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Reconstruction of turbulence time series in a statistically stationary state is discussed by using a machine
learning algorithm. We use data obtained by Langmuir probes in the Plasma Assembly for Nonlinear Turbulence
Analysis (PANTA). It is shown that even if the distance between two probes is not adequate to resolve the
turbulence, the nonlinear regression via the machine learning can give reconstruction better than those by the
linear regression and the linear interpolation. Wave forms and frequency spectra show that drift waves are well
reconstructed by the machine learning.
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In magnetized plasmas, turbulence often drives struc-
tures such as zonal flows and streamers [1], which signifi-
cantly affect the transport. Thus, the detailed measurement
of the turbulence is essentially important. On the other
hand, the arrangement of probes are often limited due to
the constraint of experimental devices. It is noteworthy
that along with developments of computational environ-
ments, the machine learning algorithms [2] have received
keen attention from many research subjects and fields. Re-
cently, several machine learning techniques have been ap-
plied to the solar flare forecasting [3, 4]. It may thus be
worthwhile also to examine whether the machine learning
methods can successfully be applied to the turbulence time
series observed in plasmas. In particular, we ask ourselves
whether the methods can correctly reconstruct the turbu-
lence time series at a location where the probe is missing,
using the time series at different locations.

In this Rapid Communication, the reconstruction of
a probe data of the Plasma Assembly for Nonlinear Tur-
bulence Analysis (PANTA) [5] from the other probe data
sets with a supervised machine learning algorithm (ran-
dom forest [6]) is reported. Thirty-two (32) probes are
placed at even intervals in the azimuthal direction of the
cylinder. The number of probes (P = 1, 2, · · · , 32) corre-
spond to azimuthal angle difference (Δθ = π

16 ,
π
8 , · · · , 2π).

We here demonstrate that the standard machine learning
technique is applicable to the time series data that is in
a statistically stationary state. To predict the time series
data measured with the target probes (we choose probe
number P = 15 and 31), six probes at regular intervals
((P ± N, P ± 2N, P ± 3N), where N is an integer number)

author’s e-mail: nariyuki@edu.u-toyama.ac.jp

are used
Due to the periodicity, statistical characteristics of

time series data obtained by each probe are similar.
The data used in this study show the formation of the
streamer [7], which is an azimuthal bunching of fluctua-
tion. In this study, the drift waves and the nonlinear quasi-
mode (mediator), which has much longer time scale than
that of the drift wave, coexist.

In this study, we use time series of electron density
(ion saturation current) with the sampling time 10−6 s. The
data during the time interval[0.290 s, 0.300 s] are used as
the training data of the machine learning. For both the
training data and the validation data, the length of the time
window is 0.01 s, which is sufficiently longer than time pe-
riods of the azimuthal bunching of fluctuation (shown in
the frequency spectra of Fig. 4 (b) at about 1.5 kHz). In
this study, R language (version 3.5.1) [8] is used to car-
ried out regressions. For multi-variable (multiple) lin-
ear regression, fitting linear model in stats package [8]
is used. The random forest algorithm [6] is applied to
carry out the nonlinear regression via randomForest pack-
age [9], which has also been used in recent studies [3, 10].
In this study, hyperparameters in the randomForest pack-
age are nodesize = 5 (default value), mtry = 2 and
ntree = 1600, respectively. Remark that the results in
this study are not sensitive to tuning of the hyperparam-
eters. Such a property of the random forest is also men-
tioned in the previous study [3], in which the prediction
of the solar flare with the machine learning technique was
discussed.

Figures 1 and 2 show (a) Pearson’s correlation co-
efficients and (b) sums of squared error (SSE) between
original time series of target probes and predicted time
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Fig. 1 (a) Pearson’s correlation coefficients and (b) sums of
squared error (SSE) between original time series of tar-
get probes and predicted time series by the random
forest [6, 9] (black marks) for P = 15. Five data
plots at the same N correspond to five time windows
([0.325 s, 0.335 s], [0.350 s, 0.360 s], [0.400 s, 0.410 s],
[0.450 s, 0.460 s], [0.500 s, 0.510 s]), respectively. Probes
used in the random forest are (P ± N, P ± 2N, P ± 3N),
where N is an integer number. For comparison, recon-
structions with the multi-variable linear regression (gray
non-filled marks) with 6 probes and the linear interpola-
tion (gray filled marks) between two neighboring probes
(P ± N) are also shown.

