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The transverse dielectric susceptibility elements are derived for electromagnetic cyclotron waves in an ax-
isymmetric laboratory dipole magnetosphere accounting for the cyclotron and bounce resonances of trapped and
untrapped particles. A bi-Kappa (or bi-Lorentzian) distribution function is invoked to model the energetic parti-
cles with anisotropic temperature. The steady-state two-dimensional (2D) magnetic field is modeled by laboratory
dipole approximation for a superconducting ring current of finite radius. Derived for field-aligned circularly-
polarized waves the dispersion relations are suitable for analyzing both the whistler instability in the range below
the electron-cyclotron frequency, and the proton-cyclotron instability in the range below the ion-cyclotron fre-
quency. The instability growth rates in the 2D laboratory magnetosphere are defined by the contributions of
energetic particles to the imaginary part of transverse susceptibility.
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1. Introduction
Plasma confined in a levitated dipole magnetic field is

an alternative to the controlled thermonuclear fusion, suit-
able to model phenomena in the Earth’s magnetosphere.
The dipole confinement concept to simulate a magneto-
sphere in laboratory conditions was originally proposed
by Hasegawa [1]. Presently, there are active experiments
on the plasma creation, confinement and heating in de-
vices such as Levitated Dipole eXperiment (LDX) [2, 3]
and Ring Trap 1 (RT-1) [4–7]. The RT-1 device is a labo-
ratory dipole magnetosphere (LDM) created by a levitated
superconducting ring magnet. In RT-1 plasma is produced
and heated by a high frequency wave power (8.2 GHz) in
the range of the fundamental electron-cyclotron resonance
(ECR) [5]. The first successful results on the ion-cyclotron
resonance (ICR) heating with a frequency of a few MHz
in RT-1 plasma were reported recently in Ref. [6]. Both
the ECR and ICR plasma heating methods can produce
high-energy electrons and ions, respectively, which im-
ply anisotropic temperatures of the resonant particles, with
transverse temperature T⊥ (relative to the confining mag-
netic field) greater than the parallel temperature T||. These
anisotropies are observed in RT-1 studying the particle ac-
celeration in LDM plasma [7].

Anisotropic particles with T⊥ > T|| are sources of free
energy to drive electromagnetic instabilities, such as the in-
stability of electromagnetic electron-cyclotron (right-hand
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polarized) waves, and the instability of ion-cyclotron (left-
hand polarized) waves. Kinetic theory of electromagnetic
cyclotron wave/instabilities in a uniform magnetic field
plasma is well developed, see e.g. Refs. [8–22] and ref-
erences therein. However, the models of plasmas guided
by straight magnetic field lines are not conform with LDM
configurations in LDX and RT-1, which are axisymmetric
and two-dimensional (2D). In this case the dispersion and
stability properties need to be described in the frame of a
2D kinetic wave theory implying a specific dielectric ten-
sor. Moreover, the wave-particle interactions should take
into account that in a LDM plasma there are two entirely
different groups of the so-called trapped and untrapped par-
ticles [23, 24]. In the inner Earth’s magnetosphere only
trapped particles can exist bouncing along the geomagnetic
field lines.

In this paper we derive for the first time the dielectric
characteristics and dispersion relations for the field-aligned
electromagnetic waves in a LDM plasma with anisotropic
bi-Kappa distributed particles [15, 18, 19]. These waves
have been characterized in Ref. [24] for an idealized LDM
plasma with anisotropic bi-Maxwellian particles, while
here we generalize the approach by assuming both the
electron and ion (proton) populations well described by
bi-Kappa distributions in velocity space. The general-
ized Kappa power-laws are more appropriate to reproduce
the velocity distributions with enhanced high-energy tails,
which are frequently reported by the in-situ measurements
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in space plasmas, i.e., the solar wind and planetary mag-
netospheres [25, 26]. On the other hand, cyclotron in-
stabilities have been extensively investigated, but only in
bi-Kappa plasmas embedded in a uniform magnetic field
[15–22].

