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Numerical analyses using a gyro-fluid model have been performed to investigate the finite-Larmor-radius
(FLR) effect on ion-temperature-gradient (ITG) instability in cylindrical plasmas. A spectrum code with Fourier-
Bessel expansion has been developed for the analysis of global mode structures. The analytical expression of
the η (ratio between the density and temperature gradient lengths) threshold value for linear ITG instability has
been obtained from the local dispersion relation, whose dependency on the ion temperature comes from the FLR
effect. Dependency of the threshold by the global analysis is reproduced by the local analysis with appropriate
selection of the perpendicular wavenumber. Break of the Boltzmann relation by the FLR effect is not strong as to
generate another unstable branch of the ITG mode.
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1. Introduction
Numerical simulations of micro-scale turbulence have

been carried out to identify the cause for transport in mag-
netic confined fusion plasmas. Several gyro-kinetic simu-
lation codes have been developed for that purpose, and lo-
cal linear stability analyses for several kinds of modes, for-
mation mechanism of global turbulent structures and their
dynamics can be studied [1]. On the other hand, gyro-fluid
models have been also used for transport analysis. Compu-
tational costs are reduced compared with gyro-kinetic sim-
ulations, so are advantage in carrying out parameter scans
and global simulations of turbulence. Transport models
GLF23 and TGLF are developed based on the gyro-fluid
model [2–4]. Three-dimensional turbulence simulations
are carried out for toroidal ion-temperature-gradient (ITG)
turbulence [5], and dynamical phenomena, as ELM burst,
are also studied [6]. Spatio-temporal causal relations in-
cluded in a wide range of plasma regions is one of the keys
for transport mechanism, so a simulation scheme efficient
for global analysis is needed.

Clarifying fundamental mechanisms of turbulence is
important [7], and researches on structural formation of
plasma turbulence have been progressing by using linear
devices [8]. A linear device has a cylindrical shape with-
out magnetic curvature and can produce high density plas-
mas, so is suitable for basic experiments to observe plasma
instabilities in details [9,10]. Numerical simulations of lin-
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ear devices have been also carried out, and a reduced fluid
model for drift wave turbulence is used to describe the
3-D turbulence [11]. For understanding structural forma-
tion mechanism, identification of the spatial structure of
eigenmodes is important as drive of turbulence. In basic
experimental devices, the typical spatial scales of the de-
vice and gyro-motion of ions are close to each other, so
the finite Larmor radius (FLR) effect is not negligible. A
mode with the wave length comparable to the effective ion
Larmor radius can become unstable even in low ion tem-
perature plasmas [12]. For the first step, linear character-
istic of the ITG instability has been investigated using the
parameter set of PANTA linear device [13]. Here we have
developed a global simulation code for the ITG instability
in linear devices [14]. The parameter dependency is eval-
uated with a gyro-fluid model to identify influence of the
FLR effect, and is compared with analytical expression ob-
tained from a linear dispersion relation in this article.

2. Model
Fluid models are used for analyzing global mode

structures in collisional plasmas. The following set of lin-
earized gyro-fluid equations [15] is used, where the mag-
netic curvature terms can be eliminated for the analysis of
the cylindrical configuration;
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where n is the ion density, u// is the ion velocity, T is the
ion temperature, τ is the ratio between ion and electron
temperature at the plasma center, η is the ratio between
the density and temperature gradient lengths, and the sub-
scripts // and ⊥ represent the quantities in the parallel and
perpendicular directions to the magnetic field, respectively.
The other definitions of the parameters are described in
Ref. [14]. The gyro-averaged potential Ψ is represented
as Ψ ≡ Γ0

1/2φ with operators Γ0
1/2 = (1 + bτ/2)−1 and

b = −∇2⊥. Operator b gives the square of the perpendicular
wavenumber k2⊥, which corresponds to the magnitude of
the FLR effect. Two modified Laplacian operators ∇̂2⊥ and
ˆ̂∇2 are introduced to include the FLR effects. The quasi-
neutrality relation is given to be

Γ0

(
n − b/2

1 + bτ/2
T⊥

)
− (1 − Γ0)

Ψ

τ
= Ψ (5)

to determine the relation between the density and potential.
The Fourier-Bessel expansion is used to calculate 3-D

eigenmode structures. The Bessel expansion in the r di-
rection and Fourier expansions in the θ, z directions are
applied on Eqs. (1) - (5) by using
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where f implies {n, T//, T⊥, φ}. Bessel functions

Jm j(r) ≡ Jm(λm jr/a) (8)

are used for the expansion to satisfy the radial boundary
conditions {φ, n, u,T//,T⊥} = 0 at r/a = 0, 1 for pertur-
bation components, where Jm is the m-th Bessel function,
λm j is the j-th point satisfying Jm(λm j) = 0, m and l are
the azimuthal and axial mode numbers, respectively, a is
the plasma radius and Lz is the device length. Fourier ex-
pansions are used in the azimuthal and axial directions for
simplicity, in spite of existence of the axial boundary de-
termined at the position of the end plate. The set of model

equations is the linearized one, but the radial components
with different js are not independent to each other, due to
the (1 / r) terms, as in ∂Ψ/∂y = (1/r) ∂Ψ/∂θ.

