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A disruption is an event in which the plasma current suddenly shuts down in a tokamak reactor. Establishing
methods to predict, mitigate, and avoid disruptions may be indispensable for realizing a tokamak reactor. In
the present study, we have used the large dataset of high-beta experiments at JT-60U to develop a method for
predicting the occurrence of disruptions. The method is based on sparse modeling that exploits the inherent
sparseness common to all high-dimensional data, and it enables us to extract the maximum amount of information
from the data efficiently. To carry out the sparse modeling, we have used exhaustive searches with a support
vector machine and a neural network. In this research, we repeated the training and evaluation of the predictor
while changing the combination of plasma parameters. As a result of the exhaustive search, we found |Bn=1

r |
and d|Bn=1

r |/dt to be the dominant parameters for disruption predictions. This is not surprising, because MHD
instabilities are considered to be the direct triggers of disruption. In addition, we have succeeded in identifying
several important parameters that may also be strongly related to disruptions, i.e., βN, βP, q95, δ, fGW, and frad.
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1. Introduction
Plasma disruption is a critical phenomenon in a toka-

mak fusion reactor. To develop an operational nuclear fu-
sion reactor, it is necessary to understand and control this
phenomenon. Establishing methods to predict, mitigate,
and avoid disruptions may thus be indispensable for real-
izing a tokamak fusion reactor, and for this reason contin-
uous studies of these methods have been carried out [1, 2].
Nowadays, since the physical mechanism that causes a dis-
ruption has not yet been clearly identified, some studies
are seeking to predict the occurrence of disruptions on the
basis of experimental data. These are a form of “data-
driven science”, meaning that their goal is to extract scien-
tific knowledge from a large amount of data. Data-driven
science has been attracting attention in recent years, and
machine learning is often used to assist it.

At the Joint European Torus (JET), a real-time dis-
ruption predictor has been constructed by Rattá et al. [3].
This predictor system, called APODIS, predicts disrup-
tions using a support vector machine (SVM). Another re-
search group has recently developed a predictor based on
the automatic recognition of changes (called “anomaly de-
tections”) in data streams, without training a model us-
ing a huge amount of data [4]. In Japan, Yoshino has
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used a neural network (NN) to predict disruptions based on
experimental data from the Japan Torus-60 Upgrade (JT-
60U) [5]. The variables used for these predictions have
either been selected by genetic algorithms [6] or directly
by the researchers.

In the present study, we have used the large amount
of experimental data collected at JT-60U, to construct a
method for predicting the occurrences of disruptions based
on “sparse modeling”. This approach exploits the inher-
ent sparseness common to all high-dimensional data and
enables us to extract the maximum amount of information
from the data efficiently. For the sparse modeling, we have
used exhaustive searches with the SVM and a deep neural
network (DNN), assuming that the optimal combination of
explanatory variables is K-sparse [7]. We denoted these
methods as “ES-K-SVM” and “ES-K-DNN”, respectively.
After extracting the explanatory variables, we have com-
pared the result between the two methods.

This article is organized as follows. In Sec. 2, we de-
scribe the construction of a dataset to train and test the
models. The methods of machine learning and sparse mod-
eling, including the ES-K method, are described in Sec. 3.
The results from ES-K are described in Sec. 4, where we
discuss and compare the results from both SVM and DNN.
The conclusions drawn from this study are presented in
Sec. 5.
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2. Dataset
We used data from high-beta plasma experiments at

JT-60U to create the dataset that we used to train and test
the machine learning models. First, we divided the exper-
imental shots into two cases, that is, non-disruptive and
disruptive cases, respectively. The non-disruptive cases in-
clude non-disruptive shots that lasted more than one sec-
ond before plasma disruption. The disruptive cases include
shots in which the plasma current shut down clearly and
quickly. We used 69 non-disruptive cases and 54 disrup-
tive cases.

Secondly, we established the base time for each shot.
For the non-disruptive cases, we chose the base time to be
the moment when the normalized beta is the highest while

Table 1 List of the plasma parameters obtained from each shot.

Name of parameter Expression
Plasma current [MA] Ip

Normalized beta βN

Poloidal beta βP

Plasma internal inductance li
Safety factor at 95% of minor radius q95

Plasma triangularity δ

Plasma elongation κ

Mode lock amplitude (n = 1) [mT] |Bn=1
r |

The ratio of the plasma density to the
Greenwald density limit

fGW

The ratio of the radiated power to the to-
tal input power

frad

Normalized beta time derivative dβN/dt
Poloidal beta time derivative dβP/dt
Plasma internal inductance time deriva-
tive

dli/dt

Safety factor at 95% of minor radius time
derivative

dq95/dt

Plasma elongation time derivative dκ/dt
Mode lock amplitude (n = 1) time
derivative

d|Bn=1
r |/dt

The ratio of the plasma density to the
Greenwald density limit time derivative

d fGW/dt

Fig. 1 Histograms of the primary plasma parameters. For each
non-disruptive (blue bars) and disruptive (red bars) case,
the distribution of data included in the time range used
for training is shown.

for the disruptive cases, we selected the moment when the
current quench started. For each shot, we obtained diag-
nostic data and results from equilibrium calculations. We
selected the 17 plasma parameters listed in Table 1 as po-
tential variables for predicting disruptions. We used the
values of these plasma parameters at multiple 5 ms inter-
vals before the base time. The time range of the data used
for training and testing the models are listed in Table 2.
The distributions of the data for the eight main plasma pa-
rameters, i.e., βN, li, q95, δ, fGW, frad, |Bn=1

r |, and d|Bn=1
r |/dt

are shown in Fig. 1.