2. 2D LDM Plasma Model with bi-
Kappa Distributions
The 2D steady-state magnetic field is modeled by a

laboratory dipole approximation [23, 24] accounting for
a finite radius of the current-ring creating the magnetic
dipole. A 2D axisymmetric LDM plasma, schemati-
cally shown in Fig. 1, is described with quasi-toroidal co-
ordinates (r, θ, φ) connected with cylindrical coordinates
(ρ, φ, z): ρ = a + r cos θ, z = −r sin θ, φ = φ. Cylin-
drical components of an equilibrium magnetic field, H0 =

(H0ρ,H0φ,H0z) write explicitly as

H0ρ =
2Ir sin θ

c(a + r cos θ)
√

r2 + 4a2 + 4ar cos θ

×
[
K(k) − r2 + 2a2 + 2ar cos θ

r2
E(k)

]
,

(1)

H0φ = 0, (2)

H0z =
2I

c
√

r2 + 4a2 + 4ar cos θ

×
[
K(k) − r + 2a cos θ

r
E(k)

]
,

(3)

where a is the current ring radius, I is the ring current, c is
the speed of light;

K(k) =
∫ π

2

0

dx√
1 − k sin2 x

,

E(k) =
∫ π

2

0

√
1 − k sin2 xdx,

k =
4a(a + r cos θ)

r2 + 4a2 + 4ar cos θ
, (4)

are, respectively, the complete elliptic integrals of first and
second kind, and their explicit argument.

Fig. 1 The coordinates, cylindrical (ρ, φ, z) and quasi-toroidal
(r, θ, φ), for a laboratory dipole magnetic field configu-
ration.

Here we consider a collisionless plasma, where
the perturbed distribution functions fα(t, r, v) satisfy the
Vlasov equation, subscript α = e, p, i denoting differ-
ent species of particles, e.g., electrons, protons and heav-
ier ions. To simplify the approach, the Vlasov equa-
tion is solved using the small magnetization parame-
ters neglecting the drift effects, the finite Larmor ra-
dius corrections and the finite orbit widths of untrapped
and trapped particles. The Vlasov equation is solved by
changing to new variables associated with the conserva-
tion integrals for the particle energy v2|| + v

2⊥ = c1 (v||
and v⊥ are the parallel and perpendicular components of
the particle velocity relative to H0), the magnetic mo-
ment v2⊥/2H0 = c2 and a stationary magnetic field line√

r2 + 4a2 + 4ar cos θ [(2 − k)K(k) − 2E(k)] = c3. Thus,
instead of (v||, v⊥, r) we introduce the new variables (v, μ, L)
as

v =
√
v2|| + v

2⊥, μ =
v2⊥H0(r, 0)

v2H0(r, θ)
, (5)

L =
πa√

r2 + 4a2 + 4ar cos θ [(2 − k)K(k) − 2E(k)]
.

(6)

The first harmonics of the perturbed distribution

f (t, r, v)

=

±1∑
s

±∞∑
l

f s
l (L, θ, v, μ) exp(−iωt + imφ − ilσ), (7)

satisfy the linearized Vlasov equation, which can be re-
duced in the zero-order of a magnetization parameter to
the set of the first order differential equations√

1−μb(L, θ)

δ(L, θ)

∂ f s
l

∂θ
−is

La
v

[ω−lΩc0b(L, θ)] f s
l =Qs

l .

