Plasma and Fusion Research: Regular Articles

Volume Rendering Method Applied to 3D Edge Impurity Emission

in LHD to Produce Projection Image in Arbitrary Plane”

Yuichi TAMURA, Masahiro KOBAYASHIV, Taisuke KOBAYASHI?, Wataru OMOR]I,
Hiroaki NAKAMURAD, Hiroaki OHTANI", Susumu FUJTWARAY
and the LHD Experimental Group"

Konan University, Kobe 658-8501, Japan
D National Institute for Fusion Science, Toki 509-5292, Japan
DSOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292, Japan
Y Kyoto Institute of Technology, Kyoto 606-8585, Japan

(Received 27 December 2018 / Accepted 20 March 2019)

Understanding edge impurity transport is one of the important issues for fusion devices to control edge
radiation distribution for detachment operation and impurity influx to the confinement region. In LHD, the
edge magnetic field structure becomes complex stochastic magnetic field. In order to study relation between
impurity transport and the magnetic field geometry, 3D edge impurity emission distributions are obtained by
a multichannel spectrometer system and tomography scheme. However, it is difficult to understand the three-
dimensional (3-D) structure. Therefore, we propose a visualization system that employs a volume rendering
method. With the proposed system, which can be used on a PC or mobile device, the user can observe a 3D
structure in an arbitrary plane. To realize this function, we propose a volume visualization system comprising
preprocessing and real-time rendering stages. Therefore, the visualization framerate can exceed 30 frames per
second on PCs and approximately six frames per second on mobile devices, although the user frequently changes

Volume 14, 3406084 (2019)

the position and direction of the camera.

© 2019 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: visualization, volume rendering, ray marching, LHD, Large Helical Device, emission distribution,

virtual reality
DOI: 10.1585/pfr.14.3406084

1. Introduction

Understanding of the edge impurity transport is one of
the important issues for fusion devices in order to control
edge radiation distribution for detachment operation and
impurity influx to the confinement region [1]. In LHD, the
edge magnetic field structure becomes complex stochas-
tic magnetic field, where different connection length flux
tubes co-exist. In order to study relation between impurity
transport and the magnetic field geometry, 3D edge impu-
rity emission distributions are obtained by a multichannel
spectrometer system and tomography scheme [2,3]. This
tomography scheme is powerful to observe physical phe-
nomena in LHD though output data is not structured and it
is difficult to visualize 3D emission distribution image di-
rectly. Therefore, it is necessary to develop a visualization
tool that can read and visualize 3D emission distribution
automatically and allow the user to intuitively observe 3D
structure.

In this paper, we propose a system that can regenerate
an emission distribution image projected toward arbitrary

author’s e-mail: tamura@konan-u.ac.jp

*) This article is based on the presentation at the 27th International Toki
Conference (ITC27) & the 13th Asia Pacific Plasma Theory Conference
(APPTC2018).

3406084-1

direction in LHD using a volume rendering method. For
example, we can visualize the emission distribution from
a particular port of the LHD vessel or virtual port. The
large-scale virtual reality system CompleXcope [4] and its
applications have been developed in NIFS. However, it is
difficult to use this system frequently and freely. Thus, we
propose volume visualization method and system to ob-
serve the 3D structure of emission distribution from an ar-
bitrary direction on various devices.

2. Method

Volume rendering methods are widely used to visual-
ize volume data, and the most common technique is the
ray casting method [5]. This method can render high qual-
ity images of volume data; however, it requires power-
ful computer resources and has difficulty rendering in real
time. Computer performance and image processing meth-
ods have improved [6, 7], and it is now possible to ren-
der 3D objects in real time using a high-performance PC.
However, rendering with mobile devices, such as iPads,
Android tablets, and PC tablet, remains difficult. Thus, we
propose a volume rendering method that uses a 3D texture,
which realizes near-real-time rendering on mobile devices.
Figure 1 shows the procedure of the proposed method.

