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We have extended “numerical matching method” to weakly nonlinear regime, which is relevant for the
Rutherford regime of magnetic island evolution in normal magnetic shear plasmas as well as for reversed mag-
netic shear plasmas to which the Rutherford theory does not apply. The numerical matching method was devel-
oped for linear stability analyses of resistive magnetohydrodynamics (MHD) modes by utilizing an inner region
with a finite width, that removes difficulties inherent in its numerical applications of the traditional matched
asymptotic expansion. The extended method is applied to low-beta reduced MHD simulations of magnetic is-
land evolution in cylindrical plasmas with normal and reversed magnetic shear profiles. The numerical results
agree well with fully nonlinear simulation without using the matching method from the linear to weakly nonlinear
regimes continuously. Since the nonlinear equation is solved only in the inner region of a finite width, the compu-
tational cost is reduced, which enables us to include more detailed physics effects. Our extended method therefore
makes a significant contribution in the MHD analysis of magnetic island evolution beyond the restriction in the
conventional Rutherford theory.
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1. Introduction
The theory of matched asymptotic expansion for lin-

earized resistive magnetohydrodynamics (MHD) is well
established [1]. After ten years of this pioneering work,
the theory was extended to nonlinear regime [2]. Since
then many applications of the Rutherford equation [2] have
made much progress in fusion research, especially in the
neoclassical tearing mode (NTM) studies [3–5]. Besides
many numerical studies performed, the theoretical frame-
work has been always based on the Rutherford equation
essentially.

We have recently developed a new framework for the
linear stability analyses of resistive MHD modes, i.e. the
numerical matching method [6–8]. This method utilizes a
finite-width inner region around a resonant surface, where
the resistive MHD is solved, instead of an infinitely thin
inner layer as in the traditional matched asymptotic expan-
sion. The reason why we adopt a finite-width inner region
is because it can remove difficulties inherent in numerical
applications of the matched asymptotic expansion. For ex-
ample, it is not easy to precisely compute the ratio of the
diverging big to small solutions around the resonant sur-
face numerically, which is required for the matched asymp-
totic expansion, although sophisticated theories have been
developed [9–12]. By using the inner region with a fi-
nite width, we do not need to compute the ratio of the
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big to small solutions for the matching. Instead, we need
an appropriate boundary condition for the direct matching
across the interfaces between the outer and inner regions.
In [6], we developed such a boundary condition for the re-
duced MHD [13, 14]. The important point is to impose a
boundary condition such that the electric field along the
magnetic field smoothly disappears as approaching from
inner to outer regions. We developed both an eigenvalue
and an initial-value approaches. In [7], another boundary
condition was developed, which enables us to include in-
ertia correction perturbatively to the outer solutions. Then
the stability analysis of high beta plasmas has become pos-
sible even if the plasma is close to its marginal stability.
The diamagnetic drift effect was also taken into account
by the inclusion of the inertia correction to the outer solu-
tion [8].

In this paper, we extend the initial-value approach
of the numerical matching method to weakly nonlinear
regime. Namely, the nonlinear evolution equation is solved
in the finite-width inner region, while the inertia-less lin-
earized ideal MHD equation, or the Newcomb equation
[15], is solved in the outer region. Then the solutions are
matched at the interfaces between the outer and inner re-
gions. This is the situation assumed in the Rutherford the-
ory [2]. In Sec. 2, we firstly explain the setting of the prob-
lem. The low-beta reduced MHD [13] is adopted for cylin-
drical plasmas in this paper. We then develop the solution
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method for both the inner and outer regions as well as the
matching condition. In Sec. 3, we show numerical results
by the developed method. The first one is the Rutherford
regime of magnetic island evolution in a normal magnetic
shear plasma, while the second one is the nonlinear evolu-
tion of double tearing mode in a reversed magnetic shear
plasma. Both results agree well with fully nonlinear simu-
lation without the matching method. In Sec. 4, we discuss
four topics; namely, the importance of equilibrium com-
ponents in the numerical results, the reduction of compu-
tational cost, the significance of the application to the re-
versed magnetic shear cases, and possible application to
the high-beta toroidal plasmas. Then conclusions are given
in Sec. 5.