(8)

Here

δ =
0.5cr2H0(r, θ)(a + r cos θ)

√
r2 + 4a2 + 4ar cos θ

ILa
[
(r2 + 2a2 + 3ar cos θ)E(k) − r(r + a cos θ)K(k)

] ,
(9)

b(L, θ) =
H0(r(L, θ), θ)
H0(r(L, 0), 0)

, Ωc0 =
eH0(r(L, 0), 0)

Mc
, (10)

Qs
0 =

2evLa(1 + κ)F
√

1 − μb(L, θ)E||

Mκϑ2
||

⎧⎪⎪⎨⎪⎪⎩1 +
v2

κϑ2
||

[
1 − μ

(
1 − T||

T⊥

)]⎫⎪⎪⎬⎪⎪⎭
, (11)

Qs
±1 =

seLa(1 + κ)
√
μF

Mκϑ2
||

⎧⎪⎪⎨⎪⎪⎩1 +
v2

κϑ2
||

[
1 − μ

(
1 − T||

T⊥

)]⎫⎪⎪⎬⎪⎪⎭
×

[
E±1√
b(L, θ)

(
b(L, θ) + 1 − T||

T⊥

)
(12)

−i
sv

√
1 − μb(L, θ)

ωLaδ(L, θ)

(
1 − T||

T⊥

)
∂

∂θ

E±1√
b(L, θ)

⎤⎥⎥⎥⎥⎥⎦ ,
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where l = 0,±1 is the order of the cyclotron harmon-
ics, σ is the gyrophase angle in velocity space, H0 =√

H2
0ρ + H2

0z, Ωc0 is the minimal cyclotron frequency of

plasma particles for the considered magnetic field line (by
L-shell parameter, in equatorial plane), E±1 = En ± iEb

describe the transverse electric field components with the
left-hand and right-hand polarization, where En, Eb and
E|| are, respectively, the normal, binormal and parallel
perturbed electric field components relative to H0. The
steady-state distribution function Fα(r, v) of plasma par-
ticles in Eqs. (11)-(13) is the bi-Kappa distribution

F =
Nκ−1.5

π1.5ϑ||ϑ2⊥

Γ(1 + κ)
Γ(κ − 0.5)

×
⎧⎪⎪⎨⎪⎪⎩1 +

v2

κϑ2
||

[
1 − μ

(
1 − T||

T⊥

)]⎫⎪⎪⎬⎪⎪⎭
−(1+κ)

,

ϑ2
|| =

2κ − 3
κ

T||
M
, ϑ2

⊥ =
2κ − 3
κ

T⊥
M
, (13)

where N is the number density of particles of mass M,
charge e, and T|| and T⊥ � T|| are their parallel and trans-
verse temperatures, respectively (in energy units). The
power-index κ > 3/2 in F determines the slope of high-
energy tails in the velocity spectrum of plasma particles.
In the limit of large κ → ∞, the bi-Kappa distribution
function degenerates into a bi-Maxwellian function. The
α-index is omitted in Eqs. (7), (8), (11)-(13). By s = ±1
we distinguish the particles with positive and negative par-
allel velocity relative to H0:

v|| = sv
√

1 − μb(L, θ). (14)

Variable r(L, θ) in Eqs. (9), (10) is function of L = L(r, θ)
defined in Eq. (6) and radial variable L (normalized) is the
conventional label for the magnetic field lines in Fig. 1,
corresponding to different magnetic shells.

3. Trapped and Untrapped Particles
Since LDM plasma is a configuration with a single

minimum of H0, we can identify two distinct populations
of the so-called trapped (t-) and untrapped (u-) particles.
In the phase volume such separation can be done by the μ
variable as

0 ≤ μ ≤ μ0, −π ≤ θ ≤ π, (15)

for untrapped particles, where μ0 = 1/b(L, π) is the inverse
mirror ratio of the L-magnetic field line, and

μ0 ≤ μ ≤ 1, −θt ≤ θ ≤ θt, (16)

for trapped particles, where ±θt(μ, L) are the reflection
points (stop points, mirror points) of trapped particles,
which are defined by the zeros of parallel velocity:

v||(v, μ, L,±θt) = 0. (17)

In our notation the reflection points ±θt are inde-
pendent of the particle energy v and depend only on the

pitch angle (by the parameter μ) satisfying the equation
1/b(L,±θt) = μ. As a characteristic of LDM plasma, the
population of u-particles is very small at the external mag-
netic shells-surfaces since μ0 → 0 if L-shell parameter in-
creases.