© 2019 The Japan Society of Plasma
Science and Nuclear Fusion Research

Plasma and Fusion Research: Regular Articles

Volume 14, 3406084 (2019)

Read 3D data
4

‘Determine boundary box ‘

&

Make convex polyhedra
from 3D point data

v

Divide to voxels
{4

‘Cast rays to each voxel ‘
U

Detect collision
between a ray and a polyhedron

g

Allocate voxel scalar data
from the value of detected polyhedron

g

Make 3D texture data from voxels’ scalar data

Fig. 1 Processing flowchart of the proposed visualization sys-
tem.

The proposed system comprises preprocessing and
real-time rendering stages. Notably, it is difficult to create
3D images from large volumetric data and simultaneously
render them in real time. The proposed method creates a
3D texture meaning volumetric texture data in the prepro-
cessing stage, stores the data in a local storage, and renders
a 3D volume image in the real-time rendering stage.

2.1 Preprocessing stage

First, input data are read from the storage device, and
then emission distribution [2] data and their position data
are read. An example of this data is shown in Table 1. This
data file consists of positions of vertices and scalar data
(emission distribution data) in volumes composed of these
vertices. The emission distribution data comprises 8 or 6
vertices and scalar data.

From the input data, a boundary box is determined
from the position range of the position data of vertices.

The next step is to create convex polyhedra from the
original data. Generally, 3D data comprises polyhedra and
their vertices data. Notably, surface data may be provided
to 3D model data. If surface data are not provided, vari-
ous polygonal patterns can be considered. Figure 2 shows
an example, where both images comprise vertices and six
surfaces. In this case, the right object is incorrect; how-
ever, this incorrect object can be generated if the surface
data are not provided. In this system, a polyhedron, which
comprises eight vertices and has largest volume, is auto-
matically determined. Therefore, correct polyhedron can
be defined if the input data is not aligned.

Table 1 An example of emission distribution data file.

X y zZ
—1.8836 3.9077 0.1973 Vertex data
—1.8229 39121 0.20196
—1.8794 3.9144 0.19558
—1.8187 3.9185 0.19989
—-1.9069 3.9365 0.2784
—1.8492 3.938 0.2863
—-1.9121 3.9281 0.28055
—1.8544 3.93 0.28889

1.328 0 0 Scalar data
[]
Convex Concave

Fig. 2 Example polyhedron. Left: concave polyhedron; right:
convex polyhedron.

Ray

Fig. 3 Casting ray onto each polyhedron.

The main step in the preprocessing stage is to cast rays
onto each polyhedron, detect collisions, and assign scalar
data for rendering the image. To achieve high-speed cal-
culation using a graphic processing device, it is necessary
to create a volume comprising a cube. Conversely, poly-
hedra from the input data are not cuboids; therefore, the
boundary box is divided into cuboids (hereinafter, this is
called voxel). Herein, to avoid data loss, the division size
of the boundary box must be sufficiently small relative to
the polyhedron size of the original input data.

The next step is to cast rays from outside the boundary
box. Herein, all polyhedra are present in the boundary box.
Consider a ray cast through one of the sides of the bound-
ing box passing through the center of the voxels. Figure 3
shows an example of this process.

3406084-2

Plasma and Fusion Research: Regular Articles

Volume 14, 3406084 (2019)

Table 2 Algorithm to apply scalar data from input data to constructed voxel.

Ty, z)

ANEAER I e

: object_number = DetectCollision(ray(Xx, y, z))

scalar_value = ExtractScalarValue(object_number)

T(x, y, z) = SetValue(x, y, z, scalar_value)

T(x,y, z) = (T(X, y, z) - scalar_min)(scalar_max - scalar_min)
repeat (while x <1, y <m, z <n)

Table 3 Algorithm to apply colormap to voxels.

