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We have developed a tomographic reconstruction method using a conditional Generative Adversarial Net-
work to obtain local-intensity profiles from imaging-diagnostic data. To train the network we prepared pairs of
local-emissivity and line-integrated images that simulate the experimental system. After validating the accuracy
of the trained network, we used it to reconstruct a local image from a measured line-integrated image. We applied
this procedure to the He II-emission imaging diagnostic for RT-1 magnetospheric plasmas, including the effects
of stray light within the measured image to remove reflections from the chamber walls in the reconstruction. The
local intensity profiles we obtain clearly elucidate the effect of ion-cyclotron-resonance heating. This method is
a powerful tool for systems where it is difficult to solve the inversion problem due to the involved contributions
of nonlocal optical effects or measurement restrictions.
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Imaging diagnostics play key roles in analyzing the
internal structures of plasmas in which it is impossible to
insert detectors for avoiding damages in plasmas and/or
diagnostics. Conventional tomography employs a simple
model of internal structure, and the model parameters are
easily evaluated by inverting the integrated observables.
For a more general system, however, one requires more-
involved models that are not easily solvable. The limited
accessibility of diagnostics or the influence of nonlocal op-
tical effects (such as backscatter from the chamber walls)
can cause a lack of data, resulting in numerical instabili-
ties in the inversion problem. To overcome this problem,
deep-learning convolutional neural networks (CNNs) have
been applied at JET to reconstruct the 2D plasma profile
with satisfactory accuracy [1]. This method is even faster
than classical tomographic methods, which generally need
higher computational demands. A CNN learns to minimize
a loss function that scores the quality of the results. Al-
though the learning process is automatic, numerous man-
ual processes are necessary to design an effective loss func-
tion. A Generative Adversarial Network (GAN) has been
proposed to learn the loss function automatically via an ad-
versarial process [2]. A GAN learns a loss that tries to clas-
sify whether output images are real or fake, while simulta-
neously training a generative model to minimize this loss.
A “conditional GAN” (cGAN) learns a conditional gener-
ative model, applying the same generic approach to prob-
lems that would traditionally require very different loss for-
mulations [3]. In the present work, we have built a method
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using cGAN and used it to obtain the local emissivity from
line-integrated images.

We applied this reconstruction technique to the He II
468.6 nm imaging diagnostic of Coherence Imaging Spec-
troscopy (CIS) [4] from RT-1, a laboratory magnetosphere
created by levitating a superconducting ring magnet [5].
To train the network to reconstruct images, we generated
pairs of local-intensity profiles and line-integrated images
that simulate the optics of the CIS system. We generated
the local emissivity using typical model functions for the
electron-density and temperature profiles of RT-1, which
are given as functions of the magnetic-flux surface [6]. We
generated the line-integrated images from the local emis-
sivity, assuming toroidal symmetry for the RT-1 plasmas.
We took account of reflections from the chamber walls
and the levitation magnet (L-magnet). We also employed
the CIS optics to simulate the results, using the optical-
engineering program ZEMAX. In that calculation, we used
the TensorFlow 1.13.1 implementation of cGAN named
“pix2pix” [3]. This implementation uses modules of the
form convolution-BatchNorm-ReLu [7,8] for both genera-
tor and discriminator. We selected a total of 6500 pairs of
images randomly as input for the training, which spanned
one million iterations. We also generated another set of
1300 samples using the same strategy, which we employed
as a validation set to avoid overfitting. Figure 1 shows
three sets of input, output, and target images for the net-
work. Note that this particular reconstruction was not part
of either the training set or the validation set. To quan-
tify the differences between each pair of reconstructions,

c© 2019 The Japan Society of Plasma
Science and Nuclear Fusion Research

1202117-1



Plasma and Fusion Research: Rapid Communications Volume 14, 1202117 (2019)

Fig. 1 Sample reconstructions produced by the network. The
line-integrated image (Input, left), reconstructed local
emissivity (Output, middle), and target image (Ground
truth, right).

Table 1 Quality Metrics for the 1300-pair Validation Set.

we used image-quality metrics such as structural similar-
ity (SSIM) [9], peak signal-to-noise ratio (PSNR) [10], and
normalized root-mean-square error (NRMSE) [11]. Here,
SSIM reaches a maximum value of 1.0 when the two im-
ages are equal (Note that one can recognize the difference
between two images if the SSIM value is less than 0.9). Ta-
ble 1 shows typical results for the 1300-pair validation set
obtained with these metrics. They show that the network
can produce reconstructions with high accuracy, as indi-
cated by the SSIM of about 0.94, NRMSE of about 0.063,
and PSNR of about 26 dB.

Once the network was trained, we applied it to im-
ages obtained by the CIS from RT-1. For helium plas-
mas, the CIS measured the spectral intensity, ion temper-
ature, and flow velocity of He+. We successfully demon-
strated ion-cyclotron-resonance-frequency (ICRF) heating
of magnetospheric plasmas [12]. The 10 kW input power
of electron-cyclotron heating (ECH) sustained the target
plasma. We applied 9.4 kW of ICRF heating to the double-
loop antenna 0.1 sec after the start of the ECH injection
and maintained it up to the termination of the discharge.
We measured the CIS for an exposure time of 0.8 sec
in the stable-density period. Figure 2 shows the recon-
structed images of local He+ intensity for these plasmas.
The He+ intensity increases, especially along the magnetic
field lines near the L-magnet. This result corresponds that

Fig. 2 Line-integrated emission intensity of CIS (left) and re-
constructed local-intensity profiles (right) (a) without
ICRF and (b) with ICRF. The ion cyclotron layers for
He2+ and He+ are also shown.

the heated He+ ions around the double-loop antenna on the
high-field side near the center stack move to the upper re-
gion of the L-magnet along the magnetic field lines.

In summary, we have developed a new tomography
method using a cGAN and have demonstrated its efficiency
by converting a line-integrated image into local emissiv-
ity. Calculation of the line-integrated image from the local
emissivity is generally easier than the calculation of the op-
posite relation. In the present work, we have taken into ac-
count backscattering from the chamber walls, which makes
even the line-integrals involved; hence conventional inver-
sion methods do not apply. This method can be applied
to other diagnostics in other machines where reconstruc-
tion is difficult because of restrictions on measurements or
complexities of the inversion problem.
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