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The three-dimensional (3D) electrostatic particle-in-cell (PIC) simulation code for the study of blob and
hole propagation dynamics has been developed and verified. The developed 3D-PIC code simulates the boundary
layer plasma of magnetic confinement devices, and plasma particles in the simulation systems are distributed to
form the blob or hole structures. For the verification, the theoretical blob and hole propagation speeds have been
estimated, and the observed blob and hole propagation speeds in the simulations have been compared with the
estimations. The observed relations between the propagation speed and the structure size in the blob and hole
cases are in good agreement with the theoretical relations. The 3D-PIC code has reproduced a larger distortion of
a hole shape than that of a blob shape. Furthermore, the code has shown that the propagation of a blob or a hole
is faster without end plates. Such a situation is similar to the detached state.
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1. Introduction
The blob and the hole, which are intermittent fila-

mentary coherent structures along the magnetic field line,
are universally observed in the boundary layer plasmas of
various magnetic confinement devices [1, 2]. Such struc-
tures are considered to play an important role in the ra-
dial transport in the boundary layer plasmas. The width of
such structures is considered to be in meso-scale. In other
words, the width of a small blob or a small hole is slightly
larger than the ion Larmor radius. The microscopic, that
is, the kinetic effects on blob and hole dynamics should be
investigated because of such situations. Thus, we devel-
oped the three-dimensional (3D) electrostatic particle-in-
cell (PIC) simulation code called “p3bd” (particle-in-cell
3-dimensional simulation code for boundary layer plasma
dynamics) in order to study the kinetic effects on blob dy-
namics [3–5]. Since the sheath potential in the vicinity of
the end plate or the wall is reproduced in the p3bd code,
we are able to investigate the sheath effects on blob dy-
namics by using the code. In this study, we have updated
the p3bd code in order to investigate the dynamics of hole
(holes are thought to transport impurity ions [6–8]) and we
have verified the code by comparison with the theoretical
estimation of blob and hole dynamics. In Sec. 2, we briefly
describe the simulation methodology. In Sec. 3, we derive
the theoretical estimation of blob and hole propagation dy-
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namics from the fluid model. In Sec. 4, we show the blob
and hole dynamics simulated by the p3bd code and com-
pare simulation results with the theoretical estimation. We
summarize our work in Sec. 5.

2. Particle Simulation Code
The p3bd code is the electrostatic 3D-PIC code for

the study of boundary layer plasma dynamics. In the code,
the full plasma particle (electron and ions) dynamics (in-
cluding the Larmor gyration motion) are calculated in 3D
space and 3D velocity coordinates for all particles with the
equations of motion,

dus, j
dt
=

qs

ms

[
E(xs, j) + us, j × B(xs, j)

]
, (1)

and

dxs, j

dt
= us, j, (2)

where xs, j is a position of a particle in 3D space, us, j is a 3D
velocity of a particle, the subscripts s and j represent the
species of a particle and the number of a particle, respec-
tively, qs and ms are the charge and mass of species s, and
E(xs, j) and B(xs, j) are the electric and magnetic fields on
the particle position. Here, the value of a particle position
has a real (continuous) number (not a discrete number).

As shown in Ref. [9], after particles are accelerated by
Eq. (1) and moved by Eq. (2), the charge density � on each
discrete spatial grid point is calculated from the positions
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of all particles by the charge assignment as

ns(xα,β,γ) =
∑

j

S (xs, j − xα,β,γ), (3)

and

�(xα,β,γ) =
∑

s

qs ns(xα,β,γ), (4)

in PIC simulation codes. Here, ns is the density, xα,β,γ is
the position of the grid whose numbers in the x, y, and z
directions are α, β, and γ, and S is the form-factor of the
finite-size particle. Then, the electric potential ϕ is solved
with Poisson’s equation,

∇2ϕ = − �
ε0
, (5)

by the fast Fourier transform (FFT) [10] where ε0 is the
permittivity. Here, the magnetic field is constant in time
because of the electrostatic code. After the electric field on
the discrete grid points is obtained from ϕ, the force at the
particles seen in the right hand side of Eq. (1) is calculated
from the fields on the grid points, E(xα,β,γ) and B(xα,β,γ),
by the interpolation.

