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The effects of impurities on runaway electron generation are studied using a zero-dimensional disruption
simulation code. For describing collisions between fast electrons and partially stripped ions, a charge-resolved
expression of the Coulomb logarithm is employed. Numerical analysis of the avalanche growth rate using the
adjoint Fokker-Planck method is compared with two existing semi-analytic models, showing (i) the convergence
of the growth rate to strong electric field limit of the Rosenbluth-Putvinski (R-P) model and (ii) the cancellation
of the effect of second-order collisional diffusion for intermediate electric fields. Using the developed current
quench (CQ) simulations, the parametric study is performed with the aid of the power balance analysis, which
characterizes the onset of strong avalanche amplification in the presence of low-Z and noble gas species. Ther-
mal quench (TQ) simulations are also developed for self-consistent evaluation of hot-tail seed electrons. The
deposition timescale of impurity neutrals is shown to have significant impacts on hot-tail seeds, depending non-
monotonically on the pre-TQ temperature and the injected impurity density.
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1. Introduction
To present, the development of disruption mitigation

methods has been progressed towards operation of ITER,
which is aimed at minimizing heat and electromagnetic
loads within acceptable levels [1–3]. Nevertheless, reli-
able mitigation of runaway electrons (REs) is still an ac-
tive area of research. With high plasma current on the or-
der of 10 MA, the avalanche mechanism due to close col-
lisions [4, 5] is predicted to dominate the RE generation in
ITER [6], which may cause severe damages to the in-vessel
components.

To predict the RE currents produced in post-disruption
plasmas, high impurity content is a key characteristic.
Firstly, radiation losses affect the plasma parameter dur-
ing thermal quenches (TQ). After TQ, the power balance
between ohmic heating and radiation loss dominates the
current quench (CQ) time and one-turn voltages that ac-
celerate runaway electrons. While CQ in the metallic wall
environment with a relatively low radiation such as JET-
ILW [7] is observed to be slow enough to avoid runaway
generation, the massive impurity injection to mitigate ther-
mal loads shortens the CQ time, which results in runaway
generation [8]. Secondly, impurities dominate the runaway
generation rate. The net friction force acting on the elec-
trons is enhanced by partially stripped ions at low elec-
tron temperature. The so-called Rosenbluth density nRB [9]
characterizes a value of the electron density necessary for
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absolute suppression by means of massive impurity injec-
tion. Thirdly, primary (seed) runaways required for trigger-
ing the avalanche growth are sensitive to dynamic changes
of the plasma parameters during TQ. At the high density
conditions, hot-tail seeds [10–18] can be a dominant mech-
anism when the Dreicer seed electrons are suppressed. For
the development of rapid shutdown scenarios using mas-
sive noble-gas injection, the production of hot-tail seed
electrons during rapid TQ must be taken into account.

To analyze the above three processes, we develop
a zero-dimensional disruption simulation code INDEX
(Integrated Numerical Disruption EXperiment). This pa-
per describes its model verification. To capture the ef-
fects of impurities on runaway generation [19–23], the
INDEX code employs an impurity collision model based
on a charge-resolved expression for the Coulomb loga-
rithm, modifying Mosher [24] with the quantum mechan-
ical correction and the effect of plasma wave excitation.
The impurity collision model is applied to two existing
semi-analytic approaches calculating the critical energy
and the energy limit: one is based on approximate so-
lutions of the Fokker-Planck equation [25], and the other
is based on the mean-particle equation [26]. By using
identical synchrotron and bremsstrahlung radiation terms,
a difference between the two models is whether second-
order collisional diffusion terms are retained or not. The
avalanche growth rate obtained from the above two mod-
els is compared with numerical solutions of the adjoint
Fokker-Planck method [27–30]. It shows (i) the conver-
gence of the growth rate to strong electric field limit of the
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Rosenbluth-Putvinski (R-P) model [6] and (ii) the cancel-
lation of the effect of the collisional diffusion. For inter-
mediate electric fields between the sustainment field and
the strong electric field limit, the latter effect results in the
growth rate even exceeding the R-P model. It is shown that
the effect becomes quantitatively important at high Z and
low synchrotron radiation condition.

In this paper, while paying attention to quantitative
impact of differences in the avalanche models, the devel-
oped 0D CQ simulation is applied to study the amount
of low-Z and noble gas species required for the onset of
strong avalanche amplification of small seed currents. It is
shown that the avalanche growth dominates runaway gen-
eration when the equilibrium point during CQ in low Te

region (� 10 eV) is accessed and when the electric field
reaches the level of strong electric field limit E‖/Ec � 102.
The effect of bulk ion density to avoid the high normal-
ized electric fields is also be addressed. The above analy-
sis based on given seed currents must be complemented
by self-consistent evaluation of the seed currents. As
such study, this paper also covers the development of 0D
TQ simulations with the hot-tail effect. In the INDEX
code, TQ is solved in terms the rate equations and the
energy balance equations without assuming the ionization
equilibrium. The developed TQ model is coupled self-
consistently to the initial value Fokker-Planck code for
evaluating hot-tail seed electrons. Some examples of the
application to argon injection are illustrated, showing that
the deposition timescale of impurity neutrals has signifi-
cant impacts on hot-tail seed formation.

This paper is organized as follows. In Sec. 2, the prob-
lem of calculating the avalanche growth rate is reviewed
for describing a main part of the calculation in the INDEX
code. The fact that the avalanche theory requires the ac-
curacy up to O(1/lnΛ) is emphasized, where lnΛ is the
Coulomb logarithm. A charge-resolved expression of the
Coulomb logarithm is described in Sec. 3. In Sec. 4, the
Fokker-Planck and mean-particle approaches for calculat-
ing the critical energy and the energy limit are described,
and the benchmark of the resultant avalanche growth rate
against the adjoint Fokker-Planck code is presented. Sec-
tion 5 is devoted to 0D CQ simulations of the avalanche
runaway generation. Section 6 describes the development
of 0D TQ simulations with the hot-tail effect. The con-
clusion and future extension of the INDEX code will be
described in Sec. 7.

2. Avalanche Theory for Runaway
Electrons in Post-Disruption
Plasmas

2.1 Current quench (CQ) and Rosenbluth-
Putvinski model

Because the TQ and CQ timescales are normally
well-separated, the avalanche growth model is often

developed to describe the current decay timescale τCQ =

(d log Ip/dt)−1 after TQ. Since the plasma current is con-
served during TQ, the plasma parameters at the begin-
ning of CQ can be evaluated from the power balance be-
tween ohmic heating (calculated by the pre-disruption cur-
rent) and radiation losses. Consider CQ including REs for
a tokamak plasma with the major radius R0 and the area
of poloidal cross section S = κa2 (κ: the elongation; a:
the minor radius). The induced voltage is described by
Lenz’s law, dψ/dt = −2πR0E‖, where ψ is the poloidal flux
and E‖ is the electric field. We assume that Lp is constant
with time and the Ohm’s law E‖ = η( j‖ − jRE), where η
is the resistivity, j‖ is the total current density, and jRE is
the runaway current density. Because the magnetic flux is
written as ψ = LpIp in terms of the total plasma induc-
tance Lp = Le + Li (Le and Li are external and internal in-
ductances, respectively), the equation for the current decay
including REs is given by [31]

Lp
dIp

dt
= −2πR0E‖ = −Rp(I − IRE), (1)

where Ip ≡ j‖S = IOh + IRE represents the total current
with the ohmic (IOh) and runaway (IRE) ones, and Rp ≡
2πR0η/S denotes the one-turn plasma resistivity. In Eq. (1)
the mutual inductance to external conductors is neglected.

A 0D version of the INDEX code solves Eq. (1) with
appropriate models that describe the evolution equation of
RE currents IRE. By assuming that REs travel at the speed
of light, runaway currents are expresses as IRE = ecnRES ,
where nRE =

∫
p>pc

f d3p is the runaway density (pc: the
critical momentum). To provide the evolution of IRE, the
Rosenbluth-Putvinski (R-P) model has been used, where
the avalanche growth rate ΓRP is given by

ΓRP ≡ d log nRE

dt
=

E‖/Ec − 1

τ lnΛ

√
π

3(Z + 5)(
1 − Ec

E‖
+

4π(Z + 1)2

3(Z + 5)(E2
‖ /E

2
c + 3)

)−1/2

. (2)

In Eq. (2) τ = 4πε2
0 m2

ec3/(nee4 lnΛ) and Ec = mec/eτ =
nee3 lnΛ/(4πε2

0 mec2). The function Z characterizes the ef-
fect of pitch-angle scattering, which appears in the colli-
sion operator in the form of (1 + Z). Equation (2) is an
approximate fit [6] that combines the growth rate of REs at
weak and strong electric field limits for different Z. Com-
bining Eq. (2) with Eq. (1), the formation of runaway cur-
rent plateau can be simulated. Once primary electrons are
presented as Iseed ≡ IRE(t = 0), they are amplified until the
ohmic current is totally dissipated and pre-disruption mag-
netic energy is converted into the steady-state RE current.

According to the R-P model [Eq. (2)], we can show
that the avalanche theory needs a better estimation of the
Coulomb logarithm than what is often assumed for high
temperature plasmas. Taking the limit of E‖ � Ec, Eq. (2)
reduces to a linear expression

Γ
(lin)
RP =

E‖/Ec

a(Z)τ lnΛ
, (3)

1403032-2



Plasma and Fusion Research: Regular Articles Volume 12, 1403032 (2017)

where a(Z) =
√

3(Z + 5)/π is the function of Z. For Z = 1,
a(1) = 3(2/π)1/2. From Eqs. (1) and (3), the amplifica-
tion gain due to secondary generation IRE(t = τCQ)/IRE(t =
0) � exp(ΓRPτCQ) is evaluated at the final point of CQ. By
approximating the plasma inductance as Lp � μ0R0, the
electric field is estimated to be E‖ � μ0Ip/(2πτCQ). Then
we obtain the avalanche gain as a function of the plasma
current:

exp(ΓRPτCQ) =

(
2

a(Z)IA lnΛ
Ip

)
, (4)

where IA = 4πmec/(μ0e) � 17 kA denotes the Alfvén cur-
rent. For Z = 1, Eq. (4) reduces to � exp(2.7Ip[MA]),
where the numerical factor 2.7 is obtained with lnΛ0 =

18. Equation (4) represents the capacity of runaway am-
plification during CQ. The argument ΓRPτCQ describes
how much fraction of the pre-disruption magnetic flux
ψ = LpIp � μ0R0Ip is converted into the flux carried by
toroidally circulating relativistic electrons, where ψA ≡
1
2μ0R0IA � 0.13 V·s is the necessary flux for accelerating
the electron ring up to the speed of light with the radius R0.
It is worth noting that a magnetic flux ψA is much smaller
than the pre-disruption poloidal magnetic flux in large
tokamaks, ψ0 � μ0R0Ip � 117 V·s with R = 6.2 m, being
correlated to easier production of the RE current during
CQ of high current tokamaks. The poloidal flux required
for an e-fold [32] can be given as ψAa(Z) lnΛ, which char-
acterizes the efficiency of avalanche process, and indicates
that the theory for avalanche needs to be accurate enough
up to the order of O(1/lnΛ). Therefore, the treatment of
the Coulomb logarithms becomes essential for the analy-
sis. The fact that ΓRPτCQ is proportional to Ip shows that
the disruption with higher plasma currents is susceptible to
RE generation. In Ref. [33], Iseed = 4 × 10−10 A has been
estimated as a reference value for the seed current to obtain
7.5 MA in the case of ITER. In Ref. [31], the estimation of
Eq. (4) has been refined without linearizing CQ, which is
more optimistic but still Iseed = 10−3 A is estimated as the
necessary seed current to obtain 1 MA RE current in Fig. 2
of Ref. [31]. This estimation is even much smaller than or
comparable to seed currents produced by the tritium de-
cay and the Compton scattering of gamma-rays in fusion
devices [34].