With the solutions of Eq. (8), we can derive the 2D
transverse and longitudinal (relative to H0) current density
components, respectively,

jl(L, θ) =
πe
2

b1.5(L, θ)
±1∑
s

∫ ∞

0
v3dv

×
⎡⎢⎢⎢⎢⎢⎣
∫ μ0

0

f s
l,u

√
μdμ√

1 − μb(L, θ)
+

∫ 1/b(L,θ)

μ0

f s
l,t

√
μdμ√

1 − μb(L, θ)

⎤⎥⎥⎥⎥⎥⎦
l = ±1, (18)

j||(L, θ) = πeb(L, θ)
±1∑
s

s
∫ ∞

0
v3dv

×
[∫ μ0

0
f s
0,udμ +

∫ 1/b(L,θ)

μ0

f s
0,tdμ

]
, (19)

where subscripts u and t correspond to untrapped and
trapped particles, respectively. Note that in our notation
the normal and binormal current density components are
given by jn = j−1 + j+1 and jb = i( j−1 − j+1), respec-
tively. The expressions for jl |l=±1 are convenient to ana-
lyze the cyclotron resonance effects at the fundamental cy-
clotron frequency of both the ions (if l = 1) and electrons
(if l = −1) in an explicit form. To derive the dispersion
relations for circularly-polarized waves in the 2D LDM we
should evaluate the 2D transverse current density compo-
nents in Eq. (18), which are defined by harmonics f s

±1,u and
f s
±1,t of the perturbed distribution functions of untrapped

and trapped particles. Therefore, the implicit solution of
Eq. (8) is obtained for f s

l,u and f s
l,t harmonics with l = ±1.

To describe the bounce-periodic motion of u- and t-
particles along the H0-field lines, the poloidal angle θ is
replaced with the new time-like variable

τ(θ) =
∫ θ

0

δ(L, η)√
1 − μb(L, η)

dη, (20)

given that the transit-time and bounce-period of untrapped
and trapped particles are proportional to τb,u = 2τ(π) and
τb,t = 4τ(θt), respectively. The distribution functions of u-
and t-particles can be defined by the corresponding Fourier
series (β = u, t)

f s
l,β =

±∞∑
p

f s,p
l,β

× exp

⎡⎢⎢⎢⎢⎢⎣ip 2π
τb,β
τ(θ) − isl

La
v

∫ θ

0

Ω̃c,βδ(L, η)√
1 − μb(L, η)

dη

⎤⎥⎥⎥⎥⎥⎦ ,
(21)

where Ω̃c,u = Ωc0b(L, θ) − Ωc,u and Ω̃c,t = Ωc0b(L, θ) −
Ωc,t are the oscillating parts of the cyclotron frequencies,
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and Ωc,u and Ωc,t are the corresponding bounce-averaged
cyclotron frequencies of the u- and t-particles

Ωc,u =
2Ωc0

τb,u

∫ π

0

b(L, θ)δ(L, θ)√
1 − μb(L, θ)

dθ, (22)

Ωc,t =
4Ωc0

τb,t

∫ θt

0

b(L, θ)δ(L, θ)√
1 − μb(L, θ)

dθ. (22a)

The Fourier amplitudes f s,p
l,β (for l = 0,±1 and β = u, t) are

found by the corresponding bounce-averaging

f s,p
l,β =

−iv

2πpv − sτb,βLa(ω + lΩc,β)

×
∫ 0.5τb,β

−0.5τb,β

Qs
l exp

(
−ip

2π
τb,β
τ+isl

La
v

∫ τ

0
Ω̃c,βdτ

′
)

dτ.

(23)

Using solutions (21) we satisfy automatically the
boundary conditions for the perturbed distribution func-
tions, namely, (a) the periodicity of the u-particles circu-
lating along the equilibrium magnetic field H0:

f s
l,u(L, θ) = f s

l,u(L, θ + 2π) or f s
l,u(L, τ) = f s

l,u(L, τ + τb,u),

and (b) the continuity of the perturbed distribution func-
tions of t-particles at the reflection points:

f s
l,t(L,±θt) = f −s

l,t (L,±θt) or f s
l,t(L, τ) = f s

l,t(L, τ + τb,t).