Fig. 2 Same as Fig. 1 except for P = 31.

series for P = 15 and 31. For comparison, reconstruc-
tions with the multi-variable linear regression (gray non-
filled marks) with 6 probes and the linear interpolation
(gray filled marks) between two neighboring probes (P±N)
are shown. As shown in Figs. 1 and 2 (a), reconstructions
by the linear interpolation with N = 1, 2 are fairly accu-
rate, while correlation coefficients decrease with increas-
ing N(≥ 3). It is because the distance between two probes
(coarse-graining scale 2N + 1) is longer than the wave-
length of the drift waves [7] when N ≥ 3. On the other
hand, reconstructions by the random forest (black marks)
with six probes are much better than those by the simple
linear interpolation. This is due to both number of probes
and algorithm. The multi-variable linear regression with 6
probes also show better reconstruction than the linear inter-
polation, while it is worse than those by the random forest
when N = 4 and 5. This simply indicates that nonlinear
regression can give better fitting than the linear regression.
On the other hand, when we apply the constructed regres-
sion model to data series obtained from other experiments,
the random forest algorithm becomes worse than the linear

Fig. 3 (a) DFcor and (b) DFS S E vs. N. Circles and squares in-
dicate probe number P = 15 and 31, respectively. Five
data plots at the same N correspond to five time windows
same as those in Fig. 1.

Fig. 4 (a) Time series of probe number P = 15 during a time
window [0.500 s, 0.510 s] with N = 4, where gray-solid,
black-solid, and black-dashed lines indicate original data,
data predicted by the random forest, and data predicted
by the linear interpolation, respectively. (b) Frequency
spectra of time series shown in Fig. 4 (a).

interpolation. We revisit this point later.
In order to show the difference between the random

forest and the linear regression more clearly, we show

DFcor = Cr f −Clr,

DFS S E = S S El f − S S Er f ,

in Fig. 3, where Cr f (S S Er f ) and Clr (S S Elr) are correla-
tions coefficients (SSE) obtained by using the random for-
est and the multi-variable linear regression, respectively.
In Fig. 3, we find that DFcor > 0 and DFS S E > 0 in all the
present data with N = 4 and 5. This suggests that a non-
linear relation in the turbulence is extracted by nonlinear
regression via a machine learning algorithm.

Figure 4 (a) shows time series data measured with
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probe number P = 15 during a time window [0.500 s,
0.510 s] with N = 4. The gray-solid, black-solid, and
black-dashed lines indicate original data, data predicted by
the random forest, and data predicted by the linear inter-
polation, respectively. As shown in Fig. 4 (a), reconstruc-
tion of phases by the random forest is much better than
that by the linear interpolation. This simply indicates that
data from neighboring probes (P±N) are not sufficient for
the reconstruction but time series data of the other probes
(P ± 2N and P ± 3N)) is necessary when N ≥ 3. Fre-
quency spectra of time series (Fig. 4 (b)) indicate that the
spectra of drift waves (around 5 – 9 kHz) are well recon-
structed by the random forest, while those of the mediator
(around 1.5 kHz) becomes worse than the linear interpo-
lation. Namely, the high accuracy of the random forest
comes from the accurate reconstruction of the drift waves.

Finally we discuss the prediction of the data obtained
by the other discharge. Figures 5 (a) and (b) show spa-
tiotemporal evolution of original (training) data, which is
discussed above, and test data of the other discharge. Since

Fig. 5 Spatiotemporal evolution of (a) original data discussed
in Figs. 1 and 2 and (b) test data of the other discharge.
(c) Pearson’s correlation coefficients between time series
of test data and predicted time series. The vertical and
horizontal axes indicate correlation coefficients with the
random forest and the linear interpolation, respectively.
Circles and squares indicate probe number P = 15 and
31. Black and gray marks correspond to N = 4 and 5.

propagating direction in Fig. 5 (b) is opposite to that of
Fig. 5 (a) and the number of probes is 64, probe numbers
in Fig. 5 (b) are labeled at intervals of one probe in the or-
der opposite to Fig. 5 (a). To predict data in Fig. 5 (b), both
training and test data are normalized (standardized).

