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Sparsity-Promoting Dynamic Mode Decomposition
of Plasma Turbulence
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A data-driven approach called sparsity-promoting dynamic mode decomposition (SP-DMD) is applied to
the plasma turbulence signals obtained with an azimuthal probe array. The spatiotemporal turbulence can be
reasonably decomposed into seven modes which capture the azimuthal bunching of the turbulence. A superiority
of the DMD analysis to the conventional stationary analysis is demonstrated.
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Time-varying structures are frequently observed in
non-equilibrium systems. Magnetically confined plasma
is a typical non-equilibrium system. The spatial inhomo-
geneity of plasma, which is produced and sustained by
external sources, excites instabilities in the plasma. In
turn, transport driven by the instabilities tries to mitigate
the plasma’s inhomogeneity. As a result, spatial gradi-
ents, waves, flows and eddies coexist in the plasma and
interact with each other causing the plasma to become
turbulent [1, 2]. Due to the various nonlinearities in
plasma, multi-scale spatiotemporal structures can form in
the plasma turbulence [3]. The identification of the spa-
tiotemporal structures in plasma turbulence is essential for
visualizing their coarse-grained nature, where many de-
composition techniques have been applied to time-series
data of plasma turbulence [4, 5]. Fourier analysis is fre-
quently used as a decomposition technique, however, en-
semble averaging is required when it is applied to random
signals. Usually, ensemble averaging is replaced by time
averaging [6], which can mask the non-stationarity of the
signals. Actually, structure in plasma turbulence varies in
time [7], and thus new analysis tools, which can extract the
non-stationary spatiotemporal structure of the turbulence,
are required. Here we apply a dynamic mode decomposi-
tion (DMD) analysis to signals of turbulence in a magne-
tized laboratory plasma. Laboratory plasma is very useful
as it allows us to verify the capability of our method, and
because it has excellent reproducibility and controllability
and allows for multi-point simultaneous measurements to
be made.

Since it was introduced in 2008 [8], DMD has been
applied to fluid flow studies especially in analyses of non-
linear dynamics [9, 10]. From the spatiotemporal data
obtained from an experiment or a numerical simulation,
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DMD extracts a spatial pattern with a temporal frequency
and a growth/decay rate. This spatial pattern is called a
DMD mode. In standard DMD, high-dimensional data is
decomposed into a large number of DMD modes. This
makes it difficult to interpret the extracted modes. To
address this difficulty, we introduce a variant of DMD,
called sparsity-promoting dynamic mode decomposition
(SP-DMD) [11], which allows us to reconstruct the orig-
inal data using a small number of dominant DMD modes.
In the following, we describe how standard DMD and SP-
DMD work.

In standard DMD, the following two matrices are
given as input:

Ψ0 :=
[
ψ0 ψ1 . . . ψN−1

]
∈ CM×N , and (1)

Ψ1 :=
[
ψ1 ψ2 . . . ψN

]
∈ CM×N , (2)

where ψt ∈ CM is the observed value at time t, M is the
number of observation points, and N is the number of time
steps. If a linear time-invariant system is assumed, it holds
that:

ψt+1 ≈ Aψt (t = 0, . . . ,N − 1) . (3)

The matrix A best-fit to the observed data, which mini-
mizes the Frobenius norm of Ψ1 − AΨ0, is calculated as
follows:

A := Ψ1Ψ
+
0 , (4)

where Ψ+0 is the pseudoinverse of Ψ0. From the economy-
size singular value decomposition (SVD) Ψ0 = UΣV∗, it
follows that:

Ψ+0 = VΣ−1U∗. (5)

If dimensionality reduction via the matrix U is adopted, the
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Fig. 1 Trade-off between the number of modes and the squared
error.

state at time t is calculated as follows:

ψt ≈ Atψ0 ≈
r∑

i=1

φiμ
t
iαi, (6)

where r is the rank of Ψ0, φi (:= Uyi) is the DMD
mode, which is calculated from the eigenvector yi of F (:=
U∗Ψ1VΣ−1), μi is a DMD eigenvalue, which is identical
to the eigenvalue of F, and αi is the amplitude, which de-
pends on the initial state ψ0. To obtain a better amplitude
vector α = (α1, . . . , αr)�, the objective function J(α) for
minimizing the squared error between the observed data
(Eq. (1)) and the calculation (Eq. (6)) can be defined.

In SP-DMD, by adding an l1-regularization term to
the objective function, a new function, J(α) + γ

∑r
i=1 |αi|,

is minimized. Consequently, a small number of dominant
DMD modes are selected. That is, only those modes that
have non-zero amplitudes, while all the other modes have
zero. After the selection, the amplitudes are computed
again by minimizing J(α) under the condition that the am-
plitudes of the non-selected modes are fixed to zero.

In this study, the DMD analysis is applied to the sig-
nals of plasma turbulence obtained in a linear magnetized
plasma device, LMD-U [12]. In a conventional study [12],
the streamer structure [3], azimuthal self-bunching of drift
waves (6.6 kHz and 7.8 kHz components), can be identi-
fied with a Fourier analysis. The streamer forms through
the three-wave coupling (nonlinear phase locking) between
the mediator (1.2 kHz components) and the carrier (drift
waves). The turbulence structures that form in the LMD-
U are quasi-coherent. Thus, stationary signal processing
is able to capture the rough features of the spatiotempo-
ral structures in the LMD-U plasma. Thus, this data-set is
very useful as it allows us to verify the capability of our
DMD analysis. In this analysis, the SP-DMD algorithm is
applied to the spatiotemporal data under the condition that
‖φi‖ = 1 (i = 1, . . . , 64). Here the time window is 1 ms.

