
Plasma and Fusion Research: Regular Articles Volume 13, 1401081 (2018)

Global Mode Analysis of Ion-Temperature-Gradient Instabilities
Using the Gyro-Fluid Model in Linear Devices

Tomotsugu OHNO, Naohiro KASUYA1), Makoto SASAKI1) and Masatoshi YAGI2)

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka
816-8580, Japan

1)Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
2)National Institutes for Quantum and Radiological Science and Technology, 2-166 Omotedate, Obuchi, Rokkasho-mura,

Aomori 039-3212, Japan

(Received 19 February 2018 / Accepted 21 May 2018)

In order to understand turbulent transport phenomena in magnetized plasmas, an excitation condition of the
ion-temperature-gradient (ITG) instability is investigated in linear device PANTA. Numerical analyses using
a global gyro-fluid code in linear devices are performed to obtain mode structures and parameter dependences
of the ITG instability. Parameter scans of the linear growth rate show the destabilization condition of the ITG
modes. The global analysis considers the boundary condition and determines the radial mode structure, which
gives the values of the wavenumber in the direction perpendicular to the magnetic field. The local analysis
confirms to reproduce the global analysis result by using the wavenumber obtained from the global analysis. The
wavenumber is a parameter in the local model, and the global analysis of the radial mode structure is necessary
for the selection of this important parameter.
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1. Introduction
It is important to understand turbulent phenomena

in magnetically confined plasmas. A level of turbulent
transport is determined by competition of several instabil-
ities and formation of turbulent structures [1]. Fundamen-
tal mechanisms of structural formation in turbulent plas-
mas can be studied in simple cylindrical configurations [2].
Structural formations with nonlinear mode coupling of un-
stable modes in resistive drift wave turbulence have been
revealed by experiments [3–6] and simulations [7, 8] using
linear devices. One of the candidates to cause anoma-
lous transport in fusion plasmas is the microscopic instabil-
ity due to the ion temperature gradient (ITG) [9]. Studies
of excitation conditions of the ITG instability have been
carried out in basic experiments [10]. The ion tempera-
ture can be measured using diagnostics as an ion-sensitive
probe [11]. On linear device PANTA [12], ion tempera-
ture measurements and numerical analyses of the ITG in-
stability have been progressing. The purpose of our re-
search is to predict excitation conditions of the ITG insta-
bility in PANTA. The ITG instability is predicted to be
excited when the ratio of the ion temperature gradient to
the density gradient exceeds the threshold value near the
unity. Numerical simulations by using the fluid model [13]
in PANTA shows that a mode with k⊥ρs ∼ 1 can become
unstable even in low ion temperature plasmas as in linear
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devices [14]. Here, k⊥ and ρs are the wavenumber in the
perpendicular direction to the magnetic field and the ef-
fective Larmor radius, respectively. Therefore, a detailed
analysis including the finite Larmor radius (FLR) effect is
required. Analyses using a set of localized gyro-fluid equa-
tions have been carried out [15]. The ion Larmor radius is
not much smaller than the plasma radius in the linear de-
vice, so the global mode structure must be calculated. In
this research, a numerical simulation code is developed to
solve global eigen-functions of the ITG instability. A gyro-
fluid model [16] without magnetic curvature and nonlinear
terms is used as same in Ref. [15]. In Ref. [15] a local as-
sumption for ∇⊥ operator gives a single value of k⊥, but
in this article combination of various k⊥ values is intro-
duced by the Bessel expansion to determine global mode
structures. Here we report mode structures and parameter
dependences of the ITG instability in PANTA by using the
global code.