2.2 Avalanche generation model near the
critical threshold

While the approximate expression of electron-
electron scattering cross section is employed in the R-P
model, the avalanche growth rate taking into account a full
expression has been developed [10, 16, 25]. In the latter
case, the finite energy of primary electrons E1 = (γ1 −
1)mec2 is taken into account. In terms of the energy trans-
fer variable ε = (γ − 1)/(γ1 − 1) with x ≡ 1/[ε(1 − ε)],
the Møller scattering cross section for electron-electron
collisions is expressed as [35]

dσM(ε; γ1)
dε

= 2πr2
0

γ2
1

(γ1 − 1)2(γ1 + 1)

×
[
x2 − 3x +

(
γ1 − 1
γ1

)2

(1 + x)

]
, (5)

where γ1 and γ are the relativistic factor of incident and
secondary electrons, respectively, and re = e2/(4πε0mec2)
denotes the classical electron radius. The R-P model
assumes the limit of γ1 → ∞, which yields dσ/dγ �
2πr2

e/(γ − 1)2. Using the full expression of Eq. (5), the
secondary generation rate is calculated from the proba-
bility for a primary electron to scatter thermal particles
into the runaway region γ > γc, where the critical energy
(γc − 1)mec2 characterizes the energy at which the accel-
eration by the electric field is balanced with the friction
force exerted on the electrons. Hence the calculation of
the scattering probability also needs to specify the energy
of primary electrons. As postulated by the Fokker-Planck
simulation [25], the distribution function of primary elec-
trons can have a monoenergetic character, and the primary
energy is approximated by the energy limit due to syn-
chrotron and bremsstrahlung radiation [26]. Within this as-
sumption, a general form of secondary electron generation
rate is approximated with a given primary energy γ1 as

Γavl(γ1) ≡ d log nRE

dt
= nev1

∫ 1/2

εc

dσM(ε : γ1)
dε

dε,

(6)

where v1 = p1/(meγ1) � c and εc = (γc − 1)/(γ1 − 1).
Note that the electron density ne in Eq. (6) involves both
free and bounded electrons ne = nef + neb because both
primary and critical energies are typically higher than the
binding energy of electrons in impurity atoms. In Eq. (6),
the upper bound of the integration is taken as 1/2 because
a particle having higher energy after collision is regarded
as a primary.

Under the assumption for deriving Eq. (6) the evalua-
tion of avalanche growth rate reduces to the estimation of
the energy of primary electrons γ1 and the critical energy
transfer εc = (γc − 1)/(γ1 − 1). When the pitch-angle scat-
tering (Z = −1) and the radiation is neglected, the Connor-
Hastie limit [36] is applied. The critical energy and the
momenta are evaluated as

γc =

√
E/Ec

(E/Ec) − 1
, (7)

qc =

√
γ2

c − 1 =

√
1

(E/Ec) − 1
, (8)

where q ≡ p/(mec) denotes the normalized relativistic mo-
mentum. The above estimation with Z = −1 is modified by
taking into account the pitch-angle scattering due to bulk
ions (Z � 1) and impurities. The electron friction force
is enhanced with bounded electrons [9], which makes γc

higher and lowers probability for thermal electrons to be
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scattered into the runaway region. In addition, impurities
affect the estimation of the primary electron energy. The
pitch-angle scattering due to the atomic nuclei enhances
the synchrotron radiation loss, which modifies the flow pat-
tern in the momentum space and affects the energy limit
γ1 for primary electrons [26]. With high impurity content,
the effects of bremsstrahlung radiation can also be signifi-
cant [37] as a stopping mechanism for relativistic electrons.

Although Chiu, et al. [10] have shown that the intro-
duction of finite energy of primary electrons does not affect
the estimation of the avalanche growth rate so significantly
when the electric field is strong, E‖ � Ec, Aleynikov and
Breizman [25] have recently shown a qualitative change
near the critical threshold E � Ec. It is related to the
upper bound of the integration of Eq. (6). According to
the energy conservation, the energy of primary electrons
after a collision is given as γ′1 = γ1 − ε(γ1 − 1), for the
multiplication, which should have the value higher than
γc. It determines the condition for the multiplication such
that ε < εa ≡ (γ1 − γc)/(γ1 − 1). One can see that
if εa < 1/2, Eq. (6) gives a negative Γavl < 0. Conse-
quently, the so-called sustainment field Ea is defined from
the condition of εa � 1/2 as the electric field for which
the avalanche is marginal Γavl � 0. Below this threshold,
Ec < E‖ < Ea, the runaway current damps through the
‘inverse’ avalanche process. During the RE decaying pro-
cess, the electric field is sustained to be slightly higher than
the critical threshold [25]. As the consequence, combining
Eq. (6) with Eq. (1), the simulation is allowed to evaluate
the slow collisional damping of runaway current. This is
an essential feature of the avalanche theory near the critical
threshold, on the contrary to the conventional R-P model.

It must be noted that Eq. (6) cannot straightforwardly
be applied to arbitrary electric fields. This is because the
avalanche growth rate of Eq. (6) approximates the runaway
condition one-dimensionally. By solving the binary colli-
sion problem of relativistic electrons, the pitch-angle dis-
tribution of secondary electrons is given as

Π(q1, ξ1, q, ξ) =
1

π
√
|ξ2
β − (ξ − ξα)2|

, (9)

ξα =

√
γ1 + 1
γ1 − 1

γ − 1
γ + 1

ξ1, (10)

ξβ =

√
2(γ1 − γ)

(γ1 − 1)(γ + 1)
(1 − ξ2

1), (11)

where Π(q1, ξ1, q, ξ) represents the probability such that
a secondary electron with the momentum q, being scat-
tered by primary one having the momentum and pitch
(q1, ξ1), will have a pitch in the range ξ + dξ after single
collision [38]. Taking the high velocity limits γ1 → ∞ and
ξ1 → 1, we obtain Π(q1, ξ1, q, ξ) → δ(ξ − ξα) with ξα �√
γ − 1/γ + 1, which implies that secondary electrons are

scattered almost perpendicularly by close collisions. Such
2D features must be taken into account by the runaway

condition for secondary electrons, resulting in a modifica-
tion of the avalanche growth rate by up to a factor of 2. To
see this, we apply the momentum-dependent expression of
the R-P model [6]

S (q, ξ) =
nRE

4πτ lnΛ
1
q2

∂

∂q

[
1

1 − √
1 + q2

]
δ(ξ − ξα).

(12)

With the assumption that a primary electron is highly
relativistic γ1 � 1 at the strong electric field limit,
Eq. (12) is integrated along the curve that represents the
secondary electrons’ momenta in the 2D momentum space.
Since the avalanche growth rate is defined as ΓRP =

n−1
RE

∫ ∞
qc

dq
∫ 1

−1
dξ 2πq2S (q, ξ), one obtains

ΓRP =
1

2 lnΛτ

[
1

1 − γ
]∞
γc

≈ eEc

2mec lnΛ
1

q‖c
, (13)

where in the last equality, we take into account that for sec-
ondary electrons, the parallel momentum satisfies the rela-
tion q‖ = γ− 1 (see, Eq. (5) of Ref. [39]). The lower bound
of integration of Eq. (13), the parallel critical momentum
q‖c, specifies the condition such that a particle starting from
(q, q‖ =

√
1 + q2−1) as a secondary electron becomes run-

away. The linear expression of the R-P model in Eq. (3)
applies the runaway condition that q2 > 2/(E/Ec − 1) [9],
which yields 1

γc−1 � 2
q2

c
= E

Ec
− 1 in Eq. (13). As the result,

the avalanche growth rate of Eq. (7) of Ref. [6] for Z = −1
is smaller by up to a factor 2 than those obtained by ap-
plying the Connor-Hastie critical momentum of Eq. (7) to
Eq. (6). We emphasize that this contribution can never be
dropped off for quantitatively reproducing the strong elec-
tric field limit. On the contrary, in the weak field limit,
Parks, et al. [39] have shown that the secondary generation
point and the critical one (determined by the balance be-
tween acceleration and friction) become arbitrary close in
the momentum space. Therefore, the 1D treatments like
Eq. (6) can still be applied.

3. Implementation of Impurity
Models
In a post-disruption condition relevant to the RE gen-

eration, the electron temperature is typically around or less
than 10 eV and a rich of partially stripped ions exist. In
particular to the cases of massive gas injection, the impu-
rity density on the order of 1020 - 1021/m3 is expected [2].
For taking into account the effect of such a high impurity
content, the collision model for impure plasmas [24] is im-
plemented in the INDEX code, where a charge-resolved
expression of the Coulomb logarithm is considered. The
plasma parameter during CQ is characterized by the power
balance between ohmic heating and the radiative loss [23]

η j2Oh ≈ Prad = nef

∑
s

∑
j

n j+
s L j+

rad,s(ne,Te), (14)
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where jOh is the pre-disruption ohmic current, nef is the
free electron density, and nj+

s is the impurity ion density.
Equation (14) can be solved with given current density j‖,
the bulk ion density nH, and electron temperature Te, which
determines the impurity density nj+

s at the power balance,
and the free and bounded electron density, nef and neb, as
well as Zeff . Equation (14) is solved numerically by itera-
tion with coupling to the quasi-neutrality. The data for the
radiation function L j+

rad,s(ne,Te) is here implemented using
the OpenADAS database [40].

