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lem, a proof is presented for a general conservation law that the Lagrangian displacement type perturbation field
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1. Introduction
Differential geometrical approaches to the dynamics

of continuous media have revealed general and funda-
mental mathematical structure [1, 2]. Regarding plasma
physics, the dynamics of dissipationless incompressible
magnetohydrodynamic (MHD) and Hall magnetohydrody-
namic (HMHD) media have been commonly described as
geodesics on some appropriate Lie groups [3, 4]. These
dynamical systems are defined by the pair of the appro-
priate Riemannian metric (or inner product) and the Lie
bracket of basic variables. Furthermore, Lagrangian me-
chanical consideration of MHD and HMHD systems re-
vealed the relationship between the helicity conservation
via Noether’s theorem and the stationary force-free solu-
tions known as double Beltrami flows [5]. In the present
study, we attempt to apply these mathematical notions to
the stability problems of stationary states from both the La-
grangian and Hamiltonian mechanical viewpoints.

This paper is organized as follows. Sections 2 and 3
are very abstract and based on Lie group theory and the
theoretical formulation of the dynamics of wide variety of
continua (see, for example, Refs. [1] or [2]). We ultimately
investigate the variation problem up to the second order of
perturbation from the Lagrangian mechanical viewpoint.
In section 4, to illustrate the effectiveness of the general
theoretical formulation, we examine the stability problems
of the HMHD system and its MHD limit in the Hamilto-
nian mechanical perspective.

2. The Lagrangian Mechanics of Ideal
Incompressible Fluids and Plasmas
In this section we introduce mathematical notations

author’s e-mail: araki@are.ous.ac.jp
∗) This article is based on the presentation at the 27th International Toki
Conference (ITC27) & the 13th Asia Pacific Plasma Theory Conference
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used in the following sections. The details were discussed
in Ref. [5].

Let γ(t, ε) represent paths on the configuration space,
where t and ε are the time and perturbation parameters,
respectively.1 The generalized velocities (Vε(t)) and the
Lagrangian particle displacement fields (ξ(t)) are defined
by their partial derivatives as follows:

Vε(t) :=
∂

∂t
γ(t, ε), ξ(t) :=

∂

∂ε
γ(t, ε)

∣∣∣∣∣
ε=0
, (1)

and γ(t) = γ(t, 0), V := V0 are the respective reference path
and solution.2 Approximation of the paths via C→D, and
C→A→B→D in terms of exponential maps3 leads to the
following relation:

eτVε (t) ≈ eεξ(t+τ)eτV(t)e−εξ(t), (2)

where the positions of four points A: γ(t, 0), B: γ(t + τ, 0),
C: γ(t, ε), D: γ(t + τ, ε) are depicted in Fig. 1. The Baker-
Campbell-Hausdorff formula up to the third order,

eAeB = exp
(
A + B +

1
2

[A, B] +
1
12

(
[A, [A, B]]

+ [B, [B, A]]
)
+ · · ·

)
, (3)

1For a perfect fluid, the path is given by the history of the Lagrangian
markers: γ(t, ε) = �X(�a, t; ε), where the initial position is given by γ(0, ε) =
�a.

2All the vector fields that appear in this study are given in the Eulerian
specification. The relations between the components of the fields, (Vi

ε ,
ξi), and those of the Lagrangian markers, (Xi), are given as follows:

Vε = Vi
ε

∂

∂xi
, where Vi

ε (�X(�a, t; ε), t) :=

(
∂Xi

∂t

)
(�a,t;ε)

,

ξ = ξi
∂

∂xi
, where ξi(�X(�a, t; 0), t) =

(
∂Xi

∂ε

)
(�a,t;0)

,

for a perfect fluid.
3For perfect fluid motion, an exponential map is the finite-time La-

grangian marker history generated by a constant vector field.

c© 2019 The Japan Society of Plasma
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Fig. 1 The relation between the reference velocity, V , the La-
grangian displacement field, ξ, and the velocity perturba-
tion, v, depicted as the tangent vectors of the small seg-
ments on the paths.

is used to derive the second order perturbation of the ve-
locity field, where [∗, ∗] is the Lie bracket of Lie algebra,4

which satisfies antisymmetry and the Jacobi identity:

[A, B] = −[B, A], (4)

[A, [B,C]] + [B, [C, A]] + [C, [A, B]] = 0. (5)

The perturbed generalized velocity due to Lagrangian dis-
placement, ξ, up to the order O(ε2) is given by

Vε :=
d
dτ

exp(εξ + ετξ̇) exp(τV) exp(−εξ)
∣∣∣∣∣
τ=0

(6)

= V + ε
(
ξ̇ + [ξ,V]

)
+
ε2

2
[ξ, ξ̇ + [ξ,V]] + o(ε2).