4. Dielectric Properties Function of κ
The perturbed current density components in Eqs. (18)

and (19) are related to E to derive the dielectric tensor.
We use the Fourier expansions of the 2D perturbed elec-
tric field and current density components over λ varying
along the magnetic field line:

λ(θ) =
∫ θ

0
δ(L, η)dη. (24)

In this case

jl(L, θ)√
b(L, θ)

=

±∞∑
n

j(n)
l (L) exp

(
iπn
λ(θ)
λ0

)
, (25)

El(L, θ)√
b(L, θ)

=

±∞∑
n′

E(n′)
l (L) exp

(
iπn′
λ(θ)
λ0

)
, (26)

where λ0 = λ(π), so that Laλ0 is the half-length of the
magnetic field line of order L. As a result

4πi
ω

j(n)
l =

2i
ω

∫ π

−π
jl(L, θ)√
b(L, θ)

exp

(
−iπn

λ(θ)
λ0

)
dθ

=

±∞∑
n′

(
χn,n′

l,u + χ
n,n′
l,t

)
E(n′)

l , l = ±1,
(27)

where χn,n′
l,u and χn,n′

l,t are the contributions of u- and t-
particles to the transverse susceptibility, respectively. After

the s-summation, these dielectric characteristics for the ra-
dio frequency waves in the LDM plasma with a bi-Kappa
background can be expressed as

χn,n′
l,u =

ω2
pLaT||(1 + κ)Γ(1 + κ)

8ωπ1.5λ0T⊥
√
κϑ||Γ(κ − 0.5)

×
∞∑

p=−∞

∫ μ0

0
μdμ

∫ ∞

−∞

An
l,p(u, μ)Bn′

l,p(u, μ){
1+u2

[
1− μ

(
1− T||

T⊥

)]}2+κ

u4du
pu − Zl,u

,

(28)

χn,n′
l,t =

ω2
pLaT||(1 + κ)Γ(1 + κ)

8ωπ1.5λ0T⊥
√
κϑ||Γ(κ − 0.5)

×
∞∑

p=−∞

∫ 1

μ0

μdμ
∫ ∞

−∞

Cn
l,p(u, μ)Dn′

l,p(u, μ){
1 + u2

[
1− μ

(
1− T||

T⊥

)]}2+κ

u4du
pu − Zl,t

.

(29)

Here we have introduced the following definitions

An
l,p(u, μ) =

∫ π

−π
cos

[
Ψn

l,p(u, μ, θ)
] b(L, θ)δ(L, θ)√

1 − μb(L, θ)
dθ, (30)

Bn
l,p(u, μ)=

∫ π

−π

[
b(L, θ)−1 +

T||
T⊥
+
πnvT ||u
ωLaλ0

(
1 − T||

T⊥

)

×√
1 − μb(L, θ)

]
cos

[
Ψn

l,p(u, μ, θ)
] δ(L, θ)dθ√

1 − μb(L, θ)

, (31)

Cn
l,p(u, μ) =

∫ θt

−θt
cos

[
Φn

l,p(u, μ, θ)
] b(L, θ)δ(L, θ)√

1 − μb(L, θ)
dθ, (32)

Dn
l,p(u, μ)=

∫ θt

−θt

[
b(L, θ)−1+

T||
T⊥
+
πn
√
κϑ||u

ωLaλ0

(
1− T||

T⊥

)

×√
1 − μb(L, θ)

]
cos

[
Φn

l,p(u, μ, θ)
] δ(L, θ)dθ√

1−μb(L, θ)

+(−1)p
∫ θt

−θt

[
b(L, θ)−1+

T||
T⊥
+
πn
√
κϑ||u

ωLaλ0

(
1− T||

T⊥

)