Although we are able to provide an arbitrary spatial
profile for an external magnetic field B in the p3bd code, it
is assumed that B is parallel to the z direction as shown in
Fig. 1 and that the strength of B is set as

B(x) =
2LxBLx

3Lx − x
, (6)

that is, ∂B/∂x > 0, in this study. Here, Lx, Ly, and Lz are
the system size in the x, y, and z directions and BLx is the
magnetic field strength at x = Lx. Thus, the −x, y, and z
directions correspond to the radial, poloidal, and toroidal

Fig. 1 Schematic diagram of the simulation configuration. The
simulation system reproduces the boundary layer of mag-
netic confinement devices.

directions, respectively.
On the boundaries at x = 0 (corresponding to the ves-

sel wall) and both edges in the z direction (corresponding to
the end plates) displayed as shaded plates in Fig. 1, plasma
particles are absorbed and the electric potential is fixed as
ϕ = 0. In the simulations, the sheath potential is formed
self-consistently near edges in the z direction without any
artificial methods (e.g., a logical sheath) since the grid size
satisfies Δg = λD, where λD is the Debye length. Some low
energy electrons are reflected by the sheath potential and it
is observed that the net current to the sheath is nearly equal
to zero outside of the blob or the hole region. (In the higher
or lower potential side in the blob or the hole region, the net
current in the z direction becomes ∼ encs [5], where n and
cs are the plasma density and the ion acoustic speed.) On
the other hand, a periodic boundary condition is applied in
the y direction. On the plane at x = Lx, plasma particles
are reflected and the electric potential satisfies ∂ϕ/∂x = 0.

A blob or a hole is initially provided as a cylindrical
form elongated between both edges in the z direction. That
is, the electron and ion particles in a blob and in back-
ground plasma are initially distributed by

ns,init(x, y) = nsf0

[
1 + n̂b0 gx(x) gy(y)

]
, (7)

or the electron and ion particles in a hole and in back-
ground plasma are initially distributed by

ns,init(x, y) = nsf0

[
1 − n̂b0 gx(x) gy(y)

]
, (8)

where nsf0 is the initial density of background plasma
which satisfies

∑
s

qsnsf0 = 0, (9)

n̂b0 is the ratio between the initial density amplitude of the
blob or the hole and background plasma density, gx and gy
are defined by

gx(x) = exp

⎛⎜⎜⎜⎜⎝− (x − xb0)2

2δ2bx

⎞⎟⎟⎟⎟⎠ , (10)

and

gy(y) = exp

⎛⎜⎜⎜⎜⎜⎝− (y − yb0)2

2δ2by

⎞⎟⎟⎟⎟⎟⎠ , (11)

respectively. (xb0, yb0) is the initial position of the center of
a blob or a hole, and δbx and δby are the blob or hole widths
in the x and y directions. Equations (7), (8), (10), and (11)
show that the blob or the hole is initially located along the
ambient magnetic field around (xb0, yb0).

In the blob case, the p3bd code first distributes the par-
ticles of background plasma uniformly in the 3D space by
using random numbers. Secondly, the particles of a blob
are distributed by using random numbers and the inver-
sions of the one-dimensional (1D) cumulative distribution
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functions, where the 1D cumulative distribution functions
are given by

Gbx(x) =

∫ x

0
gx(x̃) dx̃

∫ Lx

0
gx(x̃) dx̃

, (12)

and

Gby(y) =

∫ y

0
gy(ỹ) dỹ

∫ Ly

0
gy(ỹ) dỹ

. (13)

In the hole case, we cannot apply the same method
as that in the blob case, i.e., using the 1D cumulative dis-
tribution functions, because the density profiles as a dug
hole cannot be given by superimposing the inversions of
the 1D cumulative distribution functions. Thus, we have
developed a new method which uses the two-dimensional
(2D) cumulative distribution function. The initial density
equation, Eq. (8), is separated into

ns,init1 = nsf0(1 − n̂b0), (14)

and

ns,init2(x, y) = nsf0 n̂b0

[
1 − gx(x) gy(y)

]
. (15)

