Poloidal Flow Velocity Measurement in High-Density NBI Plasmas of Heliotron J

Xiangxun LU, Shinji KOBAYASHI¹⁾, Shun TANOHIRA, Katsumi IDA²⁾, Shin NISHIMURA²⁾,
Yoshiro NARUSHIMA²⁾, Kazunobu NAGASAKI¹⁾, Shinichiro KADO¹⁾, Hiroyuki OKADA¹⁾,
Takashi MINAMI¹⁾, Shinsuke OHSHIMA¹⁾, Satoshi YAMAMOTO¹⁾, Yuma YONEMURA,
Naoyuki HAJI, Shintaro WATANABE, Hisashi OKAZAKI, Tomomi KANAZAWA,
Panith ADULSIRISWAD, Akihiro ISHIZAWA, Yuji NAKAMURA, Shigeru KONOSHIMA¹⁾
and Tohru MIZUUCHI¹⁾

Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan ¹⁾Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan ²⁾National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 5 February 2018 / Accepted 19 March 2018)

A high-density experiment using a novel fueling technique–high-intensity gas puffing (HIGP)–has been performed in Heliotron J. Using the recently developed charge exchange recombination spectroscopy (CXRS), a poloidal flow shear is observed at the peripheral region of high-density NBI plasmas. The evaluation of radial electric field based on the experimental results of toroidal and poloidal rotation velocities shows the formation of a large E_r shear in the peripheral region.

© 2018 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: CXRS system, Poloidal rotation, Er shear, High-density NBI plasma, Heliotron J

DOI: 10.1585/pfr.13.1202077

The radial electric field (E_r) and its associated shear can affect plasma transport and MHD activity [1,2], which plays an important role in improving plasma confinement. A high-density NBI plasma experiment with a significant increase of plasma stored energy is performed using a high-intensity gas puffing (HIGP) method in Heliotron J [3]. Using a newly developed poloidal charge exchange recombination spectroscopy (CXRS) system [4], a large poloidal rotation velocity shear and radial electric field shear is observed in high-density NBI plasmas. In this study, the details of the high-density experiment and the poloidal rotation velocity data in high-density NBI plasmas are reported. The evaluation of radial electric field in such plasmas is also discussed.

The global behavior of the high-density experiment using HIGP is shown in Fig. 1. The plasma was started up by a 2.45-GHz microwave and sustained by balanced-NBI heating with a total of 600-kW port-through power. A high-density plasma is generated using the HIGP method starting at 230 ms. Both line averaged electron density $(\bar{n}_e; 1.1 \times 10^{19} \text{ m}^{-3} \rightarrow 4.6 \times 10^{19} \text{ m}^{-3})$ and plasma stored energy $(W_p; 1.1 \text{ kJ} \rightarrow 5.2 \text{ kJ})$ increased significantly after using HIGP (230 ms \rightarrow 270 ms), indicating that highperformance plasma can be generated using the HIGP method.

Figure 2 shows the profiles of electron density (n_e) , parallel flow velocity (V_{\parallel}) , and poloidal flow velocity

Fig. 1 Time evolution of (a) \bar{n}_e , W_p , I_p ; (b) AXUV, H_α ; (c) NBI, microwave and gas puffing signal.

 (V_{θ}) in the case of low-density (230 ms) and high-density (270 ms) plasmas. V_{\parallel} is measured using a CXRS system in which the sightline is parallel to the magnetic field line [5]. Here, the radial resolution $(\Delta \langle r/a \rangle)$ is in the range

Fig. 2 Profiles of (a) n_e , (b) V_{ϕ} , and (c) V_{θ} in the case of lowdensity (blue) and high-density plasmas (red).

of $0.02 < \Delta \langle r/a \rangle < 0.1$. The error bar in the radial direction is not shown to keep the plasma profile clear. The co-direction of parallel flow is defined as the direction of plasma current, which increases the rotational transform. For poloidal flow, the positive direction is defined as the ion diamagnetic direction. Since the plasma is heated by balanced NBI, the external momentum input from the NBI is expected to be extremely small. In the case of lowdensity plasma, the parallel flow is in co-direction and the poloidal flow velocity is small at the region wherein 0.4 < r/a < 0.9. In the case of high-density plasma, a poloidal flow velocity shear is observed at the peripheral region (0.7 < r/a < 0.9). In contrast, no significant difference is observed in the parallel flow. In Heliotron J, the E_r is dominated by $V_{\theta} \times B_{\phi}$ because $V_{\phi} \times B_{\theta}$ is relatively small owing to the large parallel viscosity and the significant change observed in V_{θ} indicates a large variation of E_r .

