNO

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan <sup>1)</sup>IMaSS, Nagoya University, Nagoya 464-8603, Japan

(Received 2 July 2020 / Accepted 11 October 2020)

The accuracy for the measurement of the plasma potential was improved using an emissive probe (EP) considering the space-charge-limited (SCL) effect. To validate the measurement method, the plasma potential measured using a method combining double probe (DP) and single probe (SP) was compared to the developed method. The two measurement methods showed a good agreement: it was confirmed that the EP considering the SCL effect was able to measure the plasma potential accurately even in detached plasmas with a high-temporal-resolution.

© 2020 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: detached plasma, plasma potential, emissive probe, double probe, space-charge-limited effect

DOI: 10.1585/pfr.15.1301082

Plasma detachment is an effective method to reduce the heat load flowing into the divertor target [1, 2]. The plasma is cooled down by promoting radiation loss through the significant interactions between plasma and neutral gas. As a result, a low-temperature volume-recombining plasma which is detached from the target plate is generated. To understand the detached plasma formation, detailed measurements of plasma parameters such as electron temperature  $T_e$ , electron density  $n_e$ , and plasma (space) potential  $V_s$  are needed [3].

In particular,  $T_e$  and  $n_e$  are quite important parameters for plasma-gas interactions. However, it is known that the single Langmuir probe (SP), which is one of the most convenient techniques, basically overestimates the  $T_e$  value in the detached plasma [4]. In the recent research performed in the linear plasma device NAGDIS-II,  $T_e$  and  $n_e$  obtained by the double-probe (DP) measurement show good agreements with those by the laser Thomson scattering even in low-temperature ( $T_e < 1 \text{ eV}$ ) detached plasmas [5].

By using the  $T_e$  estimated by DP and the floating potential  $V_f$  measured with SP at the vicinity,  $V_s$  can be also measured in the detached plasma (hereafter called "DSP" technique) [6]. Furthermore, by using the statistical analysis technique called the conditional averaging (CA), time evolution of  $V_s$  during the intermittent plasmaejection event was revealed with high-temporal resolution (~µs) [7]. This reported that  $V_s$  has important roles for determining azimuthal and radial motions of coherent structures. However, the CA method can only extract one averaged intermittent event, and thus statistical techniques assuming stationarity (e.g., Fourier and correlation analysis) cannot be applied for the CA result. This study, therefore, aims to establish another  $V_s$  measurement method which can directly obtain timeresolved signal with high accuracy without any statistical technique like CA analysis. One of the famous  $V_s$  measurement techniques is the emissive probe (EP) [8] which essentially has the high-temporal resolution. By comparing  $V_s$  from EP and that by DSP without high-temporal resolution, an importance of considering the space-chargelimited (SCL) effect was indicated for the accurate  $V_s$  measurement. After that, we will suggest a measurement system of the time-resolved  $V_s$  considering the SCL effect.

The tip of the EP is filament shape, as shown in the inset of Fig. 1 (a). The typical length of the EP tip is 2 mm, and filament material is 0.1-mm-diameter tungsten. To heat the EP tip, DC bias is applied between points "a" and "b" in the inset. The black and red horizontal dashed lines in Fig. 1 (a) indicates  $V_f$  and  $V_s$ , respectively, measured by another single probe in attached plasma. It is confirmed that  $V_f$  of EP gradually shifts to  $V_s$  by increasing the heating current  $I_h$  as the thermoelectric emission from the EP. However, the EP measurement has following problems.

The heating voltage  $V_h$ , which is used to heat the EP tip, causes a potential difference between points "a" and "b". This difference affects the potential measurement accuracy. Thus, we introduced a switching circuit, which was also used previously to measure negative ions [9], to turn on/off the heating current by using transistors. Only when they were turned on, the heating current was flowed into the probe tip. Figure 1 (b) shows an example of the time series of the potentials at point "a" and "b". The potential difference at point "a" and "b" corresponds to  $V_h$ . At the time without heating, the voltage difference becomes zero. After stopping the heating, due to a decrease of the filament temperature, thermoelectric emission and floating

author's e-mail: hattori.shogo@d.mbox.nagoya-u.ac.jp



Fig. 1 (a) Floating potential  $V_{\rm f}$  of EP as a function of the heating current  $I_{\rm h}$ . Inset shows the photograph of the EP. (b) The floating potentials of the EP tip at points "a" and "b".

potential decrease after ~10 ms. Therefore, before the decrease of the potential,  $V_{\rm h}$  is turned on again in this research. Besides, the first 0.5 ms data from turning off time were eliminated for the potential measurement to consider the switching delay.

Figure 2 (a) shows the schematic of DSP. Each electrode is 1 mm long and 0.5 mm in diameter, and the distance between each electrode is designed to be 1-3 mm. In the DSP method,  $T_e$  is evaluated using two electrodes as a double probe (DP), and  $V_f$  is measured using another electrode as SP. It has been confirmed that DP can measure  $T_e$  even when there is the plasma potential fluctuation which leads to overestimation of  $T_e$  measured by SP in detached plasmas [10]. It is inferred that the magnetic field effects are not critical for the DSP with an additional SP because the electrodes distance was much larger than the sheath thickness estimated by Child-Langmuir law [11].