The code first distributes the particles of the first part de-
scribed by Eq. (14) uniformly in the 3D space by using
random numbers. Secondly, the particles of the second
part described by Eq. (15) are distributed by using random
numbers and the inversion of the 2D cumulative distribu-
tion function, where the 2D cumulative distribution func-
tion is given by

Gh(x, y) =

∫ y

0

∫ x

0
[1 − gx(x̃) gy(ỹ)] dx̃ dỹ

∫ Ly

0

∫ Lx

0
[1 − gx(x̃) gy(ỹ)] dx̃ dỹ

. (16)

Actually, the code calculates the 2D cumulative distribu-
tion function by

Gh(i) =

i∑
j=1

[1 − gx(x̃ j) gy(ỹ j)] Δx Δy

Mx My∑
j=1

[1 − gx(x̃ j) gy(ỹ j)] Δx Δy

, (17)

where

x j = Δx [ j − Mx int( j/Mx) − 0.5], (18)

y j = Δy [int( j/Mx) + 0.5], (19)

i and j are integer numbers, and Mx and My are also the
integer numbers defined by Mx = Lx/Δx and My = Ly/Δy.
Since Eqs. (17)–(19) provide the discrete positions in the
y direction to particles, the positions in the y direction are
obtained from the discrete positions given by Eqs. (17)–
(19) by the linear interpolation and random numbers.

The simulation system of the p3bd code does not have

particle and heat sources. Although the density distribu-
tion does not satisfy equilibrium with the magnetic field as
seen in Eqs. (6), (7), and (8) and the temporal evolution of
the magnetic field is not solved, as mentioned above, such
assumptions are appropriate in the low beta limit.

3. Blob and Hole Dynamics
We now consider the theoretical estimation of blob

and hole propagation dynamics on the basis of the simple
fluid model. The blob and hole dynamics are described by
the equation for the charge conservation [1],

∇⊥ · j⊥ + ∇‖ j‖ = 0, (20)

where j⊥ and j‖ are the currents perpendicular and parallel
to the magnetic field. The perpendicular current, j⊥, in-
cludes the currents caused by the polarization and grad-B
drifts, i.e.,

j⊥ = jp + jg, (21)

where the polarization drift current and the grad-B drift
current are given by

jp = −
⎛⎜⎜⎜⎜⎜⎝
∑

s

nsms

⎞⎟⎟⎟⎟⎟⎠ 1
B2

D(∇⊥φ)
Dt

, (22)

and

jg =

⎛⎜⎜⎜⎜⎜⎝
∑

s

nsTs

⎞⎟⎟⎟⎟⎟⎠ 1
B2

∂B
∂x
y

y
, (23)

respectively. Here, D/Dt represents the Lagrangian deriva-
tive defined by ∂/∂t+uE×B ·∇, uE×B is the E×B drift veloc-
ity, Ts is the initial temperature, and we assume that B is
parallel to the z direction and that B (= |B|) depends upon
only x.

3.1 Sheath-limited case
In the case where the parallel current, j‖, is limited by

the sheath formed on the end plates, the divergence of the
parallel current is given by the following equation [11],

∇‖ j‖ = j‖,Lz − j‖,0
Lz

=
2 j‖,Lz

Lz

=
2
Lz

⎡⎢⎢⎢⎢⎢⎣
∑

s

qs ns,Lz vzs,Lz

⎤⎥⎥⎥⎥⎥⎦
=

2 nem e csi

Lz

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝
∑

l

nlm

nem

ql

e
csl

csi

√
1 +

Tl

Te

⎞⎟⎟⎟⎟⎟⎠
−

√
mi

2πme
exp

(
−eφ

Te

)]
, (24)

where j‖,0 and j‖,Lz are the parallel currents at z = 0 and
Lz, i.e., at both end plates, ns,Lz and vzs,Lz are the density
and the parallel flow velocity at z = Lz, nsm is the den-
sity of the main plasma not including the sheath, e is the
elementary charge, csl is the ion acoustic speed given by
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csl = (Te/ml)1/2, φ is the electric potential in the main
plasma, and the subscripts e, i, and l represent the elec-
tron, the major ion, and a species of ions (including the
major ion), respectively. In the derivation of Eq. (24), we
assume that qe = −e and use the relations, nl,Lz = nlm,
vzl,Lz = csl (1 + Tl/Te)1/2, ne,Lz = nem exp(−eφ/Te), and
vze,Lz = vTe/

√
2π, where vTs is the initial thermal velocity.