3. Method
3.1 Method of machine learning
3.1.1 Support vector machine

A support vector machine (SVM) is a supervised ma-
chine learning technique [8], where the term “supervised”
means that these tools work with sets of labeled objects.
In the present research, we used SVM as a basic 2-class
classifier, which means that it is used to classify events as
non-disruptive or disruptive. The conceptual basis of the
SVM is to find a hyperplane that divides data distributed
in a multidimensional space into labeled sub-spaces. The
coefficients of the equation representing the hyperplane are
selected to maximize the distance between the data closest
to the hyperplane and the hyperplane in the multidimen-
sional space. The distance between the hyperplane and the
closest data is called the “margin”.

3.1.2 Neural network
A neural network (NN) is a network consisting of

units that imitate neurons [9]. Each unit has multiple inputs
and one output. As a 2-class classifier, we used a simple
network called a “feedforward neural network” (FNN) in
which the units in a given layer are connected only to the
units in the adjacent layers. In an FNN, the information
propagates only in one direction, from the input to the out-
put layer. Layers between the input and the output layers
are called “hidden layers”. We used a network which has
2 hidden layers consisting of 64 units each. An FNN with
multiple hidden layers is called a “deep neural network”
(DNN).

The total input received by a unit u j is the sum of
the outputs xi of the previous layer multiplied by differ-
ent weights wji and with added a bias value b j. The output
z j of the unit is a function f of the total input. In summary,
these relations can be written as follows.

Table 2 The range of times before the base time used in training
and testing the models.

Case For training [ms] For testing [ms]
non-disruptive 5 – 100 5 – 100

disruptive 30 – 125 5 – 125
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u j =

I∑
i=1

wjixi + b j, z j = f (u j). (1)

The weights and biases are given random initial values, and
they are repetitively modified through the training process
of the NN.

3.2 Evaluation of disruption predictor
A disruption predictor is required to predict disrup-

tions as rapidly and accurately as possible and not to issue
an alarm accidentally if there is no disruption. To measure
the performance of a predictor, we defined the prediction
success rate and the false alarm rate are defined in this pa-
per as follows.

Prediction Success Rate (PSR)

=
Number of shots correctly judged as disruptive

Total number of disruptive shots
, (2)

False Alarm Rate (FAR)

=
Number of shots incorrectly judged as disruptive

Total number of non-disruptive shots
. (3)

To avoid overfitting, meaning that the model matches
the training data well, but it does not match the unknown
data, we used a “k-fold cross validation” method. In this
method, the data shots are divided into k pieces, of which
(k − 1) are used to train the model and the remaining one
is used to test it. The results obtained for all k patterns are
averaged to provide the final result.

We tested the trained model as follows. For each test
shot, the determinations were made from the data in order
from the earliest time until the shot is judged to be disrup-
tive. For each PSR and FAR, the model is evaluated based
on cumulative results between the moment of evaluation
and the start time of the dataset.

3.3 Realizing sparse modeling, ES-K
In an “exhaustive search” (ES) method, the models are

trained and evaluated for all possible combinations of vari-
ables to obtain an optimal combination of variables. The
reason for searching exhaustively is because we expect the
information to be included in the combination of variables.
In an ES method, all 2N − 1 = NC1 + NC2 + · · · + NCN

states, which are combinations of the N variables, are ex-
haustively searched.

However, there is the risk of a “combination explo-
sion” in an ES method. To overcome this problem, we
used a “K-sparse exhaustive search” (ES-K) method [7].
The ES-K method is based on the assumption that the opti-
mal combination of explanatory variables is K-sparse, i.e.,
that K of the N components are explanatory variables. In
this research, the explanatory variables correspond to the
plasma parameters shown in Table 1. We also expect that
we can extract the structure presented in the optimal com-
bination of variables by examining the results in order from
small K up to N using the ES-K method. We denoted the
application of ES-K to SVM or DNN as “ES-K-SVM” or

“ES-K-DNN”, respectively.