T(x,y,2)1, 8 b

1: if(T(x, y, z) < 0.5)

1-1: TX,y,z2)1=0,TX,y,2)g=2*T(X,y,2), T(X,y,2) b=-2*T(X,y,z) + 1

2: else

2-2: TX,y,z2)1=2*T(,y,2)-1,T(X,y,2)-g=-2*T(X,y,2) + 2, T(x,y,2) . b=0
3: repeat (while x <1, y <m, z < n)

When a collision between a ray and polyhedron oc-
curs, the scalar value of a polyhedron is assigned to the
voxel at the collided position. Additionally, the collision
calculation between a ray and a polyhedron continues until
a ray leaves the boundary box. If the boundary box com-
prises [X m X n voxels, / X m rays are cast from outside the
boundary box, and the collision test is performed [X m X n
times. In this study, the division size (/,m, n) is manually
determined and native voxelization approach is used.

Finally, 3D texture data are created from the scalar
data of the voxels and stored in an array T'(x,y,z) of size
Ixmxn. Additionally, all scalar data of the voxels are nor-
malized between 0 and 1. The algorithm for this procedure
is shown in Table 2.

2.2 Real-time visualization stage

At this stage, the system reads the 3D texture data
from the storage device and applies a colormap to visu-
alize the 3D data using the algorithm shown in Table 3.
This color map is consistent with the color map of the vi-
sualized experimental data on the left side of Figs.5-7.
The 3D texture data created in the preprocessing stage are
stored in ASCII data format. Notably, the preprocessing
requires significant computer power and time to create 3D
texture data; thus, a high-performance PC is necessary. If
the preprocessing and visualization computers are differ-
ent, the data must be sent to the visualization device. This
visualization application is available for PC, Android de-
vices, and 10S devices. Real-time visualization methods
on mobile device have been proposed [8]. In this study, we
use 3D-textured slicing approach for visualization.

3. Results
3.1 Software environment

The proposed system is developed using the Unity 3D
engine!, which was originally created for game develop-

Uhttp://unity3d.com/

Cl1-133325-tomo

Stored data name

Intensi
= e Sty —— | Intensity parameter
(I slider

Threshold

Threshold parameter
slider

Fig. 4 Interface to change visualization parameters.

ment. However, the Unity 3D engine has many useful
functions, including functions that facilitate scientific vi-
sualization. This engine supports various devices and plat-
forms; therefore, the proposed system can be implemented
on various devices, such as PCs and tablet devices.

The system implements an interactive interface that
changes parameters as shown in Fig. 4. The “intensity” pa-
rameter can change the weight parameter for visualization.
The value of each pixel is determined using Eq. (1).

Ia,v) = Y wl(x,y,2), 1)

k=1

where I(u,v) is the calculated value of the pixel color at
(u,v) on a projection plane, n is the number through which
a ray penetrates voxels from the eye position to outside
the boundary box, and k is the k — th voxel to penetrate.
T(x,y,z) is anormalized scalar value on a projection plane
of the rendering computed using the algorithm in Tables 2
and 3. If color map is applied, the output image will be
blue if the “intensity” parameter is too small.

The “threshold” parameter is the cut-off value. If the
normalized scalar value of a voxel is less than the threshold
value, its value is ignored in Eq. (1). The threshold param-

3406084-3

Plasma and Fusion Research: Regular Articles

Volume 14, 3406084 (2019)

ClI-133325-tomo ~

Fig. 5 Left: experimental result of carbon C!* emission (CII)
distribution. Right: Front and Side views of the visual-
ization result (intensity parameter = 20; threshold = 0.0
(all data are represented)).

Clll-137176-tomo ~

CliIl-137176-tomo -

1 2 s 456 7 s
=4.3sec
m—LllO“m

Fig. 6 Left: experimental result of carbon C** emission (CIII)
distribution. Right: Front and Side views of visualization
result (intensity parameter = 20 threshold = 0.0 (all data
are represented)).

eter is used if the user wants to exclude values that are less
than the given threshold value in the visualization.

The proposed system supports touch interfaces; thus,
the user can interact with the display and change the po-
sition, angles, and parameters intuitively. Therefore, the
visualization results can be observed on an arbitrary plane.