Using Eqs. (22)–(24) and assuming that D/Dt = 0 and
that nlm = nem(nlf0/nef0), Eq. (20) becomes

csi

⎛⎜⎜⎜⎜⎜⎝1 +
∑

l

nlf0

nef0

Tl

Te

⎞⎟⎟⎟⎟⎟⎠ mi

B2

∂B
∂x
∂(ln nem)
∂y

+
2 e
Lz

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝
∑

l

nlf0

nef0

ql

e
csl

csi

√
1 +

Tl

Te

⎞⎟⎟⎟⎟⎟⎠
−

√
mi

2πme
exp

(
−eφ

Te

)]
= 0, (25)

where nsm is substituted for ns in Eq. (23). Since the prop-
agation speed of a blob or a hole is given by the x compo-
nent of uE×B, that is, −(∂φ/∂y)/B, the derivative of Eq. (25)
regarding y provides the propagation speed vb as

vb
csi
=

1
2

Ash Lz ρ
2
si

B2
Lx

B3

∂B
∂x
∂2(ln nem)
∂y2

, (26)

where Ash and ρsi are defined by

Ash =
q2

i

e2

⎛⎜⎜⎜⎜⎜⎝1 +
∑

l

nlf0

nef0

Tl

Te

⎞⎟⎟⎟⎟⎟⎠
√

2πme

mi
exp

(
eφ
Te

)
, (27)

and ρsi = csi/Ωi, respectively, and Ωi is the cyclotron fre-
quency of the major ion at x = Lx.

Substituting Eqs. (6) and (7) for B and nem in Eq. (26),
respectively, we obtain vb in this study as

vb
csi
= −Ash Lz

8Lx

(
3 − x

Lx

) (
1 − nef0

ne,init(x, y)

)

×
⎡⎢⎢⎢⎢⎢⎣1 − nef0

ne,init(x, y)
(y − yb0)2

δ2by

⎤⎥⎥⎥⎥⎥⎦ ρ
2
si

δ2by
. (28)

(Even if we substitute Eq. (8) for nem, Eq. (28) is derived.
That is, vb for the hole case is given by the same equation
as that for the blob case.) Equation (28) indicates that a
blob or a hole propagates in the ∓∇B direction and that
the propagation speed is proportional to δ−2

by . Furthermore,
it is obvious that the shear term in Eq. (28), i.e., the term
including (y − yb0)2, will become larger in the hole case
than the shear term in the blob case because n̂b0 < 1 in the
hole case although n̂b0 is not restricted in the blob case [6].

3.2 Periodic boundary case
In this section, we now consider the case without the

end plates, that is, with the periodic boundary condition
applied in the z direction. This situation is called the “in-
ertial” case in previous papers [1] because the dynamics
are determined by the inertial term in the model equation
rather than by the sheath term. In this case, the divergence
of the parallel current is given by

∇‖ j‖ = 0, (29)

with the assumption that the dynamics are independent of
z. Therefore, Eq. (20) becomes

B
B
·
[

D
Dt

(∇⊥ × uE×B)

]
= Apr c2

si
∂(ln B)
∂x

∂(ln ne)
∂y

, (30)

where the Boussinesq approximation is used. It is assumed
that nl = ne(nlf0/nef0). Apr is defined by

Apr =

1 +
∑

l

nlf0

nef0

Tl

Te∑
s

nsf0

nef0

ms

mi

. (31)

Furthermore, we use the electron continuity equation,

Dne

Dt
= −uge · ∇⊥ne − ne∇⊥ · (uE×B + uge)

=
Te

eB2

∂B
∂x
∂ne

∂y
− ne∇⊥ · uE×B, (32)

where uge is the electron grad-B drift velocity. Linearizing
Eqs. (30) and (32), we obtain the estimation of the blob or
hole propagation speed [1, 12] as

vb ≈ csi

(
Apr
δbx

B
∂B
∂x

)1/2

. (33)

In the derivation of Eq. (33), the y component of uE×B and
the wave number in the y direction, ky ∼ 1/δby, are ne-
glected.