2. Theory
2.1 Setting

In this study, we adopt the low-beta reduced MHD
[13] in the cylindrical geometry as the simplest situation
for demonstrating the principal ideas of our method. Let
us consider a cylindrical plasma with minor radius a and
length 2πR0. The cylindrical coordinates are (r, θ, z). A
toroidal angle ζ := z/R0 is also used instead of the axial co-
ordinate z. The inverse aspect ratio is given by ε := a/R0.
Physical quantities are normalized by the length a, the
magnetic field in the z-direction B0, the Alfvén velocity
vA := B0/

√
μ0ρ0 with μ0 and ρ0 being vacuum permeabil-

ity and typical mass density, respectively, and the Alfvén
time τA := a/vA. Then the low-beta reduced MHD equa-
tions are

∂U
∂t
= [U, ϕ] + [ψ, J] − ε∂J

∂ζ
, (1)

∂ψ

∂t
= [ψ, ϕ] − ε∂ϕ

∂ζ
+ ηJ. (2)

Here, the fluid velocity is given by u = ẑ × ∇ϕ, and the
magnetic field by B = ẑ + ∇ψ × ẑ. The unit vector in the z
direction is denoted as ẑ. The vorticity in the z direction is
U := �⊥ϕ, where �⊥ is the Laplacian in the r–θ plane. The
current density in the z direction multiplied by a negative
sign is given by J := �⊥ψ. The Poisson bracket for two
functions f and g is defined by [ f , g] := ẑ · ∇ f × ∇g. The
inverse of the Lundquist number is denoted by η. Equa-
tion (1) is the vorticity equation, and Eq. (2) is the parallel
Ohm’s law.

Let us write the vector of the fields as u(x, t) :=
(ϕ(x, t), ψ(x, t))T, and let us assume u = u0(x) + u1(x, t)
with u0 = (0, ψ0(r))T and u1 = (ϕ1(x, t), ψ1(x, t))T.
Namely, the equilibrium is cylindrically symmetric, and
has no plasma rotation. The time-dependent part u1 is not
necessarily small. Then the governing Eqs. (1) and (2) can
be written in the following form:

M∂u1

∂t
= Lu1 + N(u1), (3)

where the explicit expressions for the the linear operators

M and L, and the nonlinear term N(u1) are

M =
( �⊥ 0

0 1

)
, (4)

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

[
ψ0,�⊥ ] − [J0, ] − ε∂(�⊥ )

∂ζ[
ψ0,

] − ε ∂
∂ζ

η�⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(5)

N(u1) =

( [
U1, ϕ1

]
+

[
ψ1, J1

]
[
ψ1, ϕ1

]
)
. (6)

We set an inner region at rL < r < rR, which covers
resonant surfaces of the mode under consideration. The
outer region is the complement of the union of the in-
ner region and the boundaries, given by 0 ≤ r < rL and
rR < r < 1. Thus the interfaces are r = rR and r = rL.
Extensions to multiple inner regions would be straightfor-
ward.

2.2 Outer region
In the outer region, we solve the inertia-less, lin-

earized ideal MHD equation or the Newcomb equation,
which is given by the first row of Lu1 = 0. Since the ge-
ometry is cylindrical, we decompose the fields in a Fourier
series as

u1 =
∑
m,n

umn(r, t)ei (mθ−nζ)

=
∑
m,n

(
ϕ̃mn(r, t)
ψ̃mn(r, t)

)
ei (mθ−nζ), (7)

where m and n are poloidal and toroidal mode numbers,
respectively. The Newcomb equation is given by

Nψ̃mn :=

{
1
r
∂

∂r

(
r
∂

∂r

)
−

(m
r

)2
}
ψ̃mn +

mJ′0(r)

rk‖
ψ̃mn

= 0, (8)

where N is the Newcomb operator and

k‖(r) := εm

(
1
q
− n

m

)
. (9)

The prime denotes r derivative, and the safety factor is
given by q(r) = −εr/ψ′0(r). Equation (8) is the second-
order, linear ordinary differential equation for ψ̃mn, and can
be solved independently for each pair of m and n. The solu-
tion can be expressed as a linear combination of two inde-
pendent solutions. Let us construct the solution by Green’s
functions defined by