(7)

The O(ε) terms of Vε , which we denote by v hereafter,
gives so-called Lin’s constraints [2]:

v = ξ̇ + [V, ξ]. (8)

Note that, the Lie bracket is recognizable as the Lie deriva-
tive (Ref. [6]; ch. I, sect. 3):

LVξ := lim
s→0

lim
t→0

esξ − etVesξe−tV

st
= [ξ,V]. (9)

In Arnold’s differential geometrical formulation, La-
grangian is simply given by inner product of the gener-
alized velocity, L = 1

2 〈Vε |Vε〉, where the bracket 〈 ∗ | ∗ 〉
is the appropriate inner product.5 Therefore, the action on
the perturbed path, γ(t, ε), is given by

S ε =
1
2

∫ 1

0
dt

∣∣∣∣∣∣∣∣V + ε(ξ̇ + [ξ,V]
)

+
ε2

2
[ξ, ξ̇ + [ξ,V]] + o(ε2)

∣∣∣∣∣∣∣∣2, (10)

where ||a||2 := 〈a|a〉. Expanding the action by ε, we obtain
the first variation as follows:

dS ε
dε

∣∣∣∣∣
ε=0
=

∫ 1

0
dt

〈
V
∣∣∣ξ̇ + LVξ

〉
=

〈
V
∣∣∣ξ〉∣∣∣∣t=1

t=0
−

∫ 1

0
dt

〈
ξ
∣∣∣V̇ − L†VV

〉
, (11)

4The Lie bracket for the ideal hydrodynamics is given by the commu-
tator of the vector field defined by [a, b] = ∇× (a× b) = (b ·∇)a− (a ·∇)b.

5The inner products are defined to give the total energies of the fluids
and plasmas.

where the operator L† is defined by the following integra-
tion by parts6:

〈L†ba|c〉 := 〈a|Lbc〉. (12)

According to Hamilton’s principle, the extremal condition
with fixed path end points, (ξ(0) = ξ(1) = 0), gives the
Euler-Lagrange equation:

V̇ − L†VV = 0, (13)

which is known as the Euler-Poincaré equation [2].

3. The Constant of Motion Around a
Stationary Solution

3.1 Derivation of the constant
In this section, we consider the linear stability prob-

lem around a stationary solution to Eq. (13), which satis-
fies

V̇ = 0, (14)

L†VV = 0. (15)

Substituting V + εv into the Euler equation (13) and ex-
panding regarding the power of ε, we obtain the linearized
perturbation equation at the order O(ε):

v̇ = L†Vv + L†vV. (16)

Taking the inner product with ξ̇, we obtain the following
evolution equation:〈

ξ̇
∣∣∣v̇〉 = 〈

ξ̇
∣∣∣L†Vv

〉
+

〈
ξ̇
∣∣∣L†vV

〉
. (17)

Using the relations (4), (5), (8), (9), (12), (14), and (15),
and performing the following tricky calculations, each
term of Eq. (17) is rewritten as follows:〈

ξ̇
∣∣∣v̇〉 (8)
=

〈
ξ̇
∣∣∣ξ̈〉 + 〈

ξ̇
∣∣∣LV ξ̇

〉
=

1
2

d
dt

〈
ξ̇
∣∣∣ξ̇〉 + 〈

ξ̇
∣∣∣LV ξ̇

〉
,

(18)〈
ξ̇
∣∣∣L†Vv

〉 (12)
=

〈
LV ξ̇

∣∣∣v〉 (8)
=

〈
LV ξ̇

∣∣∣ξ̇〉 + 〈
LV ξ̇

∣∣∣LVξ
〉

(14)
=

〈
LV ξ̇

∣∣∣ξ̇〉 + 1
2

d
dt

〈
LVξ

∣∣∣LVξ
〉

(4)
=

〈
LV ξ̇

∣∣∣ξ̇〉 + 1
2

d
dt

〈
LξV

∣∣∣LξV〉
, (19)