4. Simulation Results
We next show simulation results calculated by the

p3bd code. In this section, results of blob and hole propa-
gation simulations in both the sheath-limited and periodic
boundary cases are presented and compared with the theo-
retical estimations.

The simulation parameters are as follows. The num-
ber of spatial cells contained in the simulation system is
Nx × Ny × Nz = 64 × 64 × 256, where Nx = Lx/Δg and
Δg is the grid spacing. The size of the grid spacing is set
as Δg ≈ 0.5 ρsi, as shown in Tables 1 and 2. The time
step Δt is also found in these tables. We assume that the
plasma is composed by two particle species, i.e., electron
(s = e) and ion (s = i), whose masses and charges are set
as mi/me = 100 and −qe = qi. The initial ion-to-electron
temperature ratio is Ti/Te = 0.01. Thus, the initial ion-
to-electron thermal velocity ratio is vTi/vTe = 0.01 (we as-
sume low ion temperature [i.e., small ion Larmor radius]
in order to verify the code). Here, the initial temperature in
the blob is equal to that of the background plasma and the
initial velocity distribution is given by Maxwellian. There
are 72 electrons and an equal number of ions per cell on
average. The external magnetic field strength is given by
Ωi/ωpi = 0.5 where ωpi is the ion plasma frequency in the
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Table 1 Parameters of blob propagation simulations.

Symbol (Sheath / Periodic) Δg/ρsi ΩiΔt δbx/ρsi δby/ρsi

• / ◦ 0.488 1.22 × 10−3 1.95 1.46
� / � 0.484 1.21 × 10−3 1.94 1.94
� / � 0.477 1.19 × 10−3 1.91 2.86
� / � 0.470 1.17 × 10−3 1.88 3.76
� / ♦ 0.457 1.14 × 10−3 1.83 5.48

Table 2 Parameters of hole propagation simulations.

Symbol (Sheath / Periodic) Δg/ρsi ΩiΔt δbx/ρsi δby/ρsi

• / ◦ 0.503 1.26 × 10−3 2.01 1.51
� / � 0.505 1.26 × 10−3 2.02 2.02
� / � 0.507 1.27 × 10−3 2.03 3.04
� / � 0.509 1.27 × 10−3 2.04 4.07
� / ♦ 0.514 1.28 × 10−3 2.06 6.17

Fig. 2 Time variations of position of the electron center of mass
in a blob, xnec, on the x–y plane at z = Lz/2 in the sheath-
limited case. The circles (•), triangles (�), squares (�),
inverse triangles (�), and diamonds (�) represent results
of calculations shown in Table 1, respectively.

initial background plasma. The initial density ratio of the
blob to the background plasmas is n̂b0 = 2.7 in the blob
case. On the other hand, the initial density ratio between
the center of the hole and the background plasma is set as
1 − n̂b0 = 0.27 in the hole case. The initial blob width or
hole width in the radial direction is δbx = 4Δg ≈ 2ρsi. The
initial poloidal width of a structure is given by δby/Δg = 3,
4, 6, 8, or 12 as seen in Tables 1 and 2. The initial positions
of the blob and the hole are (xb0, yb0) = (3Lx/4, Ly/2) and
(Lx/2, Ly/2), respectively.

In Figs. 2 and 3, we show the results of blob propaga-

Fig. 3 Time variations of position of the electron center of mass
in a blob, xnec, on the x–y plane at z = Lz/2 in the periodic
boundary case. The circles (◦), triangles (�), squares (�),
inverse triangles (�), and diamonds (♦) represent results
of calculations shown in Table 1, respectively.

tion simulations. Figures 2 and 3 represent the time vari-
ations of the x component of the position of the electron
center of mass, xnec, on the x–y plane at z = Lz/2 in the
sheath-limited and periodic boundary cases, respectively.
Here, xnec is obtained in the area in which the electron den-
sity, ne, is higher than nef (1 + n̂b0/10), where nef is calcu-
lated by [