NGψ
out,mn,p(r) = 0,

Gψ
out,mn,p(rq) = δpq, p, q = L or R. (10)

Namely, the amplitude of Gψ
out,mn,p(r) is unity at r = rp, and

is zero at the other side of the outer region. If one of the
boundaries is the magnetic axis, the regularity condition
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is imposed and thus one of the two independent solutions
drops. At the plasma edge, we assume the fixed-boundary
condition that also drops one of the two independent so-
lutions. These are similarly imposed even if the magnetic
axis or the plasma edge is in the inner regions. Now we
express the outer solution as

ψ̃mn(r, t) =
∑

p=L,R

ψ̃mn,p(t)Gψ
out,mn,p(r). (11)

We have included time dependence in the coefficients
ψ̃mn,p(t), which must be slow. From the outer region itself,
there is no way to determine ψ̃mn,p(t). It will be determined
through the matching condition with the inner solution in
Sec. 2.4.

2.3 Inner region
In the inner region, we solve the nonlinear evolution

Eq. (3). Let us discretize time with a constant interval h,
and denote the discrete time as ti with i being an index.
Similarly, we write ui := u(ti). If we adopt the Kth-order
Adams–Moulton method (K = 1, 2, · · · ), an unknown ui+1

is calculated by

Mui+1 =Mui + h
1∑

k=2−K

ck

(
Lui+k + N(ui+k)

)
, (12)

where cks are known constants. For example, c1 = 1 for
K = 1, which is the simplest implicit method as developed
in [6]. It is extended to higher orders K ≥ 2 here. For
K = 2, c0 = c1 =

1
2 . The constants for K ≥ 3 are found in

standard textbooks.
We rewrite Eq. (12) by moving the term linear in ui+1

to the left-hand side and by separating out the nonlinear
term of ui+1 from the summation as

(M− c1hL) ui+1 =Mui

+ h
0∑

k=2−K

ck

(
Lui+k + N(ui+k)

)
+ c1hN(ui+1). (13)

Then the last nonlinear term is unknown, while the remain-
ings on the right-hand side are known. Thus we need an
iteration for the last term to solve this equation. Therefore
we introduce the following expression for the inner solu-
tion

u
i+ j

J
mn (r) =

∑
p=L,R

ψ̃
i+ j

J
mn,pGin,mn,p(r) + H

i+ j
J

in,mn(r),

j = 0, 1, · · · , J, (14)

where J is the maximum number of the iteration, and we

assume that u
i+ j

J
mn (r) becomes sufficiently close to u

i+ j−1
J

mn (r)
when j = J. The Green’s functions Gin,mn,p(r) =
(Gϕ

in,mn,p(r),Gψ
in,mn,p(r))T is given by

(M− c1hL) Gin,mn,p(r) = 0,

Gψ
in,mn,p(rq) = δpq, p, q = L or R. (15)

The boundary condition for the ϕ component of the
Green’s function, Gϕ

in,mn,p(r), was developed in [6], and
is given such that the parallel electric field disappears
smoothly as approaching from the inner to the outer re-
gions. We need to calculate these Green’s functions only
once at the beginning of the simulation becauseM and L
do not change during the time evolution. Also the inho-

mogeneous solution H
i+ j

J

in,mn(r) = (H
ϕ,i+ j

J

in,mn (r),H
ψ,i+ j

J

in,mn (r))T is
obtained by solving

(M− c1hL) H
i+ j

J

in,mn(r) =Mui
mn(r)

+ h
0∑

k=2−K

ck

(
Lui+k

mn + Nmn(ui+k)
)
+ c1hNmn(ui+ j−1

J ),

H
ψ,i+ j

J

in,mn (rp) = 0, p = L and R, (16)

for j = 1, · · · , J, where Nmn is the Fourier coefficient

of N(u). The boundary condition for H
ϕ,i+ j

J

in,mn is again the
smooth disappearance of parallel electric field, as same as
the Green’s functions. The iteration must be performed to-

gether with the determination of the amplitudes ψ̃
i+ j

J
mn,p de-

scribed in the next subsection.