3.2 Examples of visualization results

Figures 5-7 show visualization examples, where the
images on the left are the experimental results, and im-
ages on the right are the visualization results obtained by

CIV-137176-tomo ~

008288
X 03513
0.028%°
002184
001822

CIV-137176-tomo ~

0.007 15

X 00000

17234567809

Fig. 7 Left: experimental result of carbon C** emission (CIV)
distribution. Right: Front and Side views of visualization
result (intensity parameter = 20; threshold = 0.0 (all data
are represented)).

Table 4 3D texture generation time comparison based on 3D
texture size.

number of pixels (pixel) | processing time (second)
100 x 100 x 100 3.8

200 x 200 x 200 28.7

400 x 400 x 400 224.3

the proposed system. Here the resolution of the 3D tex-
ture is 400 X 400 x 400 pixels. The original data comprise
approximately 25,000 polyhedra.

Since the colormap of 3D data is consistent with the
experimental result, the user can compare physical phe-
nomena intuitively.

3.3 Speed estimation

We measured the time required to create a 3D texture,
read the 3D texture data, and start the 3D view. We also
measure the rendering frame rate. Table 4 shows the mea-
surement results for 3D texture generation time with vari-
ous volume sizes.

This test was executed with an Intel Core 17-4770
(3.4GHz, 8 MB cash memories), an NVIDIA GeForce
GTX 1070 GPU (graphics clock is 1506 MHz and proces-
sor clock is 1683 MHz.), 32 GB main memories and a solid
state disk for data storage, on Windows 10. The mem-
ory usage of the largest case (400 x 400 x 400) is approxi-
mately 492 MB. The average time required to read the 3D
texture data was approximately 6.8 s. The average rate to
render the 3D data on the PC was greater than 30 frames
per second (fps), and that with an Android device (Snap-
dragon Kryo 280 CPU) was approximately about 5 - 10 fps.

3406084-4

Plasma and Fusion Research: Regular Articles

Volume 14, 3406084 (2019)

In this study, the division size is manually determined.
If the edge length of the voxel is shorter than the mini-
mum edge of the input polyhedron, at least one voxel is
included in each polyhedron. This means all input data
is completely visualized without loss. For this data, if di-
vision size is (400 x 400 x 400), 99.1% edge of the in-
put polyhedron is longer than the edge of voxel. If the
size is (200 x 200 x 200), it is 95.6%. Also, if the size is
(100 x 100 x 100), it is 85.3%.

4. Conclusion

In this paper, we proposed a system to visualize un-
structured emission distribution data in two stages. In the
first stage, the unstructured data is transformed into 3D tex-
ture data, and in the second stage, the transformed 3D tex-
ture data is read out from the storage and visualized in real
time. The advantage of the proposed system is that it can
be used on handheld devices, such as smartphones. It is
difficult to render 3D volume data using a volume render-
ing method; however, the proposed system is a two-stage
visualization system that involves preprocessing and real-
time rendering stages.

With this system, the visualization results of emission
distribution can be confirmed on PCs, tablet devices (e.g.,
iPad), and CompleXcope. The visualization results of the
proposed system can be used to further develop diagnostic
systems in LHD. In future works, it is necessary to deter-
mine the division size of voxels automatically.

Acknowledgment

This study was funded partly by a Grant-in-Aid for
Scientific Research KAKENHI (15K06650, 17K06280,
16H04622) and MEXT, Japan.

[1] M. Kobayashi et al., Nucl. Fusion 55, 104021 (2015).

[2] M. Kobayashi et al., Rev. Sci. Instrum. 88, 033501 (2017).

[3] T. Kobayashi ef al., Rev. Sci. Instrum. 89, 123502 (2018).

[4] A. Kageyama et al., Proc. 16th International Conference on
the Numerical Simulation of Plasmas (1998).

[5] M. Levoy, IEEE Comput. Graph. Appl. 8, 03 (1988).

[6] J. Kruger et al., Proc. 14th IEEE Visualization (2003).

[7] P. Lacroute et al., Proc. SIGGRAPH ’94 (1994).

[8] J.M. Noguera et al., IEEE Trans. Vis. Comput. Graphics
(2016).

3406084-5