For impure plasmas, including the contribution of par-
tially stripped ions, the friction force acting on test elec-
trons can be written by

Fe = −αee4me

4πε2
0

γ(γ + 1)
p3

p, (15)

Fi = −αemeZcoll

4πε2
0

γ

p3
p. (16)

Here the functions αe and Zcoll are introduced to de-
scribe the friction and pitch-angle scattering due to par-
tially stripped ions [19], which specify weak energy de-
pendence through the Coulomb logarithm. For fully ion-
ized plasmas, αe and Zcoll reduce to αe → ne lnΛ and
Zcoll → Zeff =

∑
Z2

i ni/ne. We now define a charge-resolved
expression of αe and Zcoll for arbitrary impurity species as
follows:

αe = nef lnΛef

+
∑

s

∑
j

(
Z0

s − Z j+
s

)
n j+

s lnΛeb(s j+), (17)

Zcoll = α
−1
e

(
nH lnΛeH

+
∑

s

∑
j

n j+
s [(Z j+

s )2 lnΛeZ(s j+)

+ (Z0
s )2 lnΛeA(s j+)]

)
. (18)

In Eqs. (17) and (18), hydrogen is assumed to be fully ion-
ized. The summation is taken over the species (s) and the
charge state ( j+), where nef is the free electron density, Z0

s

is the atomic charge, Z j+
s is the unshielded ion charge, and

n j+
s is the ion (or atom) density.

A possible approximation to describe the Coulomb
logarithms in Eqs. (17) and (18) has been presented by
Mosher [24], while as was suggested in the footnote of
[24], his estimate can be refined to include the quantum
mechanical correction as well as the effect of plasma wave
excitation. Such a modification can be found in the liter-
atures. For collisions with free electrons, lnΛef , the for-
mula including the quantum mechanical correction as well
as higher-order effects can be found in Ref. [41], where the
Coulomb logarithm for collisions between free electrons
lnΛef is given as

lnΛef=
1
2

[
ln

(
m2c2(γ − 1)λ2

D

2�2

)
+ 1

+
1
8

(
γ − 1
γ

)2

− 2γ − 1
γ2

ln 2

]
. (19)

This expression involves a quantum mechanical correction
that for the relevant parameter range, the classical Landau
parameter is smaller than the de Broglie wavelength λdb,
where λdb = �

/[
mec

√
(γ − 1)

]
in the center-of-mass sys-

tem. Equation (19) is further modified by including the en-
ergy loss due to the excitation of plasma wave (see Eq. (10)
of Ref. [41]),

lnΛef =
1
2

[
ln

[( E
�ωp

)2
γ + 1
2γ2

]
+ 1

+
1
8

(
γ − 1
γ

)2

− 2γ − 1
γ2

ln 2

]
, (20)

where E is the electron kinetic energy, and ωp is the plasma
frequency. Note that even though the maximum impact
parameter is determined by the Debye length, the contri-
bution of plasma wave excitation cancels the dependence
on the background temperature. In Fig. 1 (a), lnΛef is
compared with and without the correction due to plasma
wave excitation as well as against the classical expression
lnΛef = ln[(γ−1)(γ+1)1/2λD/(2γre)]. We find that the full

Fig. 1 Charge-resolved Coulomb logarithms calculated for
(a) electron-electron and (b) electron-ion collisions us-
ing Eqs. (20)-(24) for nH = 1020 m−3, Te = 5 eV, nAr =

1.3×1019 m−3, nef = 1.3×1020 m−3, neb = 2.0×1020 m−3,
and Zeff = 1.4. Dash-dotted curve in the top figure repre-
sents lnΛef without the wave excitation effect and long-
dashed curves in both figures represent the classical esti-
mation with bmin = bL for lnΛef and lnΛeH.
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expression indicated by the red solid curve [Eq. (20)] and
the classical one (the magenta long-dashed one) give sim-
ilar results. However, this is an accidental agreement, be-
cause while the quantum mechanical correction (indicated
by the orange dot-dashed curve) weakens the friction, the
energy loss due to the plasma excitation recovers the fric-
tion force up to the level slightly stronger than the classical
estimation.

For electron-ion collisions, the classical expression
lnΛeH = ln[(γ2 − 1)λD/(γre)] is modified in the form
of lnΛ = 1

2 ln[1 + (b2
max/b

2
min)]. It requires ad hoc cut-

off bmax, which is normally set to be the Debye length
λD. For a dense system we also take into account the ion
sphere radius ai = (3/4πni)1/3, where ni is the ion den-
sity. To reproduce lnΛ in dilute plasmas, we can employ
bmax = (λ2

D+a2
i )1/2 [42]. The lower cutoff is estimated here

by bmin = [bL + (λdb/2)]1/2, where bL = Zre/(γβ2) is the
Landau parameter and λdb = �/(γmecβ) is the de Broglie
wavelength with β = v/c. The classical result is repro-
duced by simply setting bmin = bL. In Fig. 1 (b), lnΛeH is
compared with and without the quantum mechanical cor-
rection by the solid and long-dashed curves, where we see
15 - 20 % reduction of lnΛeH at the MeV-order range of in-
cident electron energy. For a wide range of the parame-
ter, the quantum mechanical correction can be significant,
where bL/bdb = Z/βα is less than unity, other than the
cases with low electron kinetic energy β  1 and for col-
lisions with high Z ions (where α = e2/(2ε0hc) = 1/137
denotes the fine structure constant).

Collisions with impurity ions (or atoms) of the species
s with the charge j+ consist of three parts: (i) friction due
to bounded electrons, lnΛeb(s j+), (ii) friction due to un-
shielded ion charge Z j+

s , lnΛeZ(s j+), and (iii) elastic scat-
tering due to atomic nuclei with charge Z0

s lnΛeA(s j+). We
employ the following model to evaluate the contribution
of (ii) and (iii):

lnΛeZ = ln

(
λD

λA

)
, (21)

lnΛeA = ln

(
λA

bmin

)
, (22)

where bmin is defined in a same way with the hydrogen,
and λA is the measure of the size of electron orbital ra-
dius. We simplify the treatment of λA in terms of the ion-
ization energy of most loosely bounded electron, where
λA = (mc2/I( j+1)+

s )Z0
s re, where I( j+1)+

s is the ionization en-
ergy for the reaction from j-th stage to ( j+ 1)-th one. This
simple model is useful to estimate the charge stage de-
pendence of Eqs. (21) and (22) using the existing database
of the ionization potential. We employ the ionization en-
ergy data available in the OpenADAS database [40] ex-
cept that Ref. [43] is used for Tungsten ions in our numer-
ical code. In Fig. 1 (b), Eqs. (21) and (22) are evaluated
as lnΛe(Z,A) = [(Z j+

s )2 lnΛeZ(s j+)+ (Z0
s )2 lnΛeA(s j+)]/(Z0

s )2

for argons with four different charge states, Ar0+ (black),
Ar10+ (green), Ar17+ (blue), and Ar18+ (cyan). When

Fig. 2 The dependence of electron and ion friction functions αe

and Zcoll on the incident electron energy. Blue dot-dashed
curves are calculated with the expressions of [23] based
on Mosher [24] which assumes bmin = bL and single ions
with the averaged charge for each atomic species. Long-
dashed curve in the top figure indicates a simple estimate
of the electron friction function, (nef + neb/2) lnΛef [9].

focusing on the energy dependence lnΛe(Z,A) for Ar10+ and
Ar17+, we see that at E > I( j+1)+

s (E: the energy of in-
cident electrons), the friction is dominated by the elastic
scattering due to atomic nuclei, whereas at E < I( j+1)

s ,
i.e., if the energy of incident electrons is lower than the
binding energy of orbital electrons, electrons interact with
partially stripped impurity interacts only through the ion
charge Z j+

s , unshielded by the orbital electrons. While
lnΛeZ vanishes for neutrals Ar0+, for fully stripped ions
Ar18+, lnΛe(Z,A) reduces to the same treatments for hydro-
gen as ln(λD/bmin). The remaining contribution is colli-
sions with bounded electrons (i), which is taken into ac-
count by the modified Bethe-Bloch formula for electron
collisions [44]

lnΛeb(s j+) = ln

[
(γ − 1)(γ + 1)1/2

√
2 I( j+1)+

s /mc2
+

F(γ)
2

]
, (23)

where higher-order correction F(γ) is given by

F(γ)
2
= −

(
2
γ
− 1
γ2

)
ln 2
2
+

1
2γ2
+

(γ − 1)2

16γ2
. (24)
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Fig. 3 Examples of the electron and ion friction functions αe

and Zcoll for 1 MeV test electrons with different impu-
rity species, where the background parameters are deter-
mined at the power balance described by Eq. (14) with
the electron temperature Te given on the x-axis.

In Fig. 1 (a), the contribution of bounded electrons is illus-
trated for Ar0+ (black), Ar10+ (green), and Ar17+ (blue),
approximately being about a half of the free electron part
of the Coulomb logarithm indicated by the red solid curve.

Figure 2 shows the electron and ion friction func-
tions, αe and Zcoll, in Eqs. (17) and (18) for argons using
our collection of the Coulomb logarithm [Eqs. (20)-(24)].
The results are compared with Fig. 1 of Ref. [23] based on
Mosher [24], and with a simple estimate of the electron
friction function such that αe � (nef + neb/2) lnΛef [9]. Be-
cause of the agreement of lnΛef between the modified and
classical models, Fig. 2 (a) shows that αe agrees well with
the previous work. We also see that the simple estimate
(nef + neb/2) lnΛef works well at MeV order but overesti-
mates the friction function αe at sub-relativistic energy. In
Fig. 2 (b), we find a decrease of Zcoll up to 15 - 20% from
the classical result at MeV-order range, which is due to
the quantum mechanical correction to lnΛeA (where the
hydrogen contribution to Zcoll is small). We also see that
Zcoll reduces to Zeff when the incident energy drops below
minimum ionization energy I1, indicating that a charge-
resolved model is working well. (Also, we see that αe is
modified slightly in Fig. 2 (a) roughly speaking, at the inci-
dent energy below the average ionization potential 〈I〉 for
all charge states.) Figure 3 illustrates the electron and ion

friction functions, αe and Zcoll, for 1 MeV incident elec-
trons, with different background temperature and impurity
species. We observe that non-monotonic variation of the
friction function αe depending on the impurity species, and
the enhancement of Zcoll for high Z materials at the lower
temperature. These features of αe and Zcoll significantly
affect the parametric dependence of the runaway genera-
tion rate — mainly through the modification to the critical
electric field required for runaways, and is essentially im-
portant for runaway electron mitigation.