2.4 Matching condition
In the numerical matching method, we impose conti-

nuity of ψ and its radial derivatives at the interfaces. First

let us take ψ̃mn,p(t) in the outer region equal to ψ̃
i+ j

J
mn,q appear-

ing in the inner solution (14). Then ψ becomes continuous
at the interfaces. Note that p in the outer region and q in
the inner region should be understood to express the same
radial location. The remaining condition is the continuity
of ∂ψ/∂r at the interfaces, which is given by

∑
p=L,R

ψ̃
i+ j

J
mn,p(Gψ

in,mn,p)′(rq) + (H
ψ,i+ j

J

in,mn )′(rq)

=
∑

p=L,R

ψ̃
i+ j

J
mn,p(Gψ

out,mn,p)′(rq), q = L or R, (17)

for each pair of m and n. By solving Eq. (17), we obtain

ψ̃
i+ j

J
mn,p. Then we can evaluate the last term of Eq. (14) for

the next iteration.

3. Numerical Results
Here we show two kinds of simulation results of mag-

netic island evolution. The first one is the Rutherford
regime of magnetic island evolution in a normal magnetic
shear plasma. The second one is the nonlinear evolution
of the double tearing mode in a reversed magnetic shear
plasma.

3.1 Normal magnetic shear plasma
In this subsection, we take the equilibrium safety fac-

tor profile as
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Fig. 1 q profiles used in the numerical demonstrations.

q(r) =
q0

1 − r2

2

, (18)

with q0 = 1.75. Then the q = 2 surface exists at r = 0.5.
The q profile is shown as “normal” in Fig. 1. The other
profile will be used in the next subsection. The m = 2 and
n = 1 tearing mode is linearly unstable in this equilibrium;
the tearing mode parameter Δ′m/n=2/1 � 22.4. The resistiv-
ity was chosen to be η = 10−6. Then the linear growth rate
is 2.87 × 10−4 according to the corresponding eigenvalue
problem.

In the present study, we only include Fourier com-
ponents which are resonant at the q = 2 surface in the
simulations, i.e., a mode family of m = 2 and n = 

with  = 1, 2, · · · , L. The maximum number L is chosen
to be sufficiently large so that the simulation result does
not change much even when L is further increased. For
the results shown below, we took L = 5. The m = 0
and n = 0 components are not included in the numerical
matching. Thus the equilibrium does not change during the
simulation, which is similar to the situation of the Ruther-
ford theory. We also performed fully nonlinear simulations
without using the numerical matching for comparison. The
m = 0 and n = 0 components are included for those sim-
ulations. In the radial direction, we used the second-order
finite difference method. The whole radial domain is di-
vided into a hundred intervals with equal distance in this
study. A mesh accumulation is of course possible in prin-
ciple, or it would be better to do so, in order to increase
the resolution inside the inner region. The time integration
was performed by the first-order implicit method. The time
interval was h = 0.01.

Figure 2 shows the time evolution of (a) the kinetic
energy Ek and (b) the magnetic energy Em of the m = 2
and n = 1 component. Similarly, (c) and (d) show those of
the m = 4 and n = 2 component, and (e) and (f) the m = 6
and n = 3 component, respectively. Note that the linear
eigenmode was used as the initial condition for m = 2
and n = 1, and that other components were taken to be

zero. In the figure, “num. match.” denotes our method,
and Δr := rR − rL denotes the width of the inner region.
The q = 2 surface was taken to be at the center of the
inner region, thus rL = 0.4 and rR = 0.6 for Δr = 0.2,
and rL = 0.3, rR = 0.7 for Δr = 0.4. Also, “full” de-
notes the result of the fully nonlinear simulation where the
resistive reduced MHD equation was solved in the whole
domain without the numerical matching. Especially, “full
(m/n = 0/0 unchanged)” means that the m = 0 and n = 0
components were held unchanged during the fully nonlin-
ear simulation. This situation is closer to the numerical
matching. Also the linear growth is shown in Figs. 2 (a)
and 2 (b) by the thin dashed lines. We observe that the en-
ergy of the m = 2 and n = 1 mode grows linearly at the
beginning (t � 0.3×104), which is followed by the weakly
nonlinear or the Rutherford regime. We observe excellent
agreement especially between the numerical matching re-
sult with Δr = 0.4 and the fully nonlinear simulation with
m = n = 0 mode kept unchanged even in the Rutherford
regime; those curves are overlapping each other.