This paper is organized as follows. In the next section,
the set of gyro-fluid equations and the numerical scheme to
calculate the radial mode structure are described. In Sec. 3,
the excitation condition of the ITG instability is evaluated
by linear analyses. In Sec. 4, comparison between the lo-
cal and global analyses is performed by calculating the ion
mass dependence. Finally, we summarize our results in
Sec. 5.
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2. Global Mode Analysis
2.1 Gyro-fluid model

A set of gyro-fluid equations is derived by taking the
moments of the electrostatic gyro-kinetic equation in the
velocity spaces [16]. The target plasma has a cylindrical
configuration with a homogeneous magnetic field parallel
to the axial direction, so the magnetic curvature terms can
be eliminated. Applying the gyro-kinetic ordering, the lin-
ear forms of the equations in the cylinder are given to be
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where n is the ion density, u// is the ion velocity, T is the
ion temperature, τ = Ti0/Te0, Ti0 and Te0 are ion and elec-
tron temperatures at the plasma center, η = Ln/LT, Ln is
the density gradient length, LT is the ion temperature gra-
dient length, q is the heat flux, and νii is the collision fre-
quency between the ions. The subscripts // and ⊥ represent
the quantities in the parallel and perpendicular direction
to the magnetic field, respectively. The time and spatial
length are normalized with Ωci and ρs, where Ωci is the
ion cyclotron frequency. Ψ is the gyro-averaged potential
Ψ ≡ Γ1/2

0 Φ, where Γ1/2
0 = (1 + bτ/2)−1 and b = −∇2⊥. Op-

erator b gives the square of the perpendicular wavenum-
ber k2⊥, which corresponds to the magnitude of the FLR

effect. Two modified Laplacian operators ∇̂2⊥ and ˆ̂∇2 are
introduced to be
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2
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which are given by the moments of the gyro-averaged E×B
velocity term. The FLR effects are included in Ψ , ∇̂2⊥ and
ˆ̂∇2 terms. The quasi-neutrality relation is given to be
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to determine the relation between the density and poten-
tial. Collisions are dominant in this system, and higher or-
der moments of the gyro-kinetic equation give simplified
forms of the heat flux as follows:
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The following normalizations are used:
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where cs = Ωciρs is the ion sound velocity, and the sub-
scripts 0 and 1 denote the equilibrium and fluctuating com-
ponent, respectively.

2.2 Numerical scheme
To obtain the linear eigen-mode and -frequency, a

spectral code is developed. The Bessel expansion in the
r direction and Fourier expansions in the θ, z directions are
applied on Eqs. (1) - (4) and (7) by using
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Density n and temperature T are also expanded in the same
way as in Eq. (11). The equations are solved in the region
between r = 0 (center of the plasma) and r = a (outer
boundary of the plasma). The boundary condition in the
radial direction are set to f = 0 at r = 0, a when m � 0, and
∂ f /∂r = 0 at r = 0, f = 0 at r = a when m = 0. Functions
Jm(λm jr/a) are used for the expansion to satisfy the bound-
ary conditions, where Jm(r) is the Bessel function, λm j is
the j-th point with Jm(λm j) = 0, and m is the azimuthal
mode-number. The boundary condition is important in the
case when the typical wave length is comparable to the
system size. With the parameters for the linear devices,
the radial wave length of the unstable mode is compara-
ble to the plasma radius, and the mode structure is strongly
restricted by the plasma radius. This is our target for de-
termination of the global radial mode structure, so we put
η to be constant in space for simplicity. Periodic boundary
conditions are used in the axial direction, and the effect of
the end plate is not considered. We solve the matrix of the
equations with the spectral expansion using the eigenvalue
method. In the eigenvalue method, the eigenvalues of the
matrix are obtained using the mathematic library MKL to
give the linear growth rate.

For the linearization, the differential operator d/dt and
∇// are replaced to iω and ikz, where kz is the wavenumber
in the parallel direction. The real and imaginary part of ω
give the frequency and growth rate, respectively. The axial
mode number is set to l, which gives kz = 2πlρs/Lz, where
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Lz is the device length. Operator b gives

b
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for the component with azimuthal and radial mode num-
bers (m, j), so λ̂m j = λm j/a corresponds to the magni-
tude of k⊥ in this model. In the local analysis in Ref. [15],
the radial and azimuthal wavenumbers are assumed to be
same to reduce a parameter, so k2⊥ is give as k2⊥ = 2k2

θ =

2(m/(a/2))2.