4. Energy Limit, Critical Energy, and
Avalanche Growth Rate
This section is devoted to the estimation of the crit-

ical energy and the energy limit, which are necessary for
calculating the avalanche growth rate based on the near-
critical threshold theory. In the INDEX code, two ap-
proaches have been implemented with the impurity col-
lision model of Sec. 3. One employs analytic solutions
of the Fokker-Planck equation, introduced by Aleynikov
and Breizman [25] (which we call ‘A-B’ model). The
other solves a trajectory of test particles in the momen-
tum space [26] (which we call ‘mean particle (MP)’ model
here). Below we briefly reproduce these two models fol-
lowing Ref. [25, 26] but we employ identical synchrotron
and bremsstrahlung terms. In that case, a difference in
these two models becomes whether the second-order col-
lisional diffusion term is truncated or not. After that,
these models are applied to the calculation of the avalanche
growth rate, and the electric field dependence is compared
against the adjoint Fokker-Planck code [29, 30].

4.1 Aleynikov-Breizman (A-B) model
Consider a relativistic kinetic equation

τ0
∂ f
∂t
+ Êb · ∇q f = C( f ) +Cs( f ) +CB( f ), (25)

where q = p/(mec) represents the normalized relativistic
momenta, f is the distribution function, C( f ) is the col-
lision term, Cs( f ) is the synchrotron radiation loss, and
CB( f ) represents bremsstrahlung radiation. The collision
time τ0 = 4πε2

0 m2
ec3/(nee4 lnΛ0) is used as a normal-

ization constant with the free electron density ne = nef

and a constant Coulomb logarithm lnΛ0 = 18. The nor-
malized electric field is defined as Ê = E‖/Ec0, where
Ec0 = mec/eτ0 = nefe3 lnΛ0/(4πε0mec2). In this paper, the
reference electric field Ec0 is distinguished from E∗c that
is defined later to indicate the effect of bounded electrons
and radiations. If one employs the momentum-space coor-
dinate (q, ξ = q‖/q), where ‖ represents the direction along
the magnetic field, each term of the Fokker-Planck equa-
tion is written as follows. The acceleration and collision
terms are given by

b · ∇q f = ξ
∂ f
∂q
+

1 − ξ2

q
∂ f
∂ξ
, (26)
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C( f ) =
1
q2

∂

∂q
[A(q)(1 + q2) f ]

+
A(q)(1 + Z)

2

√
1 + q2

q3

∂

∂ξ
(1 − ξ2)

∂ f
∂ξ
,

(27)

where A(q) = αe/(nef lnΛ0) and Z(q) = Zcoll quantify the
effects of impurity collisions. Note that the weak energy
dependence of these terms through lnΛ is treated as con-
stant when manipulating Eq. (27). The synchrotron and
bremsstrahlung reaction force is described in the follow-
ing form:

Cs( f ) =
1
q2

∂

∂q

(
q2Fgyγq(1 − ξ2) f

)
− ∂

∂ξ

(
Fgy

ξ(1 − ξ2)
γ

f

)
, (28)

CB( f ) =
1
q2

∂

∂q

(
q2FbrαZγ

(
ln 2γ − 1

3

)
f

)
, (29)

where Fgy ≡ τ0/τs represents the ratio of collision time τ0

to the radiation time τs = 6πε0(mec)3/(e4B2). The expres-
sion for bremsstrahlung follows a high γ limit in a similar
way to Ref. [45] with αZ = (nef + neb)(1 + ZA,eff)/nef and
Fbr = 1/(137π lnΛ0). The effective Z for bremsstrahlung
is evaluated with respect to the atomic charge as ZA,eff =∑

s[nH + (Z0
s )2ns]/

∑
s(nH + Z0

s ns), where the summation is
taken over the impurity species and ns is the atomic den-
sity for s-th species. In general, no simple expression for
the bremsstrahlung cross section of electron-electron col-
lision is available for arbitrary energy and Z [46] so that in
Eq. (29) the expression for Z = 1 is simply assumed, and
the electron contribution becomes smaller than ion ones by
up to the factor of 1/ZA,eff .

For the runaway study, although the mean force oper-
ator of bremsstrahlung like Eq. (29) has been used in both
test-particle [45] and Fokker-Planck simulations [47], the
treatment of bremsstrahlung as a continuous slowing down
of the electrons loses its discrete picture when the emit-
ted photons can have energies of the same order as the in-
cident electrons. Recently, Embréus, et al. [48] have ana-
lyzed the bremsstrahlung emission of runaway electrons as
binary interactions using the Boltzmann-type kinetic op-
erator. Although such a kinetic treatment is beyond the
scope of this work, the comparison of the Boltzmann and
mean force operators has been illustrated in Figs. 1-2 of
Ref. [48], showing that the maximum energy limit is less
sharp in the Boltzmann case and the electron distribution
function exhibits a broader spectrum in both energy and
angular directions. Figure 3 of Ref. [48] has shown the
maximum reachable energy is about twice the energy ob-
tained using the mean force operator.

Equation (25) is rewritten in the form that can directly
be compared to Ref. [25]. Defining F ≡ q2 f , Eq. (25) in
the coordinate system (q, θ), where θ ≡ acos(ξ), one ob-
tains

τ0
∂F
∂t
+
∂

∂q

{
Ê cos θ −

[
A +

A
q2
+ FbrαZγ

×
(
ln 2γ − 1

3

)]
− Fgyq

√
1 + q2 sin2 θ

}
F

=
1

sin θ
∂

∂θ
sin θ

[
Ê

sin θ
q
F + A

(1 + Z)
2

√
1 + q2

q3

∂F
∂θ

+ Fgy
cos θ sin θ

γ
F

]
. (30)

Applying the assumption such that the equilibration in the
pitch-angle direction is much faster than the energy drag
and that the radiation loss is weaker than the collisional
loss, a solution to the lowest-order equation

1
sin θ

∂F
∂θ
+KF = 0, (31)

K(q) =
2Ê

Z + 1
q2

A
√

1 + q2
, (32)

is found to be [25]

F = G(t; q)
K

2 sinhK exp[K cos θ]. (33)

Inserting this solution to the left-hand side of Eq. (30) and
integrated over the pitch angle as

∫ π

0
dθ sin θ, one obtains

τ0
∂G
∂t
+
∂

∂q
U(q)G(t; q) = 0, (34)

where the flow function U(q) is given by

U(q) = −
(

1
K −

1
tanhK

)
Ê

−
[
A +

A
q2
+ FbrαZγ

(
ln 2γ − 1

3

)]

+
Z+1

Ê

A(1+q2)
q

Fgy

(
1
K −

1
tanhK

)
. (35)

In Eq. (35), being different from Eq. (7) of Ref. [25], the
bremsstrahlung term is included here. The flow function
U(q) calculated by the A-B model is illustrated in Fig. 4 (a)
with the red curves, where the nonlinear equation U(q) = 0
with a maximum flow velocity γ(Umax) have two roots rep-
resenting the energy limit γ1 (stable) and the critical en-
ergy γc (unstable). The sensitivity of the results to the
bremsstrahlung radiation is also illustrated by the dashed
curve. Once we obtain the equilibrium points γ1 and γc,
the corresponding average of the pitch is calculated as

〈cos θ〉 = (K − 1)eK + (K + 1)e−K

K(eK − e−K )
, (36)

which can be used as an estimate of the pitch-angle of
primary electrons when it is applied to the energy limit,

U
(
q1 ≡

√
γ2

1 − 1
)
= 0.
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Fig. 4 (a) Flow function U(q) calculated by the A-B and MP
models as functions of the energy with and without
bremsstrahlung radiation. (b) The 2D map of the charac-
teristic roots γc, γ(Umax), and γ1 as function of the electric
field for Te = 5 eV with argon impurity. The magenta and
cyan bars indicate the critical electric field E∗c including
the effects of synchrotron and bremsstrahlung radiation
as well as that of the friction force due to bounded elec-
trons.

4.2 Mean particle (MP) model
In the previous work, the mean particle (MP) equa-

tion has been employed to obtain an intuitive picture of
the runaway trajectory in the momentum space [49]. It
is also used to evaluate the effect of synchrotron [26]
and bremsstrahlung radiation losses [45] as well as the
avalanche growth rate [39]. By noting that the test par-
ticle equation dq

dt = F corresponds to the partial differ-

ential equation in the conservative form ∂ f
∂t = − ∂

∂p · F =
− 1

p2
∂
∂p (p2p̂ ·F)− ∂

∂ξ

(
ξ̂ ·F)

, we obtain the ordinary differen-
tial equation from Eq. (25), by truncating the second-order
diffusion term. Following Ref. [26], we write the mean par-
ticle equation in the (q‖, q) coordinate as

τ0
dq‖
dt
= Ê − A

γ(α + γ)
q2

q‖
q
− Fgy

q2q‖(1 − ξ2)

γ

− FbrαZγ

(
ln 2γ − 1

3

)
q‖
q
, (37)

τ0
dq
dt
= Ê

q‖
q
− A

γ2

q2
− Fgyγq(1 − ξ2)

− FbrαZγ

(
ln 2γ − 1

3

)
. (38)

Note that although the original work [26] employs a dif-
ferent approximation to the radiation reaction force [50],
we apply the same one with Eq. (25) and those used in
Refs. [51, 52]. By solving dq/dt = 0 to get stagnation
points

(
qs =

√
γ2

s − 1, ξs = cos θs

)
of the momentum-space

flow, we obtain Ê = V(γs, θs), where

V(γs, θs) ≡ γ2
s

(γ2
s − 1) cos θs

[
A +

(γ2
s − 1)3/2

γs

× Fgy sin2 θs +
(γ2

s − 1)
γs

FbrαZ

(
ln 2γs − 1

3

)]
. (39)

Next we evaluate the cosine of pitch angle cos θs as a func-
tion of γs. From the relation dq⊥/dt = 0, we obtain
a quadratic equation for sin2 θs as

sin4 θs + sin2 θs
γ2

s (α + γs)

Fgy(γ2
s − 1)5/2

×
[
A +

(γ2
s −1)3/2

γ2
s (α+γs)

Fgybr

]
− Aγ2

sα

Fgy(γ2
s −1)5/2

= 0, (40)

where

Fgybr = Fgy +
γ2

s

(γ2
s − 1)1/2

FbrαZ

(
ln 2γs − 1

3

)
.