On the other hand, the results by the numerical match-
ing, even with Δr = 0.4, does not agree completely with
the “full” result with m = n = 0 components being in-
cluded. This indicates that the inclusion of the m = n = 0
components are crucial for achieving quantitative accu-
racy. This requires further development of the theory.

We also observe that the numerical matching result
with Δr = 0.2 starts to deviate from the “full (m/n = 0/0
unchanged)” result around t � 104. Note that the simu-
lation with Δr = 0.2 diverged after t > 1.5 × 104. The
deviation as well as the divergence are because the linear
approximation in the outer region starts to break down as
the perturbation grows. Indeed, the matching result with
the wider inner region Δr = 0.4 agrees with the full simu-
lation result for longer time.

Figure 3 shows the time evolution of the magnetic
island width calculated by the amplitude of the m = 2
and n = 1 component of ψ. We again observe the ex-
cellent agreement between the numerical matching result
with Δr = 0.4 and the full simulation result with m = n = 0
mode kept unchanged. We also plotted a simulation result

by solving the simplest Rutherford equation
dw
dt
= ηΔ′(w).

The initial island width was taken to be the same as that
of the other simulations at t = 0.3 × 104. It is not signifi-
cantly different from our simulation results, except for the
Δr = 0.2 case, although the degree of the agreement may
depend on when we start the simulation of the Rutherford
equation.

3.2 Reversed magnetic shear plasma
In this subsection, we show one more numerical re-

sult. We take the equilibrium safety factor profile with re-
versed magnetic shear as
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Fig. 2 Time evolution of kinetic and magnetic energy of several Fourier components in the normal magnetic shear plasma. “num. match.”
denotes our matching method, “full” is the nonlinear simulation in the whole domain without the matching, and “(m/n = 0/0
unchanged)” means that the m = n = 0 components are kept unchanged in the “full” nonlinear simulation. Fourier components of
m = 2 and n =  with  = 1, · · · , 5 are included in the simulation, while the m = n = 0 components are included only in “full”.
For “num. match.”, Δr means the inner-region width. The matching results, especially with Δr = 0.4, agree quite well with the
full simulation with m = n = 0 components kept unchanged for longer time. The linear approximation in the outer region starts to
break down for Δr = 0.2 at t >∼ 104, leading to the deviation from “full”.

q(r) = qmin

⎡⎢⎢⎢⎢⎢⎣(α − 1)

(
r

rmin

)4

− 2(α − 1)

(
r

rmin

)2

+ α

⎤⎥⎥⎥⎥⎥⎦ ,
(19)

with qmin = 1.95, rmin = 0.6 and α = 3. The q profile
is plotted as “reversed” in Fig. 1. There exist two q = 2

surfaces around r = 0.6. This equilibrium is linearly un-
stable against the m = 2 and n = 1 double tearing mode.
The resistivity was chosen to be η = 10−6. Then the linear
growth rate is 1.65 × 10−3 according to the corresponding
eigenvalue problem. Other parameters for the simulation
are the same as in Sec. 3.1 except for the number of the ra-
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Fig. 3 Time evolution of the magnetic island width. The keys
are the same as in Fig. 2. The island width is calcu-
lated from the amplitude of the m/n = 2/1 component
of ψ. Furthermore, numerical solution of the Rutherford
equation is also plotted. After the initial linear growth
(t � 0.3 × 104), the time evolution enters the Rutherford
regime. We observe the good agreement as in the time
evolution of energy in Fig. 2.

dial grids; We took two hundred grids with equal spacings
in the whole minor radius of the plasma.