×√1−μb(L, θ)

]
cos

[
Φn

l,−p(−u, μ, θ)
] δ(L, θ)dθ√

1−μb(L, θ)

, (33)

Ψn
l,p(u, μ, θ) = nπ

λ(θ)
λ0
−

(
p

2π
τb,u
+

lLa

u
√
κϑ||
Ωc,u

)
τ(θ)

+
lLa

u
√
κϑ||
Ωc0

∫ θ

0

b(L, η)δ(L, η)√
1 − μb(L, η)

dη, (34)

Φn
l,p(u, μ, θ) = nπ

λ(θ)
λ0
−

(
p

2π
τb,t
+

lLa

u
√
κϑ||
Ωc,t

)
τ(θ)

+
lLa

u
√
κϑ||
Ωc0

∫ θ

0

b(L, η)δ(L, η)dη√
1 − μb(L, η)

, (35)

Zl,u =
Laτb,u

2π
√
κϑ||

(
ω − lΩc,u

)
, Zl,t =

Laτb,t

2π
√
κϑ||

(
ω − lΩc,t

)
,

u =
v√
κϑ||
, ω2

p =
4πNe2

M
. (36)

Equations (28)-(36) describe the contribution of u-
and t-particles to the transverse susceptibility. Note the
explicit dependence of the power-index κ, which quanti-
fies the presence of suprathermal populations. To obtain
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complete expressions of the susceptibility it is necessary
to carry out the summation over all species α of plasma
particles. For isotropic temperatures T|| = T⊥ = T , from
Eqs. (28)-(33) we can obtain the susceptibility elements for
a plasma with isotropic Kappa distribution functions.

5. Dispersion Relations for Cyclotron
Waves
From an analogy with the cyclotron waves in a uni-

form magnetic field (with straight lines), we can assume
that the n-th harmonic of the electric field gives the main
contribution to the n-th harmonic of the current density
(single-mode approximation). In this case, for the field-
aligned electromagnetic cyclotron waves (when m = 0,
∂/∂L = 0, E|| = 0, H|| = 0), from the Maxwell’s equa-
tions, excluding the E(n)

l -harmonics by Eq. (27), we obtain
the following dispersion equation(

πnc
Laλ0ω

)2

= 1 + 2
e,i1,i2,...∑
α

χn,n
l,α (L), (37)

where α denotes the particle species (electron, proton, or
heavier ions). This equation can describe the instability
of the right-hand polarized waves (whistler instability) if
l = −1, and the left-hand polarized waves (proton- or ion-
cyclotron instability) if l = 1. Note that, in our notation,
the parallel wave vector is defined as k|| = nπ/(Laλ0),
such that nπc/(Laλ0ω) is the normalized parallel refrac-
tive index. Equation (37) needs to be resolved numerically
for the real and imaginary parts of the wave frequency,
ω = Reω + i Imω, in order to obtain the instability con-
ditions (Imω > 0) in the laboratory dipole plasmas with
anisotropic temperature.

The growth (damping) rate, i.e., Imω, of the electro-
magnetic cyclotron waves is defined by the contribution of
the resonant particles to the imaginary part of the trans-
verse susceptibility, Imχn,n

l,α , and can be readily derived
from Eqs. (28) and (29), using the Landau residue. In this
case

Imχn,n
l,α = Imχn,n

l,u,α + Imχn,n
l,t,α

=

∞∑
p=1

(
Imχn,n

l,p,u,α + Im χn,n
l,p,t,α

)
,

where

Imχn,n
l,p,u,α =

ω2
pLaT||α(1 + κ)Γ(1 + κ)

8ωπ1.5λ0T⊥α
√
κϑ||Γ(κ − 0.5)p5

×
∫ μ0

0

An
l,p

(
Zl,u,α

p
, μ

)
Bn

l,p

(
Zl,u,α

p
, μ

)
Z4

l,u,α⎧⎪⎪⎨⎪⎪⎩1 +
Z2

l,u,α

p2

[
1 − μ

(
1 − T||

T⊥

)]⎫⎪⎪⎬⎪⎪⎭
2+κ
μdμ, (38)