〈
ξ̇
∣∣∣L†vV

〉 (12)
=

〈
Lvξ̇

∣∣∣V〉 (4)
= −〈L

ξ̇
v
∣∣∣V〉 (12)
= −〈v∣∣∣L†

ξ̇
V
〉

(8)
=−〈ξ̇∣∣∣L†

ξ̇
V
〉 − 〈

LVξ
∣∣∣L†
ξ̇
V
〉 (12)
= −〈L

ξ̇
ξ̇
∣∣∣V〉 − 〈

L
ξ̇
LVξ

∣∣∣V〉
(4)
=

〈
L
ξ̇
LξV

∣∣∣V〉 [A]
=

1
2
〈
L
ξ̇
LξV

∣∣∣V〉
+

1
2
〈
LξLξ̇V

∣∣∣V〉
(14)
=

1
2

d
dt

〈
LξLξV

∣∣∣V〉 (12)
=

1
2

d
dt

〈
LξV

∣∣∣L†ξV〉
, (20)

where the numbers on top of the equal symbols denote the
equations used. Derivation of the step [A] of Eq. (20) is

6In Arnold’s textbook the operator L† is denoted by B(∗, ∗) ( [1]; ap-
pendix 2, sect. B).
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given by〈
L
ξ̇
LξV

∣∣∣V〉 (5)
= −〈LξLV ξ̇

∣∣∣V〉 − 〈
LV L

ξ̇
ξ
∣∣∣V〉

(4)
=

(12)

〈
LξLξ̇V

∣∣∣V〉−〈L
ξ̇
ξ
∣∣∣L†VV

〉 (15)
=

〈
LξLξ̇V

∣∣∣V〉
=

1
2
〈
L
ξ̇
LξV

∣∣∣V〉
+

1
2
〈
LξLξ̇V

∣∣∣V〉
. (21)

Therefore, equation (17) is rewritten as

1
2

d
dt

〈
ξ̇
∣∣∣ξ̇〉 = 1

2
d
dt

〈
LξV

∣∣∣LξV〉
+

1
2

d
dt

〈
LξV

∣∣∣L†ξV〉
,

(22)

which leads to the following constant of motion:

I =
〈
LξV

∣∣∣LξV〉
+

〈
LξV

∣∣∣L†ξV〉 − 〈
ξ̇
∣∣∣ξ̇〉. (23)

While the first term is positive definite, the third term is
negative definite. As aforementioned in Ref. [4] in terms
of sectional curvature analysis, the second term can be pos-
itive or negative.

3.2 Implications of the constant of motion
The constant of motion (23) is not obtained from the

energy growth of the velocity7 〈v|v̇〉, but rather the inner
product 〈ξ̇|v̇〉. According to Noether’s theorem, some con-
tinuous symmetry of the considered system induces con-
servation law [7].

The second variation of action (10) leads to the fol-
lowing expressions:

d2S ε
dε2

∣∣∣∣∣∣
ε=0

=
1
2

∫ 1

0
dt

(
〈v|v〉 + 〈V |[ξ, v]〉

)
(24)

=
1
2
〈v|ξ〉

∣∣∣∣t=1

t=0
− 1

2

∫ 1

0
dt〈ξ|v̇ − L†Vv − L†vV〉.

(25)

The second equation implies that the second variation nat-
urally induces the linearized equation (16). Remember that
the constant (23) was obtained by multiplying ξ̇ by the lin-
earized equation (16), producing an expression quite simi-
lar to the second term of Eq. (25).

Here, we posit that the constant is related to the in-
finitesimal time translation of the second variation.

In the Lagrangian mechanical description, a station-
ary solution is expressed by the exponential map of V , i.e.,
the reference path is given by γ(t, 0) = etV . Then, using
the displacement field, ξ(t), associated with the perturbed
solution Vε(t) = V + εv(t), the perturbed path, γ(t, ε), in-
duced by Vε(t) is expressed as γ(t, ε) = eεξ(t)etV . Fur-
thermore, the path that is obtained by parallel translation
of the path γ(t, ε) by τ along γ(t, 0) = etV , i.e., the path
γ′(t, ε) := eεξ(t)e(t+τ)V can also be realized. The schematic
view is given in Fig. 2. Hence, the value of Eq. (25) is un-
changed and the related constant of motion may exist.

7Note that d
dt 〈V |v〉 = 0 for arbitrary solution of Eqs. (13) and (16).

Fig. 2 Schematic view of the parallel translation of the per-
turbed path.