The solution less than unity from Eq. (40) is chosen and we
finally obtain

cos2 θs = 1 +
Fgybr

2Fgy(γ2
s − 1)

+
γ2

s (α + γs)

2Fgy(γ2
s − 1)5/2

×
⎧⎪⎪⎨⎪⎪⎩A −

[(
A +

(γ2
s − 1)3/2

γ2
s (α + γs)

Fgybr

)2

+
4AαFgy(γ2

s − 1)5/2

γ2
s (α + γs)2

]1/2
⎫⎪⎪⎬⎪⎪⎭ . (41)

Equations (39) and (41) specify the flow function
UMP(q) ≡ Ê − V , which can directly be compared with
the A-B model. Two roots for UMP(q) = 0 are compared
with those obtained by Eq. (35) in Fig. 4 (a). Because of
the use of identical synchrotron and bremsstrahlung radi-
ation terms, a close agreement of the energy limit γ1 is
obtained. On the contrary, we see that γc obtained by the
MP model is lower than those obtained by the A-B model.
Such a lower estimation of γc by the MP model is at-
tributed to the truncation of second-order diffusion term.
In Fig. 4 (b) the characteristic roots calculated by the A-B
and MP models are illustrated as a function of the electric
fields. It shows that the MP model tends to underestimate
γc over the full range of electric fields exceeding the crit-
ical threshold E∗c . In Fig. 4 (b), magenta and cyan bars in-
dicate the values of the resultant critical electric field E∗c ,

1403032-9



Plasma and Fusion Research: Regular Articles Volume 12, 1403032 (2017)

including the effects of synchrotron and bremsstrahlung ra-
diation as well as that of the friction force due to bounded
electrons. They are defined as the electric field at which the
two roots γc and γ1 in the momentum-space flow merge.
A main effect of bremsstrahlung is to decrease the energy
limit γ1, which plays a minor role in the critical energy γc.

4.3 Adjoint Fokker-Planck code and
avalanche growth rate

The avalanche growth rate based on the near-critical
threshold theory is calculated by inserting the critical en-
ergy and the energy limit obtained by the A-B or MP mod-
els into Eq. (6). However, as was discussed in Sec. 2.2,
the resultant growth rate is not applied in a unified way to
the strong electric field limit. For obtaining the expression
that can be applied to a wide range of the electric fields,
we begin with the comparison of the near-critical thresh-
old theory and the R-P model to the third method — based
on the adjoint Fokker-Planck equation [29]. Details of the
adjoint Fokker-Planck method have been described by Liu
and the co-authors [29, 30]. Here the Fokker-Planck code
to solve the adjoint equations has been implemented with
the finite difference method, as what has been reviewed in
Ref. [28], and the friction and radiation coefficients have
been implemented with the same way with what is de-
scribed in Sec. 4.1. The numerical solution provides the
runaway probability 0 ≤ P(γ, θ) ≤ 1 with the boundary
condition P(γbnd, θ) = 1 and P(0, θ) = 0, where γbnd de-
notes the Lorentz factor at the computational boundary and
θ = acos(ξ) denotes the pitch angle. The calculated run-
away probability is combined with the Møller scattering
cross section of Eq. (5), and the avalanche growth rate is
calculated as

Γavl(γ1, θ1) = nec
∫ 1/2

0
dε

∫ π

0
dθ

dσM(ε; γ1)
dε

× {δ(θ − θ′)δ(γ − γ′)P(γ, θ)

− δ(θ − θ′1)δ(γ − γ′1)(1 − P(γ, θ))], (42)

where the second term represents the scattering of primary
electrons into lower energy, and (γ′1, θ

′
1) and (γ′, θ′) de-

note the position of primary and secondary electrons in
the momentum space after single collision. Near the criti-
cal thresholds, the second term of Eq. (42) dominates over
the integral, which reproduces the negative growth (damp-
ing) rate of the near-critical threshold theory. For calcu-
lating P(γ, θ), the momentum space boundary γbnd must
be selected appropriately in the runaway region. In the
following, we will check the sensitivity of our results to
the momentum space boundary where the Lorentz factor
at the boundary γbnd is varied from [γc + γ(Umax)]/2 to
[γ(Umax)+γ1]/2, the corresponding range Δγbnd being dis-
played in Fig. 4 (a). Such sensitivities to γbnd are physically
connected to those to the shape of the runaway electron
distribution function that is sustained by the avalanche.
To eliminate such a subtlety in calculating the growth

Fig. 5 The avalanche growth rates normalized by the R-P model
[Eq. (2)]. Red and blue dashed curves correspond to
Eq. (6) evaluated using the A-B and MP models, respec-
tively. The solid curves are drawn for the adjoint Fokker-
Planck method [Eq. (42)], where six different values of
the momentum-space boundary γbnd in the range from
[γc + γ(Umax)]/2 to [γ(Umax) + γ1]/2 are applied.

rate, a more sophisticated method to obtain the distribu-
tion function as an eigenvector has been proposed recently
in Eqs. (28) and (29) of Ref. [30].

In Fig. 5, we compare the avalanche growth rate cal-
culated by the A-B and MP models with Eq. (6) to the
adjoint Fokker-Planck method. For this comparison, the
R-P model is used as a reference so that the calculated
growth rate is normalized by Eq. (2) at the same electric
field. For the clarity of the benchmark, the friction coef-
ficients A(q) = αe(q)/(nef lnΛ0) and Z(q) as well as the
Coulomb logarithm are set by A(q) = 1 and Z(q) = const.
with lnΛ0 = 18. In Fig. 5, we first look at the strong elec-
tric field limit E‖/Ec0 � 102 (indicated by the black ar-
rows) and find that the adjoint Fokker-Planck code well re-
produce the R-P limit for different Z as Γavl/ΓRP � 1. This
follows the discussion in Sec. 2.2, and neither A-B nor MP
models can reproduce this limit. Secondly, we also see that
the sustainment field Ea, i.e., the electric field at Γavl � 0
(indicated by the black dashed segments) agrees well be-
tween the different models, within the sensitivity of the ad-
joint Fokker-Planck method to the selection of momentum
space boundary. We mention that to get better evaluations
of the sustainment fields, the approach should be refined
to take into account the shape of the runaway distribution
function, which is beyond the scope of the present analysis.

Next a focus is placed on the avalanche growth rate
in the intermediate electric fields between the sustain-
ment field and the strong electric field. In the previous
work [25], it was emphasized that the A-B model asymp-
totes to the weak field limit of the R-P model, where we

1403032-10



Plasma and Fusion Research: Regular Articles Volume 12, 1403032 (2017)

Fig. 6 The runaway probability in the (ε, θ) space. The magenta
and cyan curves represent the integration path of Eq. (42)
for calculating the avalanche growth rate. The vertical
segment is εc = (γc −1)/(γ1 −1) obtained by the A-B and
MP models, and the dashed curve indicates the contour
on which the runaway probability becomes P(γ, θ) = 0.5.

observe the same trends Γavl/ΓRP � 1 for different Z and
the normalized radiation time F−1

gy . As the second-order
collisional diffusion increases the critical energy required
for runaways, the A-B model is seen to give lower estimate
of the growth rate than the MP model for all cases. Never-
theless, what we can find from Fig. 5 is that the adjoint F-P
results overshoot the results of the A-B model and become
large even up to the level of the MP model. Comparing
Figs. 5 (a) and (b), one can see that the overshoot obtained
by the Fokker-Planck method is significant especially at
high Z and low radiation condition. It is consistent with the
scan of the critical electric field in Fig. 6 of Ref. [30], where
the lower critical threshold as compared to the A-B model
prediction has been reported. Here, ‘low radiation’ con-
dition implies lower critical energy for runaways, whereas
‘high Z’ implies the enhancement of pitch-angle scatter-
ing. For such parameters, the perpendicular scattering due
to collisional diffusion [53] becomes significant. Although
the collisional diffusion increases the critical energy, as be-
ing taken into account by the A-B model, it can simul-
taneously relax the runaway condition where the smooth
transition of runaway probability occurs near the separatrix
structure in the momentum space [53]. This interpretation
— implying the cancellation of the effect of collisional dif-
fusion — is consistent with our numerical observation of
Fig. 5. The avalanche growth rate calculated by the adjoint
Fokker-Planck code becomes closer to those obtained by
the MP model for intermediate electric fields E‖/Ec0 � 10,
where the second-order diffusion term is fully truncated.

To compare the A-B and MP models with the adjoint
Fokker-Planck method, the contour of the runaway prob-
ability P(γ, θ) near the sustainment field (E‖/Ec0 = 3.10,
Z = 20, and Fgy = 0.025) is illustrated in Fig. 6, where
we indicate the integration path of the avalanche growth
rate in Eq. (42) by magenta and cyan curves for secondary

Fig. 7 The same figure with Fig. 5 for different impurity species
(Ar, Ne, and C) using the full expression of the impurity
collision coefficients αe(q) and Z(q) in Eqs. (17) and (18).
The long dashed curves indicate the avalanche growth
rate calculated by the combined expression [Eq. (43)] of
the MP and R-P models.

and primary electrons, respectively, as well as the contour
curve of the probabilities of runaway and loss being equal,
P(q, θ) = 0.5. We see that the P(q, θ) = 0.5 curve is in
reasonable agreement with the runaway separatrix εc ob-
tained by the MP model. In this case, we see that the
εc obtained by the A-B model is located on the right of
the P(q, θ) = 0.5 contour, which gives a negative growth
rate, following Eq. (6). On the contrary, it is clear from
Fig. 6 that when calculating the avalanche growth rate of
Eq. (42), the positive contribution from the first term, rep-
resenting that secondary electrons run away, tends to dom-
inate over the negative one from the second term, repre-
senting the momentum loss of primary electrons. Such an
asymmetry would also be attributed to the fact that the per-
pendicular diffusion is more effective for secondary elec-
trons with lower energies and larger pitch angles ξ � 0
than for primary electrons.

In Fig. 7, another benchmarking of the growth rate
with the full expression of the impurity collision model,
αe(q) and Z(q) in Eqs. (17) and (18), has been illustrated
for three different species (Ar, Ne, and C). Note here that
in Fig. 7, the same normalization with Ec0 is applied to the
x-axis, the shift of the critical electric field Γavl(E‖)→ −∞
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is attributed not only to the synchrotron radiation but also
the bounded-electron friction. Motivated by the aforemen-
tioned comparison, we introduce a combined model that
smoothly connects the MP model and the strong electric
field limit of the R-P one:

Γavl(Ē > 1) = ΓMP exp[−β(Ē − 1)]

+ ΓRP{1 − exp[−β(Ē − 1)]}, (43)

where ΓMP is the growth rate obtained from Eq. (6) with the
critical energy of the MP model, and ΓRP is obtained from
the linear expression of Eq. (3). In Eq. (43), Ē = E‖/E∗c
denotes the normalized electric field, whereas the fitting
coefficient is selected to be β � 0.1. In Fig. 7, we see
that the combined expression of Eq. (43) has reasonably re-
produced the results of the adjoint Fokker-Planck method.
Such a simple model is useful for a fast evaluation of the
growth rate in simulations, instead of solving the Fokker-
Planck equation. (The similar idea has also been proposed
in Ref. [54].)

