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An ingenious model for large-scale electromagnetic (EM) plasma simulations is proposed. By introducing
a dielectric tensor ε̈ with enlarged permittivity elements ε∗ � ε0 to Poisson equation, ∇ · (ε̈∇φ) = −ρ (ε0 is
the permittivity of free space, φ is electrostatic potential and ρ is charge density), the Debye length is artificially
elongated and the large-scale system can be numerically treated even for including the self-consistent electron
dynamics [T. Takizuka et al., Plasma Fusion Res. 13, 1203088 (2018)]. In cylindrical coordinates (R, θ, Z) for
three-dimensional tokamak simulations, a toroidal element εθθ is chosen much larger than poloidal elements εRR =

εZZ = ε∗, and a toroidal mesh size Δθ can be set much larger than poloidal mesh sizes ΔR,Z . Resultantly the total
mesh number becomes reasonably small and computation cost can be reduced. EM responses are also simulated
using a modified Darwin model for Ampere’s law, ∇2 A = −μ0(J − ε̈∂∇φ/∂t) (A is magnetic vector potential,
J is current density, and μ0 is the permeability of free space), where light-speed EM waves are neglected. This
modification is consistent with the charge-density continuity.
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Numerical simulation of global plasma dynamics is
a powerful tool for the fusion research and development,
i.e., understanding the underlying physics of experimen-
tal observations in existing machines, verifying the the-
ory and modeling, and predicting the plasma performance
for future fusion devices. We recently proposed an inge-
nious model for large-scale plasma simulations with self-
consistent electron dynamics [1]. In the present paper, we
aim to extend this electrostatic (ES) ingenious model to an
electromagnetic (EM) ingenious model.

Majorities of global plasma simulations, e.g., MHD
simulations or divertor simulations, have assumed the
quasi-neutral condition. The electron dynamics, however,
plays an important role in fusion plasmas especially for
the case of interacting with the peripheral walls through
SOL-divertor region. The ingenious model [1] was then
developed for large-scale plasma simulations by including
self-consistent electron dynamics within a reasonable com-
putation cost. In the model, a dielectric tensor ε̈ with en-
larged permittivity elements, ε∗ � ε0, is introduced to the
Poisson equation,

∇ · (ε̈∇φ) = −ρ, (1)

where ε0 is the permittivity of free space, φ is electrostatic
potential and ρ is charge density. The Debye length λD∗ =
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(ε∗Te/e2ne)1/2 is artificially elongated, the mesh size Δ ∼
O(λD∗) is set reasonably large, and the large-scale system
can be numerically treated. The plasma frequency ωp∗ =
(e2ne/ε∗me)1/2 becomes small simultaneously, and the time
step Δt ∼ O(1/ωp∗) can be chosen reasonably large.

In cylindrical coordinates (R, θ, Z) for three-
dimensional (3D) tokamak simulations, a toroidal element
εθθ = α

2ε∗ (α � 1) is chosen much larger than poloidal
elements εRR = εZZ = ε∗. The toroidal mesh size Δθ can be
set α times larger than poloidal mesh sizes ΔR and ΔZ . Re-
sultantly the total mesh number becomes reasonably small
even for 3D system and computation cost can be satisfac-
torily reduced [1].

Although the proposed ingenious model is applicable
to the two-fluid (ion and electron fluids) modeling using
the Poisson equation, we here concentrate its application
to the particle-in-cell (PIC) method, which can describe
fully the kinetic effect playing a significant role in the edge
plasma [2]. In a PIC simulation with loweredωp∗ by the in-
genious model, another high-frequency dynamics of elec-
tron, gyro motion, is removed by adopting guiding-center
(GC) equations, while the ion motion with its gyration is
fully followed.

The ES modeling above described is now extended to
an EM modeling. EM response becomes important when
a plasma pressure increases in a magnetic confinement
system. In addition to the ES field, Es = −∇φ, deter-
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mined by the Poisson equation, ∇2φ = −ρ/ε0, the inter-
play between magnetic field B and inductive electric field
Ei has to be solved simultaneously with Faraday’s law,
∇ × Ei = −∂B/∂t. Magnetic field response is also coupled
through Ampere’s law, ∇ × B = μ0 J + μ0ε0∂E/∂t, where
E = Es+Ei, J is current density and μ0 is the permeability
of free space. When time evolution equations for B and E,
Faraday’s law and Ampere’s law without Poisson equation
(number of equations are 6 in the 3D system), are used in
principle for the EM PIC simulation [3], light-speed EM
waves arise naturally in the system. This method, there-
fore, requires usually very small Δt < Δ/c (c = (μ0ε0)−1/2