4. Comparison with Hamiltonian Me-
chanical Analysis
The stability of plasma configuration in some MHD

systems has been frequently analyzed in the Hamiltonian
mechanical framework. One of the well-known analysis
methods is the energy-Casimir method (e.g. [2]; Section
1.7). An important improvement of the variational proce-
dure was made by Hirota et al. [8]. The authors distin-
guished between the following three kinds of perturbation
fields: arbitrary perturbations, Lagrangian displacements
(LD), and dynamically accessible variations (DAV).

4.1 Derivation of the second variation of the
Hamiltonian

While the LD approach is based on relation (8), the
DAV approach is based on the Poisson bracket that is de-
fined by

{F,G}(M) :=

(
M

∣∣∣∣∣∣
[
δF
δM
,
δG
δM

])
, (26)

where M is generalized momentum, F and G are function-
als of generalized momentum, and (M|V) is inner product
of the generalized momentum and velocity. The DAV of a
certain physical quantity F induced by the perturbation K
is given by their Poisson bracket, δFda = {F,K}.

The first variation of the Hamiltonian H(M) :=
1
2 (M|V) = 1

2 〈V |V〉 against the perturbation K is

{H,K}(M) =
(
M

∣∣∣ [V, ξ] ) = 〈V |LξV〉 = −〈L†VV |ξ〉, (27)

where δH
δM = V , δK

δM = ξ. Note that, when the reference

solution is stationary, V̇ = L†VV = 0, the first variation
(27) vanishes, which implies the stationary solution is an
extremal of the Hamiltonian.

The value of the functional derivative of {H,K} around
M is obtained by substituting M + εm into Eq. (27):(

m

∣∣∣∣∣∣δ{H,K}δM

)
:=

d
dε
{H,K}(M + εm)

∣∣∣∣∣
ε=0

=
d
dε
〈L†ξ(V + εν)|V + εν〉

∣∣∣∣∣
ε=0

= 〈L†ξν|V〉 + 〈L†ξV |ν〉 = 〈LξV + L†ξV |ν〉
= (m|LξV + L†ξV), (28)

where ν is the dual of m, (i.e., (m|ξ) = 〈ν|ξ〉 for an arbitrary
ξ). Using this relation, we obtain the second variation of
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the Hamiltonian as follows:

δ2DAV H = {{H,K},K}(M) = {Q,K}(M) =

(
M

∣∣∣∣∣∣
[
δQ
δM
,
δK
δM

])
=

(
M

∣∣∣∣∣∣Lξ δQδM
)
=

〈
V
∣∣∣∣Lξ δQδM 〉

=

〈
L†ξV

∣∣∣∣∣ δQδM
〉

=
〈
L†ξV

∣∣∣L†ξV + LξV
〉
=

〈
L†ξV

∣∣∣L†ξV〉
+

〈
LξV

∣∣∣L†ξV〉
,

(29)

where Q = {H,K}.

4.2 Stationary solutions: the double Bel-
trami flow and its MHD counterpart

It is shown in Ref. [5] that the Lagrangian mechanical
analysis of the dynamics of the incompressible fluids and
plasmas naturally derives the notion of generalized vortic-
ity as well as generalized velocity and momentum. Gen-
eralized vorticity is shown to be obtained by operating the
helicity-based particle-relabeling operator on generalized
velocity. One of the important finding is the eigenfunc-
tions of the operator provide stationary force-free solutions
of the corresponding system.

In this study the pair of the velocity and current fields
is taken as the generalized velocity (�V := (V,−αJ)), where
α is the Hall term strength parameter for the HMHD sys-
tem and an appropriate constant for the MHD system. The
helicity-based particle-relabeling operators are given by

ŴHMHD =

(
CCα∇× −CC(α∇×)−1

−CCα∇× CM(α∇×)−1

)
, (30)

for the ideal incompressible HMHD system, and

ŴMHD =

(
O −CC(α∇×)−1

−CCα∇× CM(α∇×)−1

)
, (31)

for the ideal incompressible MHD system, where CC and
CM are arbitrary constants related to the helicity conser-
vation laws associated with the particle-relabeling opera-
tion. When CC � 0, the corresponding eigenvalue and
eigenequations are given by

Λ = Λs
σ(λ)

= σsCC

[√
1 +

(αλ
2
− C̃M

2αλ

)2
+ s

(αλ
2
+

C̃M

2αλ

)]
, (32)

αΩ + B =
Λ

CC
V, B =

Λ

CC(1 − C̃M)
(V − αJ), (33)

for the HMHD system, and

Λ = Λs
σ(λ) = σsCC

[√
1 +

( C̃M

2αλ

)2
+

sC̃M

2αλ

]
, (34)