Figure 2 (b) shows the time-series data of the DSP method. The probe bias  $V_p$  and the probe current  $I_p$  are obtained from DP, and  $T_e$  is evaluated from the  $I_p$ - $V_p$  characteristic. The  $V_f$  value is obtained from SP without biasing. By using obtained  $T_e$  and  $V_f$ ,  $V_s$  can be evaluated from Eq. (1).

$$V_{\rm s} = V_{\rm f} + \alpha T_{\rm e} \,[{\rm eV}]. \tag{1}$$



Fig. 2 (a) A schematic of the DSP and (b) typical time-series data of DSP. Here,  $V_p$  and  $I_p$  are measured by DP and  $V_f$  is measured by SP.

Here,  $\alpha \sim 4.0$  in helium (He) plasma.

In this study, we measured He plasma parameters in the linear device NAGDIS-II [12]. The experimental conditions are as follows: the discharge current,  $I_{dis}$ , was 20 A, and magnetic field strength, *B*, was 0.1 T. Measurement axial position, *z*, was 1.40 m from the anode position along the device. Under these conditions, the neutral gas pressure dependences of  $V_s$  were investigated by EP and DSP methods.

In the EP measurement, the neutral gas pressure was continuously changed from 6.3 to 25 mTorr. The EP filament was heated at the current of 3 A. The switching circuit turns on/off the heating current at a frequency of 10 Hz with a duty ratio of 95%.

The probe bias of the DSP was swept between  $\pm 40$  V with the sweeping frequency of 50 Hz. The plasma potential  $V_{\rm s}$  was calculated according to Eq. (1) from the electron temperature  $T_{\rm e}$  and the floating potential  $V_{\rm f}$  at each neutral gas pressure.

As the neutral gas pressure increased, the plasma at the measurement position changed from attached to detached plasmas, so the purpose of this experiment is to confirm whether the EP measurement could give similar results as with the DSP even when the plasma became detached.

We first compared the neutral gas pressure dependence of the plasma potential measured with EP and DSP, as shown in Fig. 3. Solid line and dashed line with circle show the results of EP and DSP, respectively. It is seen that the EP deduced lower value than that from DSP method.



Fig. 3 Neutral gas pressure dependence of  $V_s$  measured with normal EP (solid line) and DSP (dashed line with circle).

This reason is thought to the space-charge-limited (SCL) effect. In previous study, the floating potential was perfectly consistent with the plasma potential even with sufficient heating of the EP, and the effect of SCL was discussed [8]. It is known that the plasma potential  $V_s$  can be expressed using the floating potential with the heating  $V_f^{\text{heat}}$ , and the electron temperature  $T_e$  as follows:

$$V_{\rm s} = V_{\rm f}^{\rm heat} + \beta T_{\rm e} \,[{\rm eV}],\tag{2}$$

where  $\beta$  is equal to 0.99 in He plasma. The floating potential of the EP increases with the thermoelectron emission and approaches to the plasma potential. However, with increasing the thermoelectron emissions, a potential barrier is produced due to the piled electrons near the probe. Hence, the barrier suppresses the amount of thermoelectron emission (space-charge-limited) and the potential can approach a certain value. The value of  $\beta T_e$  was theoretically calculated in Ref. [13].

Therefore, in order to measure the plasma potential accurately, it would be necessary to consider the term of  $\beta T_e$ . To measure  $T_e$  with EP, we used the relationship between  $V_s$  and  $V_f$  in Eq. (1). Here, by using EP,  $V_f$  can be easily obtained without the heating. From Eqs. (1) and (2),  $T_e$  can be derived by

$$T_{\rm e} = (V_{\rm f}^{\rm heat} - V_{\rm f})/(\alpha - \beta). \tag{3}$$

The accuracy of  $T_e$  measurement from Eq. (3) in recombining plasmas has been already demonstrated in previous studies by comparing with a spectroscopic method [14,15]. In this study, by substituting  $T_e$  obtained from Eq. (3) into Eq. (2),  $V_s$  was measured and then compared with DSP results.

To acquire the floating potentials with heating  $V_{\rm f}^{\rm heat}$ and without heating  $V_{\rm f}$  at the same position, EP measurement was performed twice. Figure 4 (a) indicates the results of  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$ . It is found that  $V_{\rm f}^{\rm heat}$  is higher than  $V_{\rm f}$ particularly in low neutral gas pressure case. It should be noted that high-temporal-resolution  $V_{\rm s}$  evaluation cannot



Fig. 4 (a)  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$  measured with EP with (solid line) and without the heating (dashed line), respectively. (b) Neutral gas pressure dependence of  $T_{\rm e}$  evaluated from EP (solid line) and DSP (dashed line with circle).