Considering the momentum force balance equation [6], the radial electric field (E_r) is evaluated by the following equation [7]:

$$E_r = \nabla P_i / e n_i Z - \left(V_\theta B_\phi - V_\phi B_\theta \right), \tag{1}$$

where ∇P_i is the pressure gradient, *Z* is the charge number, V_{θ} and V_{ϕ} are the poloidal and toroidal flow velocities, respectively, and B_{θ} and B_{ϕ} are the magnetic field strengths in the poloidal and toroidal directions, respectively. In this case, the fully ionized carbon ion is treated. The toroidal flow (V_{ϕ}) is evaluated from the parallel and poloidal data, where $V_{\phi} = (V_{\parallel} - V_{\theta} \sin \alpha) / \cos \alpha$; (α : pitch angle). Figure 3 shows the E_r components of $V_{\phi}B_{\theta}$, $-V_{\theta}B_{\phi}$ and $\nabla P_i/en_iZ$ in the case of low-density and high-density plasmas, respectively. Here, the radial electric field is dominated by the poloidal flow $(-V_{\theta}B_{\phi})$ component because the

Fig. 3 Profiles of $V_{\phi}B_{\theta}$ (circle), $-V_{\theta}B_{\phi}$ (square), pressure contributed E_r (triangle), and total E_r (solid line), in the case of low-density (blue) and high-density plasmas (red).

toroidal flow $(V_{\phi}B_{\theta})$ and pressure components $(\nabla P_i/en_iZ)$ are relatively smaller than the poloidal flow component. In the case of low-density plasma (Fig. 3 (a)), the E_r at the region of 0.4 < r/a < 0.9 is weak. In the case of high-density plasma (Fig. 3 (b)), a strong negative E_r with a large shear, contributed by the poloidal flow, is observed at the peripheral region (0.7 < r/a < 0.9). The value of E_r in the high-density plasma is consistent with the probe data of a previous high-density experiment [8]. Here, the E_r shear in high-density plasma $(dE_r/dr = -650 \text{ kV/m}^2;$ r/a = 0.8) is much larger than that of low-density plasma (-210 kV/m^2) . We observed an increase in the global energy confinement time from 8 to 17 ms, which indicates that the formation of the E_r shear contributes to the improvement of energy confinement due to the HIGP method.

In summary, a high-density plasma experiment is performed in Heliotron J using the HIGP method. Using a newly developed poloidal CXRS system, a large poloidal flow shear is observed in the peripheral region of highdensity plasmas. The evaluation of the radial electric field (E_r) based on the momentum force balance equation shows that a large E_r shear (-650 kV/m²) is formed at the peripheral region (r/a = 0.8). This indicates that the large improvement on W_p and τ_E due to the HIGP method is related to the formation of the large E_r shear in the peripheral region.

- [1] A. Fujisawa et al., Phys. Rev. Lett. 82, 2669 (1999).
- [2] K. Crombé et al., Phys. Rev. Lett. 95, 155003 (2005).
- [3] T. Mizuuchi *et al.*, Proc. 25th IAEA Fusion Energy Conf. Saint Pete, EX/P4 (2014).
- [4] arXiv:1803.08339 [physics.plasm-ph].
- [5] H. Lee et al., Plasma Fusion Res. 7, 1402019 (2012).
- [6] H. Wobig and J. Kibiinger, Plasma Phys. Control. Fusion 37, 893 (1995).
- [7] K. Ida, Plasma Phys. Control. Fusion 40, 1429 (1998).
- [8] L. Zang et al., Phys. Plasmas 21, 3 (2014).