Ω = −C̃MΛ

CCα
V +

Λ

CC
J, B =

Λ

CC
V, (35)

for the MHD system, where σ = ±1, s = ±1, Ω = ∇ ×
V, B = (∇×)−1 J, C̃M := CM/CC , and λ and Λ are the
eigenvalues of ∇× and Ŵ, respectively. Figure 3 shows the

Fig. 3 Typical λ dependence of Λs
σ(λ) for each σ and s. Top:

the HMHD case (Eq. (32)), bottom: the MHD case
(Eq. (34)). Left: C̃M = 0.01, right: C̃M = 0. Solid:
Λ++, dashed-two dotted: Λ−−, dashed-dotted: Λ−+, dashed:
Λ+−. Abscissas are plotted in logarithmic scale for λ ∈
[0.001, 10].

λ dependence of the eigenvalues Λ. Generally, if CC > 0
and CM ≥ 0, the eigenvalues satisfy

Λ+− ≤ −1 ≤ Λ−+ < 0 < Λ−− ≤ 1 ≤ Λ++,
for both the HMHD and MHD cases.

The eigenfunction of Eq. (33) is known as the double
Beltrami flow (DBF) [9]:

�Φs
σ(λ) =

(
V s
σ(λ)

−αJ s
σ(λ)

)
= t

((
Λ − CM

αλ

)
φ,−CCαλφ

)
,

(36)

where φ is the eigenfunction of∇×with eigenvalue λ. Note
that the eigenequation and corresponding eigenfunctions
for the MHD system are also obtained as the α → 0 limit
of that of the HMHD system (if C̃M � O(α)).

When CC = 0, on the other hand, the equilibrium so-
lution only has a current field component and is given by a
Beltrami function: (V,−αJ) = (0,−αλB).

4.3 Stability analyses in MHD and HMHD
systems

Setting the generalized velocity and the associated dis-
placement field as �V = (V,−αJ), �ξ = (ξ,−αη), and using
the notations U := V − αJ, ζ := ξ − αη, the inner prod-
uct, the Lie bracket, and 2nd-variation-related integrals are
expressed as follows:〈�V1

∣∣∣�V2
〉
=

∫ (
V1 · V2 + B1 · B2

)
d3�x, (37)

[ �V2, �V3] =
(
∇ × (V2 × V3),∇ × (U2 × U3 − V2 × V3)

)
,

(38)〈
L�ξ
�V
∣∣∣L�ξ �V〉

=

∫ {∣∣∣∇ × (V × ξ)∣∣∣2 + α−2|V × ξ − U × ζ |2
}
d3�x,

(39)〈
L�ξ
�V
∣∣∣L†
�ξ
�V
〉
=

1
α

∫ {[∇ × (V × ξ)] · [ξ × (αΩ+B)−ζ × B
]

+(V × ξ−U × ζ) · [∇ × (ζ × B)
]}

d3�x, (40)

3401073-4
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〈
L†
�ξ
�V
∣∣∣L†
�ξ
�V
〉
=

∫ {
α−2

∣∣∣ξ × (αΩ + B) − ζ × B
∣∣∣2

+
∣∣∣∇ × (ζ × B)

∣∣∣2}d3�x. (41)

Assuming that the variables are single-mode DBFs, �V =
V̂p̃ �Φ p̃ and �ξ = ξ̂k̃ �Φk̃ where p̃ = (σp, sp, λp) and k̃ =
(σk, sk, λk) are the appropriate mode indices, and using the
relation ,〈�Φq̃

∣∣∣[�Φ p̃, �Φk̃
]〉
= Λq̃Tq̃p̃ k̃,

or equivalently[�Φ p̃, �Φk̃
]
=

∑
q̃

g−1
q̃ Λq̃Tq̃p̃ k̃

�Φ∗q̃,

where Tq̃p̃ k̃ is a totally antisymmetric tensor and gq̃ :=〈�Φq̃

∣∣∣�Φ∗q̃〉, we obtain

〈
L�ξ
�V
∣∣∣L�ξ �V〉

=
∣∣∣V̂p̃

∣∣∣2∣∣∣̂ξk̃∣∣∣2 ∑
q̃

Λ2
q̃

gq̃

∣∣∣Tq̃p̃ k̃

∣∣∣2 , (42)