is the speed of light in free space).
Introducing magnetic vector potential A (B = ∇× A),

the condition of ∇ · B = 0 holds automatically, and Ei =

−∂A/∂t. The Ampere’s law is then rewritten as ∇2 A −
(1/c2)∂2 A/∂t2 = −μ0 (J+ε0∂Es/∂t), where Coulomb gage
∇· A = 0 is applied. We see explicitly the light-speed wave
propagation, ∇2 A − (1/c2) ∂2 A/∂t2 = 0. To eliminate the
light-speed EM waves for the low-frequency EM plasma
simulation, this Ampere’s law is reduced to an equation
called Darwin model, ∇2 A = −μ0(J + ε0∂Es/∂t) [4]. In
a PIC simulation based on this scheme, elliptic equations
for the potentials, φ and A, Poisson equation and Darwin-
model Ampere’s law (4 equations in the 3D system), are
solved instead of time evolution equations for B and E.
Note the Poisson solver for φ (see e.g. [5]) can be applica-
ble for A taking account of the condition, ∇ · A = 0.

In order to be consistent with the ingenious model us-
ing ε̈ in the Poisson equation, Eq. (1), the above Darwin
model is modified to the form

∇2 A = −μ0

(
J + ε̈

∂Es

∂t

)
. (2)

The divergence of the r.h.s. is kept zero, because of the
charge-density continuity, ∇·(J+ε̈∂Es/∂t) = ∇·J+∂ρ/∂t =
0. The Coulomb gage condition of ∇· A = 0 is then always
satisfied.

In the ES PIC simulation, particle motions and Pois-
son equation are self-consistently coupled in the numerical
accuracy of second-order time evolution, for example by
using a leap-frog method [2]. Position rp of a particle p
is given at an initial time t0, and field quantities ρ(r, t0)
and Es(r, t0) are calculated. The particle velocity up is set
at a half-time-step earlier time t0 − Δt/2, and is numer-
ically accelerated during Δt by a Lorentz force F at the
time t0; up(t0 + Δt/2) = up(t0 − Δt/2) + F(t0)Δt/m, where
F(t) = q{Es(rp(t), t)+up(t)×B(rp(t), t)}, q is charge, and m
is mass. Afterwards rp is numerically moved from an ini-
tial time t0 to a next time step t1 = t0+Δt with its velocity up

at the centered time tc = t0+Δt/2; rp(t1) = rp(t0)+up(tc)Δt.

Field quantities ρ(r, t1) and Es(r, t1) are then recalculated.
As for the electron GC equations, they are advanced, for
example by a predictor-corrector method (up is also set at
an initial time t0). To use this method, the Poisson equa-
tion is solved twice at the predictor step Es(r, t0) and at the
corrector step Es(r, tc), respectively [2].

When we program an EM PIC code applying the Dar-
win model, we have to examine several techniques. A
candidate of the time sequence is the following predictor-
corrector method.

Initial : rp(t0), up(t0),

Eq. (1) : ρ(t0) => φ(t0),

Eq. (2) : J(t0), ∂Es(t0)/∂t => A(t0), ∂A(t0)/∂t.

Predictor : rp(tc) = rp(t0) + up(t0)Δt/2,

up(tc) = up(t0) + F(t0)Δt/2m,

Eq. (1) : ρ(tc) => φ(tc),

Eq. (2) : J(tc), ∂Es(tc)/∂t => A(tc), ∂A(tc)/∂t.

Corrector : rp(t1) = rp(t0) + up(tc)Δt,

up(t1) = up(t0) + F(tc)Δt/m,

Eq. (1) : ρ(t1) => φ(t1),

Eq. (2) : J(t1), ∂Es(t1)/∂t => A(t1), ∂A(t1)/∂t.

Here the electron diamagnetic current as a field quantity
should be added to J. Major difficulty compared to the ES
PIC code is the calculation of time derivatives, ∂Es/∂t for
Eq. (2) and Ei = −∂A/∂t for equation of motions. Simple
backward difference, ∂A(tc)/∂t ≈ 2{A(tc) − A(t0)}/Δt, de-
grades the numerical accuracy in the time evolution to the
first order. When an iteration scheme is adopted to keep the
second-order accuracy, the computation time is increased
consequently.

If a global simulation code based on the above EM
ingenious model is further developed in addition to the in-
genious ES simulation code [1], it will be useful to study
unresolved issues for tokamak edge plasmas affected by
magnetic fluctuations, such as “density limit”, “L-H tran-
sition”, “QH-mode”, “ELM dynamics”, “transport under
RMP”, “SOL heat-flux width” etc.
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