5. Zero-Dimensional CQ Simulation
with Low-Z and Noble Gas Species

5.1 ITER simulations with argon injection
In this section, we implement the developed mod-

els for impurity collisions and the avalanche growth rate
into a 0D CQ simulation. We first examine the sensitiv-
ity of the simulation results to the different models of the
avalanche growth rate. A simulation is peformed for the
ITER-relevant parameter with argon impurity, where the
device parameters are chosen to be R0 = 6.2 m, a = 2 m,
B0 = 5.3 T, κ = 1.8, and Ip = 15 MA. With the density of
bulk hydrogen nH = 1 × 1020/m3 for the electron temper-
ature Te = 3 eV, the required argon density for the power
balance is estimated to be � 2 × 1020/m3. For the sake
of simplicity, we calculate the power balance only at once
and the time variation of the electron temperature during
CQ is not taken into account. In this section, the initial
seed current is simply given as constant input parameter
with Iseed = 0.1 A.

Figure 8 compares the simulation results based on
the near-critical threshold theory using the A-B and MP
models with those obtained by the R-P model, where
we have also performed the simulation turning off the
bremsstrahlung term in Eq. (35). Each subfigure corre-
sponds to (a) the time history of the RE currents, (b) the
electric field, (c) the avalanche growth (Γavl > 0) and
damping (Γavl < 0) rates, and (d) the history of unstable
(γc) and stable (γ1) roots of the momentum-space flow cal-
culated by the A-B and MP models. Using the near-critical
threshold theory, the INDEX simulation has reasonably
reproduced the expected behavior of the runaway current
and the electric fields near the critical threshold [25]. Af-
ter the maximum RE current builds up, the RE current
slowly damps with the momentum loss due to close colli-

Fig. 8 The time history of (a) the runaway currents, (b) the elec-
tric field, (c) the avalanche growth (> 0) and collisional
damping (< 0) rates |Γavl| = |d log nRE/dt|, and (d) the un-
stable (γc) and stable (γ1) roots for the momentum-space
flow.

sions between primary electrons and thermal ones. Such a
decaying process is compared in Fig. 8 (a). The RE current
predicted by the MP model exhibits a longer sustainment
time because higher maximum current is dissipated. Fig-
ure 8 (c) shows that except the final termination phase of
the RE currents, the collisional damping rate obtained by
the A-B and MP models are in agreement within the accu-
racy of factor 2, where the electric field is sustained around
� 50 V/m for the both models in Fig. 8 (b). Two impor-
tant characteristic energies are compared with the energy
limit in Fig. 8 (d). The upper one is the maximum attain-
able energy of runaway electrons calculated from the total
available poloidal flux, Elim � ec

2πR0
LpIp for accelerating

the electrons. As is seen from the high energy root γ1 in
Fig. 8 (d), the effect of bremsstrahlung appears as a mech-
anism determining the energy limit, nevertheless, which is
less pronounced because Elim can limit the runaway en-
ergy much lower than the levels where the bremsstrahlung

1403032-12



Plasma and Fusion Research: Regular Articles Volume 12, 1403032 (2017)

becomes important. In Fig. 8 (d), the average energy of
secondary electrons Eav =

WRE
NRE
� mec2a(Z) lnΛ is also

plotted, where NRE = 2πR0IRE/ec is the total number of
runaway electrons. The corresponding stored energy WRE

is calculated from the R-P model as [6, 31, 32]

WRE(t) = 2πR0

∫
dtIRE(t)E‖(t)

= −
∫ ψ

ψ0

IRE(t)dψ

= ψAa(Z) lnΛ(IRE(t) − Iseed). (44)

The resultant electron distribution function is predicted to
have an exponential form characterized by the effective
temperature ∼ exp(−E/Eav) [6], where E is the kinetic en-
ergy of runaway electrons. The ratio between the magnetic
energy Wm � 1

2μ0R0I2
RE to the kinetic energy is obtained as

Wm/WRE � IRE/[IAa(Z) lnΛ] � 1 [55]. This is an impor-
tant ordering that validates the present framework based on
the coupling of REs with a bulk plasma only through the
runaway current (magnetic energy). Under this assump-
tion, although the conversion of the magnetic energy to
kinetic energy is normally retained, the dissipation of ki-
netic energies of REs, e.g., due to synchrotron radiation,
is neglected in the CQ modeling [Eq. (1)] and the power
balance relation [Eq. (14)].

Figure 9 (a) compares the dependence of the maxi-
mum current IRE,max (obtained before the collisional damp-
ing starts) on the impurity atom density. Here, the vertical
segments (E‖/Ec � 50) at nAr � 1020/m3 roughly char-
acterizes the transition from the strong avalanche regime
(E‖/E∗c � 102) to the weak electric field (E‖/E∗c � 5-
10). According to the benchmark in Sec. 4.3, in the strong
avalanche regime with the argon density of 1018 - 1020/m3,
the Z dependence of the R-P model is expected to be re-
liable. In the regime of nAr � 1020/m3, IRE,max decreases
with the argon density, where the MP model can be re-
garded as a reasonable prediction that can reproduce the
results of the Fokker-Planck code. The necessary den-
sity for the RE suppression [2] is observed similarly at
nAr � 1021/m3 with these three models. The nAr depen-
dence of the collisional damping rates is summarized in
Fig. 9 (b), showing good agreement between the different
models of the avalanche growth rate. The effect of the
bremsstrahlung radiation is seen to be negligible in both
net RE production and the collisional damping rate.

A possible mitigation scheme of the RE production,
as compare to the pure argon injection like Fig. 9, is to in-
crease the bulk ion (deuterium) density. Figure 10 com-
pares the maximum RE current IRE,max in the same way
with Fig. 9 for two different bulk-ion densities, nH =

1 × 1020 and 4 × 1021/m3, the latter corresponding to the
amount on the order that is expected for massive deu-
terium injection (� 12.8 kPa·m3 with the volume 800 m3).
Here we compare the prediction obtained by the standard
R-P model with those obtained from the combined one of

Fig. 9 (a) Maximum RE current for ITER simulations with
argon impurity and Iseed = 0.1 A. (b) The lifetime of RE
current (d log(IRE)/dt)−1 (s).

Fig. 10 Comparison of the maximum RE current calculated
by the R-P model [Eq. (2)] and the combined model
[Eq. (43)] for two different bulk ion density: nH =

1 × 1020 and 4 × 1021/m3.

Eq. (43), taking into account the cancellation of the col-
lisional diffusion, which has been discussed in the previ-
ous section. Figure 10 shows that a close prediction be-
tween the combined and R-P models is obtained for the
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low density case. Conversely, for the high density case,
because the electric field decreases to the level of the inter-
mediate electric field E‖/E∗c � 10, net RE production ob-
tained from the combined expression (magenta) becomes
significantly larger than those from the R-P model (green).
The comparison of Fig. 10 has illustrated that the model-
ing accuracies including the cancellation of the collisional
diffusion become important for lower normalized electric
fields, thus being useful for the quantification of runaway
mitigation.

5.2 Comparison of low-Z and noble gas
species

Next we compare the RE production in the presence
of different impurity species. We perform the simulation
using the parameters relevant to JT-60U and JET-size, with
a relatively high pre-disruption plasma current to drive the
avalanche growth, where Ip = 4 MA, R0 = 3 m, a = 1 m,
B0 = 3 T, κ = 1.6, and nH = 1 × 1020/m3. Let us consider
Be (Z = 4) and C (Z = 6) as representative species for
intrinsic impurities in natural disruptions, and Ar (Z = 18)
and Ne (Z = 10) for mitigated disruptions. To calculate
the avalanche growth rate, we have used the the combined
semi-analytic model of Eq. (43).

Figure 11 shows the 2D map of the maximum run-
away current IRE,max for (a) beryllium, (b) carbon, and
(c) argon impurity with Iseed = 1 kA. The same calculation
for neon is qualitatively similar to those of argon. The RE
current appears in the 2D map of Fig. 11 is determined by
two dominant physics: (1) the electric field increases with
the resistivity through the change of the electron tempera-
ture and Zeff , and (2) at high nZ with low Te, the bounded
electron enhances the electron friction through αe and con-
tributes to the RE suppression. In Fig. 11, white curves in-
dicate the power balance between the ohmic and radiation
losses. TQ should occur along any trajectory passing the
region above the power balance curve if one neglects the
effect of transport losses on the electron temperature. After
TQ, the operational point will reach to some stable equilib-
rium point, characterizing the plasma parameter during CQ
at the power balance.

The above picture of the power balance analysis is
useful to interpret the parametric dependence of RE gen-
eration on the impurity content during CQ. In Fig. 12, we
have evaluated the fraction of IRE,max to the pre-disruption
plasma current along the power balance curve for three dif-
ferent values of the seed current, Iseed = 0.1, 1, 10 kA.
When the multiple root exists, the solid curve is used only
for a stable root at high temperature side (more easily ac-
cessible). In such a way, the threshold impurity density
separating the two distinct regions having weak and strong
avalanche growth rates is obtained for low-Z materials.
Comparing beryllium and carbon in Figs. 12 (a) and (b),
we see that the strong avalanche regime is accessible with
smaller amount of the carbon impurity (nC � 1 × 1020/m3)

Fig. 11 Maximum RE current IRE,max calculated by the INDEX
code in the (Te, nZ) space for (a) Be, (b) C, and (c) Ar
injection. The power balance between the ohmic heat-
ing and the radiation loss is indicated by white curves.
In (b), the onset of strong avalanche regime with the ac-
cess to the low Te equilibrium point is indicated by the
arrow.

than that of beryllium (nBe � 2 × 1021/m3). In Figs. 12 (c)
and (d), the same work has been done for noble gas species.
Both for argon and neon injection, the regime with strong
avalanche growth rate is accessible with lower atom den-
sities (nAr � 1018/m3 and nNe � 1019/m3) than that is nec-
essary for low-Z materials, though in the case of argon,
the two regimes are almost connected continuously. This
threshold density depends mainly on the impurities species
and weakly on the current density as the power balance
curve is. As is seen from the results of Fig. 12, the seed
current does not affect the thresholds but once the impurity
content exceeds them, the net RE production is varied with
the seed current on a logarithmic scale.