〈
L�ξ
�V
∣∣∣L†
�ξ
�V
〉
= −Λp̃

∣∣∣V̂p̃

∣∣∣2∣∣∣̂ξk̃∣∣∣2 ∑
q̃

Λq̃

gq̃

∣∣∣Tq̃p̃ k̃

∣∣∣2 , (43)

〈
L†
�ξ
�V
∣∣∣L†
�ξ
�V
〉
= Λ2

p̃

∣∣∣V̂p̃

∣∣∣2∣∣∣̂ξk̃∣∣∣2 ∑
q̃

1
gq̃

∣∣∣Tq̃p̃ k̃

∣∣∣2 . (44)

Thus, the second variations become

I=
∣∣∣∂tξ̂k̃

∣∣∣2+∣∣∣V̂p̃

∣∣∣2∣∣∣̂ξk̃∣∣∣2 ∑
q̃

Λq̃(Λp̃−Λq̃)

gq̃

∣∣∣Tq̃p̃ k̃

∣∣∣2 , (45)

δDAV H=
∣∣∣V̂p̃

∣∣∣2∣∣∣̂ξk̃∣∣∣2 ∑
q̃

Λp̃(Λp̃−Λq̃)

gq̃

∣∣∣Tq̃p̃ k̃

∣∣∣2 . (46)

The expressions formally agree with those found in the
Section 5.3 of Ref. [4], where the results were limited to
the HMHD system and the mode expansion by the gener-
alized Elsässer variables. According to our consideration
made in Ref. [5], these expressions are now applicable to
wider classes of dynamical systems including the MHD
and HMHD systems.

Let us consider the stability problem of the stationary
solutions of the MHD and HMHD systems using these two
expressions. The conservation law given by Eq. (45) tells
us that, if the second term is positive definite, the norm of∣∣∣∂tξ̂k̃

∣∣∣2 and
∣∣∣̂ξk̃∣∣∣2 are bounded, and thus, the growth of the

Lagrangian displacement field �ξ is limited and the solu-
tion �V is Lyapunov stable. On the other hand, the second
variation of the Hamiltonian around a stationary solution
(Eq. (46)) has different meaning. If the second variation is
positive or negative definite, the Hamiltonian takes an ex-
tremal value at the stationary solution, which implies that
the norm of the deviation from the stationary solution is
bounded, (i.e., the perturbed solution is Lyapunov stable).
In this context, the kind of perturbations is somewhat re-
stricted to LD or DAV perturbations, and their relation to
well-known instabilities such as kink or Kelvin-Helmholtz
requires more careful consideration.

For the MHD case, as is seen from the bottom two
plates of Fig. 3, if λ0 is the smallest eigenvalue of ∇×, the
eigenvalues given by Eq. (34) satisfy

Λ+−(λ0) ≤ Λ+− ≤ −1 ≤ Λ−+ < 0 < Λ−− ≤ 1 ≤ Λ++ ≤ Λ++(λ0).

Especially, if C̃M = 0, the eigenvalues satisfy Λ+− = Λ−+ =
−1, Λ−− = Λ++ = 1. In these cases, the coefficients satisfy
Λp̃(Λp̃−Λq̃) ≥ 0 for all q̃, and thus, the second variation of
the Hamiltonian is positive definite (δDAV H ≥ 0), implying
that the solutions corresponding to Λ+−(λ0) and Λ++(λ0) are
Lyapunov stable.

While the stability conditions related to the constant
I, (i.e., Λq̃(Λp̃ − Λq̃) ≥ 0 for all Λq̃),8 are impossible for
the MHD case. Thus, we cannot draw a definite conclusion
from the analysis of Eq. (45).

Conversely, for the HMHD case both of the coeffi-
cients of Eqs. (45) and (46), Λq̃(Λp̃−Λq̃) andΛp̃(Λp̃−Λq̃),
can assume both positive and negative values, and thus, no
definitive information is obtained from the present analy-
sis. This indefiniteness is caused by the Hall term effect.
The eigenvalues, Λq̃, which are firmly related to the phase
velocity of the whistler and ion-cyclotron waves [5], di-
verges for whistler wave branches and asymptote to zero
for the ion-cyclotron branches.

In this relation, we should mention the results of Hi-
rota et al. [8], in which the authos carefully rearrange terms
to figure out the definiteness of the second variation of the
Hamiltonian was carried out. Compared with their method,
our method seems relatively crude for evaluating the sta-
bility criterion. However, our method can treat the stabil-
ity problems of the MHD and HMHD systems in a unified
manner.
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