Figure 4 shows the time evolution of (a) the kinetic
energy Ek and (b) the magnetic energy Em of the m = 2
and n = 1 component, (c) and (d) those of the m = 4
and n = 2 component, and (e) and (f) those of the m = 6
and n = 3 component, respectively. Because the q = 2
surfaces exist near the qmin surface at r = 0.6, we took the
inner region as rL = 0.5 and rR = 0.7 for Δr = 0.2, and
rL = 0.4, rR = 0.8 for Δr = 0.4. We observe the good
agreement especially between the result of the numerical
matching with Δr = 0.4 and the full simulation with m =
n = 0 components kept unchanged. The simulation by
the numerical matching method with Δr = 0.2 diverged
because of the same reason as in Fig. 2.

4. Discussion
In this section, let us discuss four topics. The first one

is the difference concerning the m = n = 0 components be-
tween the normal and reversed magnetic shear cases shown
in the previous section. The second one is the reduction of
the computational cost. The third one is the significance of
the application to the reversed magnetic shear case, and the
last one is the possible application to the high-beta toroidal
plasmas.

4.1 Difference of m = n = 0 components
In this subsection, we discuss the difference concern-

ing the m = n = 0 components between the normal and re-
versed magnetic shear cases. Comparing these two cases,
the deviation from the “full” result, including m = n = 0
components, may be larger in the reversed magnetic shear
case in Fig. 4 than in the normal magnetic shear case in

Fig. 2. This is because the energy of the m = n = 0 com-
ponents is dominant in the reversed magnetic shear case,
while it is sub-dominant in the normal magnetic shear case.
Figure 5 shows the radial profiles of the real parts of the
m/n = 0/0 and 2/1 components of ψ obtained by the fully
nonlinear simulation. The imaginary parts are zero. Fig-
ures 5 (a) and 5 (b) are the normal and the reversed mag-
netic shear cases, respectively.

For the normal magnetic shear case in Fig. 5 (a), t =
5000 and 15000 are selected as typical timings. The time
evolution at t = 5000 is the beginning of the nonlinear
phase, and t = 15000 is much later. As we observe, the
m = n = 0 component is smaller than the m = 2 and n = 1
component at both timings. The energy of the m = n = 0
components is thus sub-dominant. Because the equilib-
rium m = n = 0 component does not change significantly,
the magnetic islands do not saturate even at t = 15000.

On the other hand, for the reversed magnetic shear
case shown in Fig. 5 (b), we observe that the m = n = 0
component is considerably larger than the m = 2 and n = 1
component at t = 3500 which is in the fully nonlinear
phase. In the beginning of the nonlinear phase, t = 1500,
the m = n = 0 component is smaller than the m = 2 and
n = 1 component. Thus the energy of the m = n = 0
components is dominant at t = 3500, which causes the
quasi-linear saturation of the double tearing mode in the
fully nonlinear phase.

Interestingly, the m = n = 0 component is finite within
the inner region with Δr = 0.4 in the reversed magnetic
shear case, while it is almost zero in the outer region. Be-
cause the m = n = 0 component is large in the inner re-
gion, the deviation between the numerical results with and
without the m = n = 0 component is large. However, be-
cause the m = n = 0 component is localized in the inner
region with Δr = 0.4, the quantitative accuracy can be re-
covered if the m = n = 0 component is also solved only in
the inner region of the numerical matching. The Dirichlet
boundary condition may be appropriate for the m = n = 0
component. For the normal magnetic shear case, on the
other hand, the m = n = 0 component extends to the outer
region, especially at the smaller r region. Because the am-
plitude of the m = n = 0 component is not so large, the
deviation between the numerical results with and without
the m = n = 0 component is smaller. However, we may
need to match the m = n = 0 component at the interfaces
between the outer and the inner regions for this case. The
matching of the m = n = 0 components requires further
development of the theory, which is our future issue.

4.2 Reduction of computational cost
Here we discuss the reduction of the computational

cost. Firstly, we note that we should be careful in this
comparision because the solution method is totally differ-
ent. Another point we should consider is that we adopted
the first-order implicit time-stepping method for the match-
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Fig. 4 Time evolution of kinetic and magnetic energy of several Fourier components in the reversed magnetic shear plasma. The keys
are the same as in Fig. 2. We observe quite good agreement between the numerical matching result with Δr = 0.4 and the full
simulation with m = n = 0 components kept unchanged. The simulation with Δr = 0.2 diverged because of the same reason as in
the normal magnetic shear case, i.e., the breakdown of the linear approximation of the outer solution.