In Fig. 13, the electric field at the beginning of CQ
(t = 0) is normalized by the critical threshold E∗c , and
is plotted as a function of the impurity density. Other
than quantitative details, all the species exhibit a similar
trend: indicating that just above the onset, the maximum
normalized electric field on the order of E‖/E∗c ∼ 102 is
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Fig. 12 The fraction of the produced RE current to pre-
disruption plasma current IRE,max/Ip evaluated along the
power balance curve of Fig. 11, as function of the im-
purity atom density. We have used the solid curve only
for a stable root at high temperature side (more easily
accessible) if the multiple roots exist. Three different
curves indicate the results obtained with the different
seed currents: Iseed = 10 kA (red), 1 kA (blue), and
0.1 kA (black).

available. With increasing the impurity density above the
threshold, the normalized electric field decreases, imply-
ing the mitigation of avalanche growth at the high impu-
rity density regime. Such a mitigation is attributed to the
enhancement of the bounded-electron friction force. Com-
paring to such pure injection, we examine the effect of
the background ion density. In Fig. 14, (a) the normal-
ized electric field E‖/E∗c , (b) the critical energy required
for runaways, and (c) the produced RE current IRE,max are
illustrated for neon (Z = 10) with five different ion density
(nH = 1×1020, 5×1020, 1×1021, 2×1021 and 4×1021/m3).
Here the seed current is fixed at Iseed = 1 kA in Fig. 14 (c),

Fig. 13 The impurity density dependence of the ratio of the elec-
tric field at the beginning of CQ (t = 0) to the crit-
ical electric field E∗c for different species (Be, C, Ne,
and Ar).

Fig. 14 (a) The same figure with Fig. 13 for neon with five
different bulk ion densities: (red) nH = 1 × 1020/m3,
(blue) 5 × 1020/m3, (black) 1 × 1021/m3, (green) 2 ×
1021/m3, and (magenta) 4 × 1021/m3. (b) The critical
energy required for runaways, (γc − 1)mec2. (c) The
fraction IRE,max/Ip of the produced RE current to pre-
disruption plasma current.

thus indicating the capability of secondary runaway gener-
ation. Since the radiation loss is enhanced with the elec-
tron density, the threshold neon density shifts to the left as
indicated by the arrow in Fig. 14 (a), decreasing with the
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increase of the background ion density. (It implies that
the neon are replaced by bulk ions.) Simultaneously, the
normalized electric field E‖/E∗c decreases to the range of
E‖/E∗c � 10, which is beneficial to reduce the primary elec-
tron generation through the increase of the critical energy
required for runaways by up to an order of the magnitude.
Nevertheless, the reduction of secondary electron genera-
tion with the fixed seed current is not so significant, being
less than a factor of 2 at nZ = 1019 - 1020/m3, as is seen by
Fig. 14 (b). This is because the increase of the background
electron density and the decrease of the effective Z coun-
teracts to the reduction of the avalanche growth rate due to
the lower normalized electric field.

6. Zero-Dimensional TQ Simulation
for Hot-Tail Generation
The analysis in the previous section — for the

avalanche growth with given seed currents — must be
complemented by self-consistent evaluation of the seed
currents. This is a more complicated problem because seed
currents are affected by the physics on the timescale of TQ
and are sensitive to dynamic changes of the plasma pa-
rameters during disruptions. This section describes the de-
velopment of 0D TQ simulations using the INDEX code,
which consists of the rate equations and the energy bal-
ance equations without assuming the ionization equilib-
rium. This is an original motivation of a charge-resolved
implementation of the INDEX code, similarly to what is
done in the DIMRUN code [56], although the opacity ef-
fect in Ref. [56] is out of the scope of this work. In Sec. 6.2,
the developed TQ model is coupled to the Fokker-Planck
code for evaluating hot-tail seed electrons. To account for
the drag force due to cold electrons produced by ionization
of the impurity neutrals, a two-temperature electron model
is considered.

6.1 Radiative cooling and power balance
In the INDEX code, the ionization and recombination

processes during TQ are solved in terms of the rate equa-
tions. For impurity ions of the species s with the charge
state j+, the evolution of the density equation n j+

s is writ-
ten by

∂n j+
s

∂t
= S( j−1)+

s nen( j−1)+
s − (S j+

s +A j+
s )nen j+

s

+A( j+1)+
s nen( j+1)+

s + δ j,0S 0
n, (45)

where S j+
s and A j+

s are the ionization and recombination
coefficients [57]. In Eq. (45), the neutral source is given
by S 0

n = Δn0
s/τsourceH(τsource − t), where Δn0

s denotes the
injected density, τsource characterizes the deposition time,
and H(t) denotes the step function.

When a large amount of the impurity neutrals are de-
posited and ionized in a plasma, cold electrons are re-
leased, and the temperature relaxation occurs between the

cold and hot populations [18]. To simulate such a relax-
ation process, we treat the density of cold electrons nce

with the temperature Tce, which is released from impurity
neutrals, as an independent species that is separated from
pre-existing hot one nhe with the temperature The (> Tce).
In our simulations, the relaxation between cold and hot
electrons is treated using the particle source term for the
equation of hot-electron density nhe:

∂nhe

∂t
= S ex

he,ce, S ex
he,ce ≡

2Pex
he,ce

3The
. (46)

Here, the source rate is written in terms of the power trans-
fer between the species α and β [58]

Pex
α,β =

3nα(Tβ − Tα)

2ταβ
,

ταβ =
3
√

2 π3/2ε2
0 mαmβ

nβe4Z2
αZ2

β lnΛαβ

(
Tα
mα
+

Tβ
mβ

)3/2

, (47)

where the Coulomb logarithm lnΛαβ is evaluated using
the formula of Ref. [59]. The density of cold electrons
is obtained from the quasi-neutrality nce = max(0, nH +∑

s
∑

j Z j+
s n j+

s − nhe), where nH denotes fully-ionized bulk
hydrogen density. After the temperature equilibration be-
tween cold and hot electrons is finished, we no longer
solve Eq. (46), and the hot-electron density is obtained as
nhe = nH +

∑
s
∑

j Z j+
s n j+

s . As we will see below, Eq. (46)
can be incorporated into the Fokker-Planck code as the
source term, being useful for taking into account the elec-
tron density variation during TQ.

The energy balance equations are given in terms of the
pressure ps = nsTs for each component, as being written by

∂

∂t

(
3
2

phe

)
= Pex

he,ce + Pex
he,H +

∑
s

Pex
he,s

+ POH − Phe
ion − Phe

rad −
3
2

TheS ex
he,ce, (48)

∂

∂t

(
3
2

pce

)
= Pex

ce,he + Pex
ce,H +

∑
s

Pex
ce,s

− Pce
ion − Pce

rad +
3
2

TheS ex
he,ce, (49)

∂

∂t

(
3
2

pH

)
= Pex

H,he + Pex
H,ce +

∑
s

Pex
H,s, (50)

∂

∂t

(
3
2

ps

)
= Pex

s,he + Pex
s,ce + Pex

s,H, (51)

where POH = η( j‖ − jRE)2 denotes the ohmic heating, and
Phe/ce

ion and Phe/ce
rad denote the ionization and radiation losses.

In Eq. (51), we assume that different charge states of the
impurities have an equal temperature Ts. The last term
in Eq. (48) [Eq. (49)] is subtracted (added) to compensate
the energy exchange results from the particle transfer of
Eq. (46). Note that the ohmic heating power is added only
to hot components, since the current is carried by a medium
with the higher conductivity, and the power balance with
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Fig. 15 (a) The evolution of the temperature of hot electrons
(The), cold electrons (Tce), bluk ions (TH), and argons
(TAr). (b) The ohmic heating and radiation and ioniza-
tion loss powers. The pre-TQ parameters are chosen to
be The = 4 keV, nH = 1020/m3, j0 = 0.75 MA/m2, and
Δn0

Ar = 1.3 × 1019/m3.

the radiation loss is achieved only at the final phase of
TQ. To evaluate the ohmic heating power and the associ-
ated electric field (Ohm’s law) for a multi-species plasma,
the classical resistivity is obtained using the matrix inver-
sion [60] in terms of the friction coefficient of Ref. [61].

Figure 15 illustrates (a) the temperature relaxation be-
tween the electron and ion species and (b) the history of
heating and loss powers. In the simulation of Fig. 15,
the initial condition is chosen to be The = TH = 4 keV
with nH = 1020/m3 and Zeff = 1, and the argon density
Δn0

Ar = 1.3 × 1019/m3 is introduced as neutrals at t = 0,
i.e., τsource → 0 in Eq. (45). The temperature evolution of
Fig. 15 (a) shows that on the short timescale of 10−5 - 10−4 s
after the impurity injection (t = 0), the hot electron popula-
tion (The) cools down due to dilution. The two-temperature
model has an advantage at this point where we do not need
to assume that the heating time of cold electrons is much
faster than the production time of cold electrons. Next, in
Fig. 15, we see that the electron temperature drop due to
dilution is followed by the temperature equilibration with
ions (H+Ar) and by slow cooling with bremsstrahlung and
line radiation. In the present case, the radiative collapse oc-
curs at t � 10−2 s, and a plasma immediately reaches the fi-
nal temperature around a few eV. As seen from Fig. 15 (b),
the power balance between the ohmic heating and the ra-
diation loss is achieved at the final point of TQ. The re-
sultant plasma parameters (Te, nhe, and Zeff) at the power
balance has been cross-checked with a direct evaluation of
the power balance equation from Eq. (14).

6.2 Hot-tail electron production during mas-
sive Ar injection

Various mechanisms have been considered [9] as
the cause of primary (seed) electrons that triggers the
avalanche amplification in ITER-grade devices. During
the rapid plasma cooling, being relevant to rapid shut-
down scenarios like the massive gas injection, the incom-
plete thermalization of the electron distribution function
yields hot-tail seeds [10–18]. To simulate the hot-tail gen-
eration during TQ, an initial-value Fokker-Planck routine
is coupled self-consistently to the 0D TQ simulations of
the INDEX code. In our simulations, the Fokker-Planck
code is used to follow the distribution function of hot elec-
tron (he) populations. The relativistic Fokker-Planck equa-
tion in the high-velocity limit [Eq. (25)] is replaced by its
weak relativistic form of Ref. [62] to include the finite tem-
perature effect. Note that the finite temperature correc-
tion, namely, O(ε) terms in Eq. (5) of Ref. [62], is included
only for describing collisions with hot and cold electrons,
whereas we still apply the high-velocity limit to the friction
coefficients due to ions and bounded electrons.