Figure 1 shows the number of modes (Nmode) and the
squared error (SE), i.e., minimized J(α), versus the regu-
larization parameter γ. When γ = 0, the result corresponds
to that from the standard DMD. An increase in γ leads to
a decrease in Nmode and an increase in the SE. In general,

Fig. 2 Spatiotemporal patterns of the ion saturation currents
measured with the 64-ch probe array. (a) Original data,
(b) - (h) results of SP-DMD using a regularization param-
eter of γ = 2.

the presence of too many modes causes difficulty when in-
terpreting the results. When γ < 1, Nmode decreases by
about one third although the increase in the SE is moder-
ate. Both Nmode and SE are stable for 1 < γ < 4, while SE
increases rapidly for γ > 4. Therefore, we consider that
the stable interval (1 < γ < 4) is a reasonable selection
when considering the trade-off between Nmode and the SE.
In this interval, the number of modes is 15, where the cor-
responding DMD eigenvalues consist of one real number
and seven pairs of conjugate complex numbers. Thus, the
original data is characterized by one non-oscillatory mode
and seven kinds of oscillatory modes.

Figure 2 (a) shows a heatmap of the ion saturation cur-
rent measured with a 64-channel azimuthal probe array,
and Figs. 2 (b) - (h) show the spatiotemporal patterns of the
seven kinds modes for the parameter γ selected above. A
drift wave, which is an azimuthally propagating wave, can
be identified as the oblique stripe pattern seen in Fig. 2 (c),
i.e., as mode-2. Figure 2 (c) indicates that the amplitude
of the drift wave gradually changes within a time-scale of
1 ms, which is a characteristic feature of turbulence.

As shown in Figs. 2 (e), (f) and (g), the amplitudes
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Fig. 3 High-frequency-resolution spectrogram.

of mode-4, mode-5 and mode-6 vary in the azimuthal di-
rection. For example, the amplitude of mode-6 becomes
strong around θ ∼ 0.6, where θ is the azimuthal angle nor-
malized by 2π. In a different time window, amplitude en-
hancements appear at different values of θ, which seem to
propagate in the azimuthal direction. Thus, these struc-
tures may be related to the azimuthal bunching of the drift
waves [3, 12]. (This point will be discussed in the full pa-
per.) In addition, the decay time-scale of mode-5 is longer
than that of the drift wave. This is a characteristic of the
mediator which plays an important role in energy transfer
between drift waves [12].

Figure 2 also demonstrates the presence of different
structures. Some of these structures (mode-1, mode-3 and
mode-7) decay within 1 ms. These structures may be lin-
early stable but be excited transiently due to nonlinear en-
ergy transfer through the turbulence. Identification of en-
ergy transfer from/to these structures is left for future work
but we emphasize that the SP-DMD analysis enables us to
extract such fine spatiotemporal structures.

Also, a limitation of the SP-DMD should be discussed
from a technical viewpoint. As we have discussed above,
the SP-DMD method extracts decay modes successfully.
However, the SP-DMD of plasma turbulence tends to miss
the extraction of some growth modes from our observation,
although plasma turbulence shows fluctuations which dis-
appear and appear repeatedly as its nature. Therefore, the
sum of all modes, i.e., the reconstruction, diverges from
the original data over time. This is the reason why we use
a 1 ms window rather than wider one. To analyze a longer
time period, we use the following sliding window method.

Next, the fluctuation of the frequency of each DMD
mode was examined by an overlapping sliding window
model with a size of 1 ms and a slide of 0.5 ms, i.e., an
overlap of 0.5 ms. Figure 3 shows the result for a 10 ms
period. The intensity is denoted by the absolute value of
the DMD amplitude, |αi|. The parameter γ is fixed to 2
according to the previous discussion. Again, please note
that a mode within a window has only one temporal fre-
quency corresponding to μi in Eq. (6), although the spa-
tial pattern φi also has a phase difference resulting in the
complicated spatiotemporal pattern observed in Fig. 2. In
Fig. 3, it can be seen that most DMD modes have a fre-
quency between 2 kHz and 10 kHz. Most of the lower

bound of the frequency appears in the spectrogram around
2 to 3 kHz with high intensity. For short-time Fourier
transform (STFT), the frequency resolution is bound down
to 1 kHz due to the uncertainty principle when the slid-
ing window size is set to 1 ms, i.e., the same size as in
Fig. 3. In contrast, the frequency resolution obtained by
the SP-DMD in Fig. 3 is much higher. This is because the
DMD treats instantaneous frequency as the time deriva-
tive of each instantaneous phase. The DMD spectrogram
is capable of capturing smaller fluctuations compared with
the STFT. In addition to the time-varying frequency, the
DMD can give us a time-varying amplitude. To present
the preceding/following time relation or co-occurrence in-
formation of events is essential to identify the direction of
energy transfer between the fluctuating structures. Again,
we emphasize that a DMD analysis can extract fine spa-
tiotemporal structures that are masked in the conventional
Fourier analysis, which is considered to be important for
more a comprehensive understanding of plasma turbulence
dynamics.

To observe the non-stationary spatiotemporal struc-
ture in turbulence, a DMD analysis was applied to data
obtained from a laboratory plasma experiment in which a
streamer had been identified. The DMD analysis detected:
i) a drift wave structure, ii) azimuthally bunched structures
and iii) structures with very short time-scales (< 1 ms). Ob-
servations of the time-varying spatiotemporal structures in
turbulence are important because turbulence is dynamic in
its nature. The variant of DMD method used here was
found to be very powerful and thus will be applied to other
spatiotemporal structure decomposition problems in future
works.
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