2.3 Target plasma
The geometry of the plasma is a simple cylindrical

shape, and the magnetic field has only the axial component
with a uniform intensity. For the simulations, experimental
parameters in PANTA are used; device length Lz = 4.0 m,
plasma radius a = 0.07 m, density n0 = 1.0 × 1019 m−3,
Ln = 0.07 m, νii = 350 s−1, magnetic field B = 0.1 T, tem-
peratures Te0 = 3 eV and Ti0 = 0.3 eV. The temperatures
and magnetic field give ρs = 1.1 cm, ρi = 3.5 mm and
Ωci/2π = 3.8 × 104 Hz for argon plasmas. With these pa-
rameters, ρi/Ln = 0.05 � 1.0, kzρi = 5.5 × 10−3 � 1.0
with l = 1 and k⊥ρi = 0.02 � 1.0 with m = 1, so the
gyro-kinetic ordering is satisfied. The other parameters for
the analysis are τ and ηi.

3. Linear Instability
Numerical analyses are carried out using the devel-

oped gyro-fluid code. Figure 1 shows the dependences of
the growth rate on the azimuthal and axial mode number.
Here simplification with η// = η⊥ (= η) is applied. The
mode numbers of the most unstable modes in this param-
eter are m = 2 and l = 1. The critical value ηc of the
instability in this condition is about 1.2, and the value of
the growth rate increases as η increases. The global code
can give the radial distribution of T⊥,T//, n, u//, Φ, and Ψ
in addition to the growth rate and eigen-frequency. Fig-
ure 2 shows the radial profiles of T⊥,T//, n and u// with
m = 2, l = 1, η = 1.2 and τ = 1 of an argon plasma. The
growth rate and frequency are given to be ωi = 2.9 × 10−3

and ωr = −9.6×10−3. Similar results were obtained by the
analysis with the local model introducing the kr value as a
parameter.

The ion temperature is the most important parameter
for the ITG instability, so the dependency on the magni-
tude and gradient length of the ion temperature is evalu-
ated. Figure 3 (a) shows the contour plot of the growth rate
in the τ and η space. The critical value ηc for the ITG in-
stability changes depending on the magnitude of τ. The
minimum of ηc is ηc = 0.8, and increases as τ increases
(ηc = 1.7, when τ = 2.0, for example). These are the same
tendencies as in the local model analyses as in Fig. 3 (b).
The cross in Fig. 3 indicates one of the experimental con-
ditions in PANTA (τ = 0.1, η = 0.2 with an argon plasma).

Fig. 1 Dependency of growth rate on m and l with τ = 1, an
argon plasma.

Fig. 2 Radial profiles of eigenmodes of (a) T⊥, (b) T//, (c) n and
(d) u// with m = 2, l = 1, η = 1.2, τ = 1, an argon plasma.

Fig. 3 Contour plot of the growth rate in the τ and η space with
m = 2, l = 1, an argon plasma. The cases with the (a)
global and (b) local analysis are plotted.

It suggests that a higher temperature gradient is needed to
observe the excitation of the ITG mode in PANTA.
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4. Parameter Dependency of Radial
Structures
Dependencies on the other experimental parameters

are also evaluated. The ion mass depends on the using dis-
charge gas, which makes the Larmor radius different. The
effective plasma radius changes, because the spatial length
is normalized by the Larmor radius. Figure 4 shows the ion
mass dependences of critical ηc with m = 1 - 5 in the cases
with the global and local analyses. The cases of helium,
neon, and argon discharges are plotted. The difference in
the dependency on the mode number is partly due to the
selection of kr. In the global model, kr of the most un-
stable mode is determined by calculating the eigenmode,
though it is only a parameter in the local model. In the
case with helium, as shown in Fig. 4, the m dependence
is greatly different. The local analysis gives critical value
ηc = 1.9, which is larger than that ηc = 1.2 in the case
with the global analysis, when m = 1. This is because the
value of k⊥ of the most unstable mode is larger than the
value obtained from the relation kr = kθ assumed in the lo-
cal analysis. Figure 5 shows the relative amplitudes of the
k⊥ components in the eigenmodes of the density. The max-
imum value is normalized to be the unity. λ̂m j represents
the normalized wave length of the base Bessel functions.
As is seen in Fig. 5, there is a peak at λ̂m j = 0.7, but in the
local analysis the smaller value k⊥ =