For simulations, experimental parameters in
PANTA [10] are used; device length Lz = 4.0 m,
plasma radius a = 0.07 m, density n0 = 1.0 × 1019 m−3,
Ln = 0.07 m, νii = 350 s−1, magnetic field B = 0.1 T, tem-
peratures Te0 = 3 eV and Ti0 = 0.3 eV. The temperatures
and magnetic field give ρs = 1.1 cm, ρi = 3.5 mm and
Ωci/2π = 3.8 × 104 Hz for argon plasmas. Here Ln (and
η) is set to be constant in space. We concentrate on the
mode structure restricted by the plasma radial boundaries,
so this simplification is used.

3. Finite-Larmor-Radius Effect
To obtain an analytical form of dependency of ITG

instability, the local model with linearization d/dt → −iω,
∇// → ikz, ∂/∂y→ ikθ gives the following dispersion rela-
tion from Eqs. (1 - 5);
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where

ω1 =
2τ
3

[
−A2F +

(
3
2τ
− F

)
(1 + ηb1)

]
ω∗
A1
, (10a)

P1 = −2τ
3

kZ
2

[
5
2
+

1
A1

(
3
2τ
− F

)]
, (10b)

P2 = −2τ
3

kZ
2 (1 + Fτ) A2

ω∗
A1
, (10c)

A1 =

(
b +

b2τ

4

)
(τ + 1) + 1, (10d)

A2 = −1 + b1 +

(
3
2
− b1 + b2

)
η, (10e)

F =
b/2

1 + bτ/2
, (10f)

b1 = − bτ/2
1 + bτ/2

, (10g)

b2 = 2b1 +
b2τ2/2

(1 + bτ/2)2
, (10h)

ω∗ =
kθ
Ln
. (10i)

Here T⊥ = T// is used for simplicity. In the case with
kz

2 � 1, Eq. (9) is rewritten to be

(ω − ω1 − δω)
(
ω2 + δωω + T1

)
= 0, (11)

by use of small δω, where

δω = −P1ω1 + P2

ω1
2 + P1

, (12a)

T1 =
P1

2 − P2ω1

ω1
2 + P1

. (12b)

An unstable ITG mode (slow wave mode) is given in the
condition;

δω2 − 4T1 ∼ −4T1 < 0, (13)
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and in the case with η ∼ 1 and small τ,

T1 ∼ −P2

ω1
(14)

gives the following reduced condition;

A2 > 0. (15)

From this inequality, the threshold value ηc is given as

ηc =
2
3
+

5
9

bτ. (16)

This is the threshold value of the unstable ITG mode for
the parameters of the linear device in Sec. 2.

The critical value ηc changes depending on the mag-
nitude of τ. This dependency is related to the FLR effect.
In the case with b2 = 0 the FLR effect is smaller and the τ
dependency of the threshold becomes weaker;

ηc =
2
3
+

1
9

bτ. (17)

Without the FLR effect, b = 0, no dependency on τ appears
as

ηc =
2
3
, (18)

which is the well-known threshold of the ITG mode.
In the case of the resistive drift wave instability, which

can be unstable in the parameter set of linear devices, break
of the Boltzmann relation n � Ψ is important for the desta-
bilization [16]. In this model, the FLR effect can break the
Boltzmann relation, as Eq. (5), which affects the instability.
Equation (5) is transformed to

Ψ =
1
A1

(n − FT⊥) . (19)

The 2nd term in the right hand side of Eq. (19) corresponds
to the break. Inclusion of higher order δω terms in Eq. (11)
gives the relation for δω as

2ω1δω
2 +

(
P1 + ω1

2
)
δω + P1ω1 + P2 = 0. (20)

If (
P1 + ω1

2
)2 − 8ω1 (P1ω1 + P2) < 0 (21)

is satisfied, a ITG mode (fast wave mode) becomes unsta-
ble, but in η = 0 case, this condition cannot be satisfied, as
function F in Eq. (10f) gives τF < 1. On the other hand,
small τ limit gives F ∼ b/2, and using this form, condition
(21) can be satisfied with τ ∼ 1, but this is incorrect ap-
plication of the small τ approximation. The break by the
FLR effect is not strong enough, so this effect alone cannot
make the mode unstable.