4. Results and Discussions
We conducted ES-K-SVM and ES-K-DNN searches

for values of K from 1 to 4 using the dataset described in
Sec. 2. Figure 2 shows the results of (a) ES-4-SVM and
(b) ES-4-DNN at 30 ms prior to a disruption. In order to
compare the performance of the two predictors, we deter-
mined that the smaller the distance from the upper left in
the 2D histogram [Figs. 2 (a1) and (b1)], the better the per-
formance. The 2D histogram has the PSR on the vertical
axis and FAR on the horizontal axis, so the distance is cal-
culated as follows.

distance =
√

(100 − PSR)2 + FAR2. (4)

Combinations that show high performance in ES-4 are
shown in Figs. 2 (a2) and (b2). These indicator diagrams
show the top 20 combinations of parameters. Figures 2
(a3) and (b3) shows the histograms of variables included
in these combinations that provide higher predictive per-
formance than the performance of using all variables or
that is in the top 10%.

From these diagrams and histograms, we find that cer-
tain variables are included in many combinations that show
good predictive performance. The dotted lines in the vari-
able histograms represent the case for which each variable
appears equally in the combination of objects. The maxi-
mum value of the x axis corresponds to the number of pos-
sible combinations of objects. For the SVM, we find that
d|Bn=1

r |/dt is the most frequently cited variable. In addition,
|Bn=1

r |, fGW, and frad occur more frequently than in the case
where all variables are assumed to be equivalent. Also,
the indicator diagram shows that almost all combinations
displaying the highest performance contain both |Bn=1

r | and
d|Bn=1

r |/dt. In contrast, for DNN, |Bn=1
r | is the most fre-

Fig. 2 (1) 2D histogram, (2) indicator diagram and (3) variable
histogram showing the results of (a) ES-4-SVM and (b)
ES-4-DNN. The arrows in the variable histograms indi-
cate the variables that appear more frequently than when
assuming that all variables appear equally.
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Fig. 3 Cross validated prediction success rate (solid lines) and
false alarm rate (dashed lines) for the combinations that
show the best performance for each K vs. time prior to
disruption, together with the correspond in indicator di-
agrams. The figures (a) and (b) show the results from
ES-K-SVM and ES-K-DNN, respectively.

quent variable while βN, βP, q95, δ, fGW, and d|Bn=1
r |/dt

occur more frequently than in the case where all variables
are assumed to be equivalent. The parameters |Bn=1

r |, and
d|Bn=1

r |/dt seem thus to be central variables for predicting
disruptions, because they appeared frequently in both the
SVM and NN searches. Because MHD instabilities are
considered to be the direct causes of disruptions [1], the
result obtained with |Bn=1

r | and its time derivative, selected
by both ES-K-SVM and ES-K-DNN, seems entirely rea-
sonable physically. On the other hand, several other vari-
ables, such as βN, βP, q95, δ, fGW, and frad, appear relatively
frequently as well. These variables are known to be vari-
ables related to disruption, and they seem to be extracted as
factors that affect disruptions indirectly. From this result,
we expect not only that there will be limiting values for
individual variables prior to disruptions, but also that there
will be limiting values for regions that span multiple vari-
ables. These variables may therefore be useful for identify-
ing possible parameter areas that lead to disruption. On the
other hand, the plasma internal inductance li was extracted
neither by ES-K-SVM nor ES-K-DNN. We have no clear
explanation for this result. The histogram of li in Fig. 1
shows that there are no major differences between the two
distributions but the distribution of disruptive case slightly
concentrate on a certain value.

For those combinations that showed the highest pre-
dictive performance for each K at 30 ms prior to disruption,
the time change of the results is shown in Fig. 3. For ES-
K-SVM, the PSR improves as K increases, but there is no
significant change in the FAR from K = 2 to 4. However,
around 100 ms, the PSR for K = 1 to 4 are inferior to the
PSR obtained from all the variables. On the other hand, the
FAR improves as K increases in ES-K-DNN while the PSR
is generally higher than that with all variables. The PSR for
K = 4 seems to be inferior to others before 40 ms. Figure 4

Fig. 4 Cross validated prediction success rate (solid lines) and
false alarm rate (dashed lines) for the combinations show-
ing the best performance from ES-4-DNN at 30 ms prior
to the disruption vs. time prior to disruption together with
the corresponding indicator diagram.

shows that some combinations have higher values for PSR
and slightly lower values for FAR before 40 ms. These
facts indicate that the extraction of variables is important
for improving the performance of disruption predictors.

5. Conclusions
We have constructed disruption predictors using the

SVM and the DNN based on experimental data from JT-
60U, and we have extracted explanatory plasma param-
eters using the ES-K method. We have shown that the
variables related to disruption can be extracted using the
concept of “sparse modeling”. The parameters |Bn=1

r | and
d|Bn=1

r |/dt were selected as the most frequent variables by
both the SVM and DNN, and these plasma parameters are
considered as the direct causes of disruption. The param-
eters βN, βP, q95, δ, fGW, and frad were also found to be
important factors that affect disruption. This result in-
dicates that a parameter space can be constructed using
these plasma parameters to define the conditions in which
a plasma may be in danger of disruption.
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