Fig. 5 Neutral gas pressure dependence of  $V_{\rm s}$  measured with EP considering SCL (solid line) and DSP (dashed line with circle).

be performed in this case, because  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$  are measured separately.

Figure 4 (b) shows the  $T_e$  calculated by substituting  $V_f^{\text{heat}}$  and  $V_f$  into Eq. (3). In addition,  $T_e$  measured with DSP is overplotted. The 95% confidence interval is used as error bars. It can be seen that  $T_e$  obtained from two methods show good agreement. By increasing the neutral gas pressure,  $T_e$  decreases from ~3 eV to ~1 eV.

Figure 5 shows  $V_s$  calculated by substituting  $T_e$  in Fig. 4 (b) into Eq. (2). Two measurement results show good agreement similar to  $T_e$ . This indicates that the EP considering SCL method can evaluate the plasma potential



Fig. 6 (a) Photograph of EP with an additional SP. (b) Time series of (b)  $V_{\rm f}^{\rm heat}$  (solid line),  $V_{\rm f}$  (dashed line), (c)  $T_{\rm e}$ , and (d)  $V_{\rm s}$ .

with a high accuracy even in low-temperature plasmas with  $T_{\rm e} \sim 1 \, {\rm eV}$ .

To understand high-speed phenomena such as transport in detached plasma, it is important to know the dynamics of plasma potential. To obtain the time-resolved  $V_s$ , simultaneous measurement of  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$  is needed. For this purpose, we would like to suggest a new probe consisting of EP and SP as shown in Fig. 6 (a). Figures 6 (b, c, d) shows an example of measurement results as a function of time. In these figures, the time series from 2 to 2.5 ms from the turning off time is plotted, where the turn off period was 5 ms and the sampling frequency was 1 MHz. Figure 6 (b) shows  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$  measured simultaneously, using the EP and SP, respectively. It is seen that the EP always deduced higher potential than the SP roughly by 12 V. Figure 6 (c) shows the electron temperature obtained from the difference between  $V_{\rm f}^{\rm heat}$  and  $V_{\rm f}$  in Fig. 6 (b). The temperature evolution ranged at 3 - 5 eV. It seemed that the temperature increased in response to increase in the potential. Figure 6 (d) shows the plasma potential measured with EP considering SCL method. The standard error of the  $T_e$ and  $V_s$  were approximately 0.35 eV and 2.5 V, respectively. The potential fluctuated with positive spikes with height of more than 10 eV from the base potential of ~-25 eV.

The time series data of the plasma potential obtained in this way can be useful for measuring a transport phenomenon. In the future, we plan to validate the measurement accuracy of the newly developed probe by comparing with conditional averaged DSP results and then apply to elucidate mechanism of intermittent radial transport in detached plasma [6].

To establish a high-temporal resolution measurement which can directly obtain the plasma potential without any statistical technique like CA analysis, we improved the emissive probe measurements. We conducted the plasma potential measurement using an emissive probe considering space-charge-limited (SCL) effect, and the values were compared with double probe and single probe equipped on the probe head (DSP) method. The emissive probe considering the SCL effect result was good agreement with DSP result. We plan to apply this method to intermittent transport in detached plasma in the future.

This work was supported in part JSPS KAKENHI (18KK0410, 19K03787, 19K03802, 20H00138), and NIFS Collaboration Research program (NIFS19HDAF003, NIFS20KUGM149), and NINS program of Promoting Research by Networking among Institutions (01411702).

- [1] N. Ohno, Plasma Phys. Control. Fusion 59, 034007 (2017).
- [2] S.I. Krasheninnikov *et al.*, J. Plasma Phys. **83**, 155830501 (2017).
- [3] G.S. Chiu and S.A. Cohen, Phys. Rev. Lett. 76, 1248 (1996).
- [4] N. Ohno et al., Contrib. Plasma Phys. 50, 256 (2001).
- [5] Y. Hayashi et al., Contrib. Plasma Phys. 59, 7 (2019).
- [6] N. Ohno et al., Nucl. Mater. Energy 19, 458 (2019).
- [7] H. Tanaka *et al.*, Plasma Phys. Control. Fusion **62**, 075011 (2020).
- [8] M.A. Makowski and G.A. Emmert, Rev. Sci. Instrum. 54, 830 (1983).
- [9] S. Kajita et al., Jpn. J. Appl. Phys. 44, 12 (2005).
- [10] J. Adámek et al., Czech. J. Phys. 55, 235 (2005).
- [11] S. Kajita et al., Phys. Rev. E 70, 066403 (2004).
- [12] N. Ohno et al., Nucl. Fusion 41, 1055 (2001).
- [13] S. Takamura *et al.*, Phys. Plasma 7, 3457 (2000).
- [14] H. Shindo et al., Rev. Sci. Instrum. 59, 2002 (1988).
- [15] A. Matsubara et al., J. Nucl. Mater. 313-316, 720 (2003).