Im χn,n
l,p,t,α =

ω2
pLaT||α(1 + κ)Γ(1 + κ)

8ωπ1.5λ0T⊥α
√
κϑ||Γ(κ − 0.5)p5

×
∫ 1

μ0

Cn
l,p

(
Zl,t,α

p
, μ

)
Dn

l,p

(
Zl,t,α

p
, μ

)
Z4

l,t,α⎧⎪⎪⎨⎪⎪⎩1 +
Z2

l,t,α

p2

[
1 − μ

(
1 − T||

T⊥

)]⎫⎪⎪⎬⎪⎪⎭
2+κ
μdμ, (39)

are the separate contributions of the bounce resonance
terms for, respectively, untrapped and trapped parti-
cles having anisotropic bi-Kappa distributions in veloc-
ity space. These expressions are markedly different from
those obtained in LDM plasmas with bi-Maxwellian dis-
tributions [24], and which can be recovered in the limit
κ → ∞. The electromagnetic ion-cyclotron and electron-
cyclotron waves in LDM plasmas with anisotropic temper-
ature are limited to frequency ranges below the minimal
cyclotron frequencies of ions, Reω < Ωco,i, and electrons,
Reω < |Ωco,e|, respectively.

6. Conclusion
To conclude, let us first summarize the main results

of the paper. The transverse current density components
in the 2D LDM plasma with anisotropic bi-Kappa distri-
butions are evaluated by solving the Vlasov equation for
perturbed distribution functions of u- and t-particles in the
lowest (zero-) order of the magnetization parameter. The
new dielectric elements obtained in Eqs. (28) and (29) are
expressed by a summation of the bounce-resonant terms
including the double integration in velocity space, the res-
onant denominators, and the corresponding phase coeffi-
cients in Eqs. (30)-(33). Due to a 2D magnetic field non-
uniformity, the bounce resonance conditions for t- and u-
particles in the laboratory magnetospheric plasmas are dif-
ferent from the resonance conditions in a uniform magnetic
field. The whole spectrum of the electric field is present in
the current density harmonic in Eq. (27), and the left-hand
and right-hand polarized waves are coupled.

In Eq. (37) we have provided the dispersion rela-
tions for the field-aligned cyclotron waves in LDM with
bi-Kappa distributed particles. In the limit of a very
large power-index κ → ∞ the dielectric characteristics
(28) and (29) and dispersion relations (37) reproduce the
corresponding expressions obtained in Ref. [24] for bi-
Maxwellian distributions. It should be mentioned that for
isotropic temperatures (T|| = T⊥ = T ) expressions (28)-
(36) simplify, and provide the corresponding expressions
for the dielectric susceptibility elements in a LDM plasma
with isotropic Kappa distributions. In the limit of a very
small (negligible) ring-current radius (a → 0), our plasma
model reduces to a 2D Earth’s magnetosphere with bi-
Kappa distributed particles [27].

Similarly to linear cyclotron plasma waves in a uni-
form magnetic field, the n-th harmonic of the electric field
is assumed giving the main contribution to the n-th har-
monic of the transverse current density components, and
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the coupling between the left-hand and right-hand waves
is negligibly small. Dispersion Eq. (37) can describe the
electromagnetic instabilities of both the electron-cyclotron
(l = −1) and ion-cyclotron (l = 1) modes accounting for
the cyclotron, transit-time and bounce resonances. As for
a plasma confined in a uniform magnetic field, the growth
(or damping) rates of the cyclotron waves in a 2D LDM
plasma are defined by the contributions of the resonant
trapped and untrapped particles to the imaginary part of
the transverse dielectric susceptibility, Eqs. (38) and (39).
Present results are of particular interest for understanding
the role of cyclotron waves as ECR/ICR heating mecha-
nisms in the laboratory dipole magnetospheric plasmas.
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