ing solutions, while we used the second-order Runge-Kutta
method for the full simulation. For this point, we ex-
pect that the computational time will not change much for
the matching solution even if the second-order algorithm
is used, because the formulation is given by the Adams
method where the past data required for the next step are
stored. Then the computational time for the matching so-
lution with Δr = 0.2 was about 1/3 of the full simulation

in the numerical example shown in Sec. 3.1. It is not about
1/5 and thus a bit disappointing. If we develop a method
to gradually increase the inner region width as the mode
evolves, the computational cost, which gives satisfactory
results, will be further reduced.
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Fig. 5 Radial profiles of the real part of ψ for m/n = 0/0 and 2/1 components obtained by the fully nonlinear simulations. (a) and (b) are
the normal and the reversed magnetic shear cases, respectively.

4.3 Significance of application to reversed
magnetic shear plasmas

Let us here emphasize that our matching method ap-
plies even if the magnetic shear vanishes at the qmin sur-
face, e.g. qmin = 2 for the m = 2 and n = 1 mode. The
Rutherford theory does not apply to this situation from the
beginning. On the other hand, such a q profile can be im-
portant in advanced operations. In our previous paper, we
have proven that our method calculates the linear stability
of this particular situation correctly with no difficulty [6].
Another interesting situation is that the two resonant sur-
faces are well separated in radius. Then two separated in-
ner regions should be appropriate. Theoretically no diffi-
culty will arise since we only need to match the resonant
poloidal Fourier components. This may be different from
the case with multiple inner regions in toroidal plasmas,
which we will discuss in the next subsection.

4.4 Application to high-beta toroidal plas-
mas

In this subsection, we discuss application of our
matching method to high-beta toroidal plasmas. We have
already proven that the numerical matching method can
correctly handle the internal kink mode in a cylindrical
plasma that simulates the high-beta toroidal plasmas close
to the marginal stability [7] because the tearing mode pa-
rameter Δ′ diverges positively [16] as the internal kink
mode. In toroidal plasmas, we need to construct numer-
ically matched solutions using multiple inner regions. Al-
though a prototype of this kind of code has been developed
for the linear stability [17], where non-resonant poloidal
Fourier components were also matched, the boundary con-
dition for the non-resonant components seems to be more
improved.

5. Conclusions
We have extended the numerical matching method to

weakly nonlinear cases, which is relevant for the Ruther-
ford regime of magnetic island evolution in normal mag-
netic shear plasmas as well as for the reversed magnetic
shear plasmas to which the Rutherford theory does not ap-
ply. We presented two demonstrations of the numerical
matching method. One is the Rutherford regime of mag-
netic island evolution in a normal magnetic shear plasma,
while the other is the nonlinear evolution of double tearing
mode in a reversed magnetic shear plasma. We observed
excellent agreement between the numerical matching re-
sults and the fully nonlinear simulations with m = n = 0
components kept unchanged. On the other hand we recog-
nized the importance of the m = n = 0 components for the
quantitative accuracy. The quasi-linear saturation of the
double tearing mode in the reversed magnetic shear case
may be simulated accurately if the m = n = 0 components
are solved only in the inner region, because that compo-
nent is localized in the inner region. Generally, however,
we need further development of the theory for including
the change of the m = n = 0 components for the quantita-
tive accuracy.

Since the nonlinear equation is solved only in the inner
region, the computational cost is reduced. Therefore inclu-
sion of detailed physical effects becomes easier because
such a model requires more efficient solution method. Our
new matching method can simulate the magnetic island
evolution continuously from the linear to the weakly non-
linear phases. This cannot be done in the traditional linear
and nonlinear (Rutherford) theories based on the matched
asymptotic expansion. Furthermore, the Rutherford theory
does not apply to the reversed magnetic shear case, which
has been simulated by our matching method. Although
our method needs further theoretical development, namely
its application to the cases with multiple inner regions as
well as the mathematical relation to the matched asymp-
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totic expansion in a deeper theoretical context, our method
will aid understanding physics of MHD activities such as
NTMs, and will bring about qualitative changes in MHD
analysis of fusion plasmas.
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