In simulations, the Fokker-Planck code and the TQ
model are solved self-consistently without assuming any
scale separation, where the friction coefficients in the
Fokker-Planck equations are updated with time, following
the density and temperature evolutions obtained by the TQ
model. To take into account the evolution of hot-electron
densities nhe, the source term based on Eq. (46) has been
implemented to Eq. (25) as

τ0
∂ f
∂t
+ Êb · ∇q f = C( f ) +Cs( f ) +CB( f )

+
d ln nhe

dt
fM, (52)

where fM(v) = nhe/(π3/2v3
T) exp[−(v/vT)3] represents a

maxwellian distribution function with the thermal ve-
locity vT =

√
2The/me. Using the time dependent solu-

tions of Eq. (52), the hot-tail seed current is evaluated as
jhot−tail
seed =

∫
q>qc

d3qcq‖ f (q, θ)/γ, where qc =
√
γ2

c − 1 de-
notes the critical momentum. The electric field that ac-
celerates electrons is evaluated self-consistently from the
Ohm’s law, E‖ = η( j‖ − jRE), where we assume that the
density of runaway electrons is much lower than that of
Maxwellian electrons, so that the heating of background
electrons by the RE component has been neglected. Note
that in out TQ model, the energy exchange between hot and
cold (Maxwellian) electrons has already been retained by
Eqs. (48) and (49). In Fig. 16, the formation of the beam-
like runaway distribution function during TQ has been il-
lustrated. The physics behind the transformation from the
nearly isotropic distribution to the beam-like distribution
has been discussed in Ref. [18]. Figure 17 illustrates the
dependence of hot-tail seed currents on the injected argon
density for seven different pre-TQ temperature in the range
from 2 keV to 8 keV, where the instantaneous deposition
of impurities is assumed with τsource = 0.01 ms. Including

1403032-17



Plasma and Fusion Research: Regular Articles Volume 12, 1403032 (2017)

Fig. 16 Formation of beam-like distribution function during TQ
(the contour in the space of normalized momentum q vs.
the pitch angle θ). The simulation parameters are j =
0.75 MA/m2, T (pre)

he = TH = 4 keV, Δn0
Ar = 1 × 1020/m3,

and τsource = 0.05 ms.

a non-monotonic dependence on the pre-TQ temperature,
being significant around 2 keV, the simulation results of
Fig. 17 have well reproduced a quantitative trends that is
observed in Fig. 5 (a) of Ref. [18].

In comparison to the previous work [18], solving the
rate equation is computationally demanding but detailed
history of the impurity ionization can be retained in our
simulations. In Fig. 18, the hot-tail generation is simulated
for five different values (0.01, 0.03, 0.1, 0.3, and 1 ms) of
the deposition time τsource of impurity neutrals. Due to the
complicated electron temperature dependence of radiation
and ionization, the evolution of the electron temperature
and the runaway seed current exhibit no simple depen-
dence on the initial conditions. Here we observe a counter-
intuitive example in Fig. 18 (b) where the smaller amount
of hot-tail seeds are obtained with the fast deposition of
impurity neutrals for τsource = 0.03 and 0.01 ms than in
the case of the slow deposition, τsource = 0.1 ms. The cal-
culated jhot−tail

seed is summarized in Fig. 19 as a function of
τsource for the different pre-TQ temperature (2, 4, 8 keV)
and the injected argon density (6 × 1019, 1 × 1020/m3). To
verify the simulation results, we have also applied Eqs. (5)
and (19) of Ref. [14] as the model equation for analytically

Fig. 17 Dependence of hot-tail seed currents calculated by the
Fokker-Planck code on the injected argon density Δn0

Ar
with the current density j0 = 0.75 MA/m2 and the im-
purity deposition time τsource = 0.01 ms.

evaluating jhot−tail
seed . We have confirmed that a qualitative

trend can also be captured by the analytic model. The
range of τsource considered here corresponds — in the case
of the pellet injection — to the order of the pellet ab-
lation time rpel/Vpel � 10−5 s and to the lifetime of the
pellet a/Vpel � 10−3, where rpel is the pellet radius, a is
the plasma minor radius, and Vpel is the pellet velocity.
In Fig. 19, we have also indicated the values of the elec-
tron collision time calculated for bulk (v = vth) and hot
(v = 3vth) electrons by the triangles on the top and bottom
axis. As we expect, the simulation results have shown that
when the impurities are slowly deposited on the timescale
comparable or slower than the hot-electron collision time
(the triangles on the bottom axis), the amount of hot-tail
seed currents tends to be smaller by up to the orders of the
magnitude. Such a ‘slow’ injection would be a promising
way to mitigate the production of hot-tail seeds. For the de-
position on the shorter timescale, conversely, we observe
that the production of hot-tail seeds becomes significant
and the dependence on the pre-TQ temperature and the in-
jected argon density appears to be non-monotonic. The
seed current can be comparable at maximum to the pre-
disruption plasma current (in this case, j‖ = 0.75 MA/m2),
the mechanism being called as the prompt conversion [18].
As a whole, our simulation has shown that the deposition
timescale of seed currents is a main factor affecting the
hot-tail seed generation, and the dependence of hot-tail
seeds on the pre-TQ temperature and the injected argon
density exhibits a non-monotonic character, depending on
detailed history of the atomic processes during the radia-
tive cooling.
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Fig. 18 Time history of the electron temperature (top) and the hot-tail current (bottom) for five different impurity deposition times (1,
0.3, 0.1, 0.03, and 0.01 ms) with j = 0.75 MA/m2 and Δn0

Ar = 1 × 1020/m3: (a) T pre
he = 2 keV, (b) 4 keV, and (c) 8 keV.

Fig. 19 Dependence of hot-tail seed currents calculated by the
Fokker-Planck code (solid) and the model equation by
Smith and Verwichte [14] (dashed) on the deposition
time τsource of the impurity neutrals for three different
pre-TQ temperature (2, 4, 8 keV). The injected argon
density is (a) Δn0

Ar = 1 × 1020/m3 and (b) 6 × 1019/m3.

7. Discussion and Conclusion
High impurity content is a key characteristic to un-

derstand the generation and mitigation condition of run-
away electrons. In this paper, the effects of impurities on
runaway generation in a post-disruption plasma have been
studied using a zero-dimensional disruption simulation
code INDEX. We have focused on its model verification.
In ITER, the runaway beam current should be limited less
than 2 MA [3], being less than 20% of the full plasma cur-
rent. This constraints imply that the same degree of accu-
racy is required for predictive modeling. In the present pa-
per, in addition to the implementation of a charge-resolved
expression of the Coulomb logarithm, the different models
of calculating the critical energy, the energy limit and the
avalanche growth rate have been compared quantitatively,
and self-consistent TQ simulation with the hot-tail effect
has been developed.

For verifying the calculated avalanche growth rate, we
have applied numerical solutions of the adjoint Fokker-
Planck equation, which shows that (1) the Fokker-
Planck code well reproduces the strong electric field limit
(E/Ec � 1) of the R-P model and its Z dependence; (2) for
the intermediate electric field region (E/Ec � 10) between
the sustainment field and the strong electric field limit, fa-
vorable effects of second-order collisional diffusion, being
retained in the A-B model, are canceled by the relaxation
of runaway condition due to its probabilistic nature [53].
Consequently, the avalanche growth rate exceeds the R-P
model and becomes close to the prediction by the MP
model. Our results are consistent with Fig. 6 of Ref. [29],
showing that the lower critical electric field at low radia-
tion and high Z condition that those obtained from the A-B
model. Such modeling accuracies including the cancella-
tion of the collisional diffusion have been shown to become
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important for lower normalized electric fields, thus being
useful for the quantification of runaway mitigation. As
a possible expression that covers arbitrary electric fields,
the combined expression that smoothly connects the MP
model with the strong electric field limit of the R-P model
has been applied to the INDEX code.

Using the developed 0D simulation, we have stud-
ied the impurity density required for the onset of strong
avalanche amplification. With the aid of the power balance
analysis, we have characterized the threshold density sepa-
rating two distinct regions with weak and strong avalanche
growth rates. Just above the onset density, the electric field
reaches the level of strong electric field limit of the R-P
model, E‖/E∗c � 102, therefore, the corresponding Z de-
pendence of the R-P model being dominant for RE pro-
duction. The threshold density depends on the impurity
species and weakly on the current density. The seed cur-
rent itself does not affect the threshold while once the im-
purity content exceeds the threshold, the net RE produc-
tion is varied with the seed current on a logarithmic scale.
The deuterium mixing is an effective way to decrease the
normalized electric field and increases the critical energy
required for runaways. Concerning the dependence on the
impurity species, the lower threshold density of Ar and Ne
is consistent with the RE production experiments using Ne
and Ar pellets in JT-60U [63] and DIII-D [64]. For noble
gas species, the avalanche growth rates becomes decreas-
ing with the impurity density above 1020 - 1021/m3, which
is a density range relevant to the massive gas injection (see,
Fig. 14 of Ref. [64]). The comparison between Be and C
has indicated that the lower threshold density and higher
maximum current for C are correlated to the easier produc-
tion of runaway electrons with carbon wall and are consis-
tent to the comparison between the JET-C and JET-ILW
experiments [8].

The above analysis based on given seed currents must
be complemented by the self-consistent evaluation of the
seed currents. For this purpose, the 0D TQ simulation has
been developed for the INDEX code, which is coupled to
the relativistic Fokker-Planck code in the weak relativistic
form including the friction coefficients due to cold elec-
trons and partially stripped ions. A two-temperature elec-
tron model is considered to account for the drag force due
to cold electrons produced by ionization of the impurity
neutrals. In comparison to the previous work [18], solv-
ing the rate equation is computationally demanding but de-
tailed history of the electron cooling, resulting from the
ionization, recombination, and radiation processes, can be
taken into account. The deposition timescale of impu-
rity neutrals is shown to be a main factor affecting hot-
tail seeds, which depend non-monotonically on the pre-TQ
temperature and the injected impurity density. Concerning
the mitigation of hot-tail seeds, it is clear that ‘slow’ injec-
tion on the order of hot-electron collision time is useful to
mitigate the hot-tail formation.

In future, further extension of the INDEX code, par-

ticularly, to include 1D profiles is an important step for its
application to the runaway mitigation scenario. For this
purpose, the coupling of the impurity model developed
here to the reduced MHD code [65] will be reported. In
such simulations, the interplay with impurity injection
process [66–68] and the magnetohydrodynamic (MHD)
modes [69,70] would be important. Additionally, although
this work simply assumes that the RE distribution func-
tion is identical to monoenergetic one at the energy limit,
full kinetic simulations are available in the present frame-
work that couples the initial-value Fokker-Planck code and
TQ/CQ simulations. Such simulations improve the predic-
tion of avalanche growth rate near the sustainment fields,
and are useful for the direct comparison of the runaway dis-
tribution function with the experimental observation [71].
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