√
2(2m/a)ρs = 0.14

is used. The deviation of k2⊥ arises in the higher m modes,
because the radial wave length of the unstable mode is also
comparable to the plasma size. Figure 5 also shows that
the value of λ̂m j giving the maximum amplitude is almost
the same in spite of the ion mass variation.

In addition, the difference in the treatment of kθ is the
other cause. In the global model, since the radial depen-
dence (1/r) in the kθ terms must be expanded with com-
bination of the various Bessel components, the following
relation is used for the azimuthal derivative;

∂

∂y
Aj = 〈ikθA〉 j

= i
K∑

k=1

2mAk

J2
m+1(λm j)

∫ 1

0
dr∗Jm(λmkr∗)Jm(λm jr∗).

(14)

This calculation gives connection between various Bessel
functions. On the other hand, the value of kθ is given as
(m/r), and is evaluated with a single r value, typically at
r = a/2 in the local model. The results of the global anal-
ysis imply that the difference of the radial structure also
affects evaluation of the effective kθ value. Figure 6 shows
the radial profiles of the amplitudes of n when m = 2, l = 1,
η = 1.2 and τ = 1. In the case of helium, the structure is
localized near the center of the plasma in comparison with
the cases of argon and neon. This is because the charac-
teristic spatial scale ρs is changed. From this result, it is
not appropriate under this condition to set the evaluation
position of the kθ value at r = a/2 in the local analysis.

Fig. 4 Ion mass dependences of the critical value ηc, when τ =
1. Those of modes with m = 1 - 5 are shown in the case
with the (a) global and (b) local analyses.

Fig. 5 Relative amplitudes of the k⊥ components in the eigen-
modes of the density n, when τ = 1, η = 1.2, m = 1 and
l = 1. Dependences on λ̂m j, normalized wave length, are
plotted.

Fig. 6 Radial profiles of amplitudes of the density n with m = 2,
l = 1, η = 1.2, τ = 1.

Since the differences in the mode structures greatly affect
the growth rates of the ITG instability in this way, it can
be said that it is meaningful to analyze the detailed mode
structures by the global analysis.
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5. Summary and Discussion
To investigate the excitation conditions of ITG modes

in PANTA linear device, the linear instability analyses
were carried out. A gyro-fluid code, which solves global
eigen-functions including the FLR effect, was developed
and used for the analysis. The same tendency from the lo-
cal model was obtained, which gives the threshold for the
instability in the linear device. Wavenumber k⊥ of the most
unstable mode was obtained with the radial mode structure
analysis. The radial structure is affected by the relative size
between the plasma radius (to give the boundary condition)
and the Larmor radius (to give the typical spatial length of
the instability). The mode is more localized near the center
of the plasmas in the case of a discharge gas with a smaller
mass number as helium.

The strong restriction by the boundary condition is the
main target in this article, and the effect of the background
profile is not considered. If the radial dependencies of the
density and temperature are introduced, they normally in-
clude various Bessel components, so the coupling terms
between different Bessel j components in Eqs. (11) - (12)
become more complex. The effect of the η profile is im-
portant for quantitative evaluation to compare with experi-
ments, and is left for the future work.

From the gyro-fluid model, it was found that the ex-
perimental parameters of PANTA are present in the stable
region, and for excitation of the ITG instability the η value
larger than 4 times is required. In linear machine CLM, the
ITG instability has been observed in the case when the ra-
dial positions of the steep temperature and density gradient
are different from each other to satisfy the excitation con-

dition on η [10]. The condition of destabilization should
be explored by the distribution controls of the temperature
and density in the future.
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