4. Mode Structure
The numerical analysis for the global model using the

set of Eqs. (1 - 5) considers the boundary condition to de-
termines the radial mode structure. Figure 1 shows the

radial eigenmode structures of n, T⊥ and φ. These ra-
dially broad modes with azimuthal mode number m = 2
and axial mode number l = 1 are most unstable with the
plasma parameters in Sec. 2. The values of the perpendic-
ular wavenumber, which is a parameter in local stability
analyses, can be evaluated from the radial structure [14].
The mode includes several Bessel components. Figure 2
shows spectra with the radial mode number j. The com-
ponent with j = 1 is dominant, and the dependency on
η shows that amplitudes of the components with larger j
become smaller with larger η. The dominant mode has
k⊥ρi = 0.6 < 1, so the Padé approximation for the gyro-
averaged potential is appropriate. Existence of compo-
nents with larger j makes the mode structure rather radially
steeper in the cases with larger η.

The dependency of the growth rate on τ and η are
shown in Fig. 3 (a). The ITG instability is unstable when
the ratio of the ion temperature gradient to the density gra-
dient η exceeds the threshold value ηc. The dashed line in
Fig. 3 (b) represents the threshold in Eq. (16), which well
describes the numerical result. Figure 4 shows compari-
son of ηc in Figs. 3 (a) and 3 (b). The local analysis, as
in Fig. 3 (b), confirms to reproduce the global analysis re-

Fig. 1 Radial eigenmode structures with m = 2, l = 1, η = 1.0,
τ = 0.5. Radial profiles of n, T⊥ and φ are shown, where
solid and dashed lines represent the real and imaginary
parts, respectively.

Fig. 2 Dependency of the radial mode number spectra on η with
m = 2, l = 1, τ = 0.5.
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Fig. 3 Dependency of the growth rate on τ and η with m = 2,
l = 1. The results of the (a) global analysis, (b) local,
(c) local with b2 = 0 and (d) local without the FLR ef-
fect are plotted. The dashed lines represent the analytical
expressions of the thresholds.

Fig. 4 Comparison of the thresholds for the ITG instability
from the global and local models with m = 2, l = 1.
The dashed line represents the analytical expression in
Eq. (16).

sult by adjusting the wavenumber to that obtained from the
global analysis.

The dependency of ηc on τ is confirmed numeri-
cally in the smaller or no FLR effect cases with b2 = 0
(Fig. 3 (c)) and (Fig. 3 (d)), whose analytical forms with the
local model are given in Eqs. (17) and (18), respectively.

5. Summary
Numerical analyses using a gyro-fluid model have

been performed to investigate the FLR effect on ITG in-
stability in cylindrical plasmas. A spectrum code with
Fourier-Bessel expansion has been developed for the anal-
ysis of global mode structures. The analytical expression
of ηc is obtained from the local dispersion relation. Its
τ dependency comes from the FLR effect. The ratio be-
tween ion and electron temperatures is an important pa-
rameter for plasma performance in torus devices [17], and
the ITG instability threshold is investigated using fluid and
kinetic approaches [18]. In torus configurations, resonance
with magnetic drift appears to give a toroidal ITG mode

with stronger threshold dependence on τ [19]. In linear de-
vices the magnetic field is homogeneous, so the target in
this article is a slab ITG mode, which is induced by com-
pressibility with parallel ion motion. The FLR terms in-
clude τ dependency related to orbit averaging on Ψ , which
gives the threshold dependency. Break of the Boltzmann
relation by the FLR effect is not strong as to generate an-
other unstable branch of the ITG mode, so resistivity is
rather important with the parameter set of linear devices to
break the Boltzmann relation, which excites the resistive
drift wave [11].

Linear characteristics have been confirmed with con-
stant background density and temperature gradients. We
are developing the code to include the background pro-
files, in which couplings between different Bessel compo-
nents must be considered. The routine can be extended to
apply to nonlinear calculation, which will be carried out
for investigating dynamics in turbulent plasmas. Torus de-
vices are used for fusion researches, and for investigation
of global structures and their dynamics in torus, PLATO
project is now progressing to establish a plasma turbulence
observatory [20]. Construction of the platform for analyz-
ing 3-D dynamics of plasma instabilities with a variety
of simulation codes is necessary for comparison between
experiments and simulations both in cylindrical and torus
plasmas.
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