In contrast to data in Fig. 5 (a), the linear interpolation
in Fig. 5 (b) is not small even when N ≥ 4 (Fig. 5 (c)), while
predictions of the random forest with a probe (P = 15)
become much worse than those of the linear interpolation
(non-filled circles in Fig. 5 (c)). Filled circles and squares
in Fig. 5 (c) show cases which explained data (P = 15 and
31) are changed to discrepancies between original train-
ing data and predictions of the linear interpolation. These
plots clearly show that correlation coefficients shown by
circles (P = 15) are improved by the change of the defi-
nition of the explained data, while some squares (P = 31)
slightly get worse. Such an unstable behavior of predic-
tions by machine learning is usually due to extrapolation.
For instance, correlation coefficients of the linear interpo-
lation indicated by circles (P = 15) are higher than those of
squares (P = 31). In order to improve the accuracy and the
stability of the analysis, further calculation with more data
obtained by the other discharges is necessary in future.

Recently, recurrent neural networks [11–13], in which
past information of the time series is also used for predic-
tion, have been applied to chaotic dynamical systems [11],
geomagnetic activity [12] and nuclear fusion [13]. The ma-
chine learning algorithm has also been applied to improve
turbulence modeling [14, 15]. In this sense, the limitation
of number of probes in this study corresponds to the lim-
itation of the spatial resolution in physical modeling. The
comprehensive study including topics mentioned above is
also necessary in the future.

In summary, the random forest algorithm is applied to
time series of turbulence observed in PANTA. It is demon-
strated that time series, which are not sufficiently resolved
by the coarse-graining scale, can be reconstructed by the
random forest with good accuracy. By comparing recon-
structed wave forms and frequency spectra with those of
original data, it is found that the good accuracy in the ran-
dom forest regression stems from the reasonably accurate
reproduction of the drift waves.

This work was supported in part by the Collaborative
Research Program of Research Institute for Applied Me-
chanics, Kyushu University.

[1] P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma
Phys. Control. Fusion 47, R35 (2005).

[2] T. Hastie, R. Tibshirani and J. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and Pre-
diction (Second edition), Springer Series in Statistics,
(Springer-Verlag, New-York, 2009).

[3] K. Florios, I. Kontogiannis, S.-H. Park, J.A. Guerra, F.
Benvenuto, D.S. Bloomfield and M.K. Georgoulis, Solar
Phys. 293, 28 (2018).

[4] N. Nishizuka, K. Sugiura, Y. Kubo, M. Den, S. Watari and
M. Ishii, Astrophys. J. 835, 156 (2017).

1301157-3



Plasma and Fusion Research: Letters Volume 14, 1301157 (2019)

[5] S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T.
Mitsuzono, Y. Nagashima, H. Arakawa, T. Yamada, Y.
Miwa, N. Kasuya, M. Sasaki, M. Lesur, A. Fujisawa and
K. Itoh, Scientific Rep. 6, 22189 (2016).

[6] L. Breiman, Machine Learning 45, 5 (2001).
[7] T. Kobayashi, S. Inagaki, M. Sasaki, Y. Kosuga, H.

Arakawa, F. Kin, T. Yamada, Y. Nagashima, N. Kasuya,
A. Fujisawa, S.-I. Itoh and K. Itoh, Plasma Fusion Res. 12,
1401019 (2017).

[8] R. Core Team, see http://www.R-project.org/ for R: A lan-
guage and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2018).

[9] A. Liaw and M. Wiener, R News 2(3), 18 (2002).

[10] C. Liu, N. Deng, J.T.L. Wang and H. Wang, Astrophys. J.
843, 104 (2017).

[11] P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P. Sapsis and P.
Koumoutsakos, Proc. R. Soc. A 474, 20170844 (2017).

[12] M.A. Gruet, M. Chandorkar, A. Sicard and E. Camporeale,
Space Weather 16, 1882 (2018).

[13] D.R. Ferreira and JET Contributors, arXiv:1811.00333v1
[physics.plasm-ph] (2018).

[14] J.-X. Wang, J.-L. Wu and H. Xiao, Phys. Rev. Fluids 2,
034603 (2017).

[15] J.-L. Wu, J.-X. Wang, H. Xiao and J. Ling, Flow Turbu-
lence Combust 99(1), 25 (2017).

1301157-4