∫ Ly
0

ne(x ≈ Lx, y, z = Lz/2) dy] / Ly. Since xnec

represents a blob position, we obtain the blob propagation
speeds in each simulation from the data of xnec between
Ωit = 20 and 60 (the sheath-limited case shown in Fig. 2)
or Ωit = 40 and 70 (the periodic boundary case shown

1401044-5



Plasma and Fusion Research: Regular Articles Volume 12, 1401044 (2017)

Fig. 4 Relation between the poloidal blob size, δby, and the blob
radial propagation speed, vb. The solid and open symbols
represent the observed propagation speeds in the calcula-
tions with the parameters shown in Table 1 in the sheath-
limited and periodic boundary cases, respectively. The
black solid and broken lines show the theoretical average
and maximum speeds in the sheath-limited case. Also,
the blue broken line presents the theoretical speed in the
periodic boundary case.

in Fig. 3). We show the relation between the poloidal
blob width, δby, and the blob propagation speed in the ra-
dial direction, vb, in Fig. 4. In this figure, the black lines
and the blue broken line represent the theoretical speeds
in the sheath-limited and periodic boundary cases given
by Eqs. (28) and (33), respectively. In the computation
of these theoretical speeds, we use the initial parameters
shown above and assume that the potential in Ash described
by Eq. (27) is given by

eφ
Te
=

1
2

ln

(
mi

2πme(1 + Ti/Te)

)
, (34)

which is obtained from the condition in which the net cur-
rent to the sheath is zero, that is, ne,Lzvze,Lz = ni,Lzvzi,Lz. The
black solid line designates the average speed and the black
broken line designates the maximum speed, where the av-
erage speeds are calculated by

〈vb〉 =

�
σ

vb(x, y) gx(x) gy(y) dx dy
�
σ

gx(x) gy(y) dx dy
, (35)

σ is the area defined by

(x − xb0)2

2δ2bx

+
(y − yb0)2

2δ2by
	 ln(10), (36)

and the maximum speeds are obtained by substituting
(xb0, yb0) for (x, y) in Eq. (28).

Fig. 5 Time variations of position of the electron center of mass
in a hole, xnec, on the x–y plane at z = Lz/2 in the sheath-
limited case. The circles (•), triangles (�), squares (�),
inverse triangles (�), and diamonds (�) represent results
of calculations shown in Table 2, respectively.

Fig. 6 Time variations of position of the electron center of mass
in a hole, xnec, on the x–y plane at z = Lz/2 in the periodic
boundary case. The circles (◦), triangles (�), squares (�),
inverse triangles (�), and diamonds (♦) represent results
of calculations shown in Table 2, respectively.

On the other hand, we show the results of hole prop-
agation simulations in Figs. 5 and 6 which represent the
time variations of xnec on the x–y plane at z = Lz/2 in the
sheath-limited and periodic boundary cases, respectively.
Here, xnec is calculated by
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Fig. 7 Relation between the poloidal hole size, δby, and the hole
radial propagation speed, vb. The solid and open symbols
represent the observed propagation speeds in the calcula-
tions with the parameters shown in Table 2 in the sheath-
limited and periodic boundary cases, respectively. The
black solid and broken lines show the theoretical average
and maximum speeds in the sheath-limited case. Also,
the blue broken line presents the theoretical speed in the
periodic boundary case.

xnec =

�
H

x [nef (1 − n̂b0/10) − ne(x, y)] dx dy
�

H
[nef (1 − n̂b0/10) − ne(x, y)] dx dy

,

(37)

where H is the area in which the electron density, ne, is
lower than nef (1− n̂b0/10) and nef is calculated by the same
process as that mentioned above. Also, we obtain the hole
propagation speeds in each simulation from the data of xnec

between Ωit = 20 and 60 (the sheath-limited case shown
in Fig. 5) or Ωit = 40 and 70 (the periodic boundary case
shown in Fig. 6). Figure 7 shows the relation between the
poloidal hole width, δby, and the hole propagation speed
in the radial direction, vb. The black lines and the blue
broken line in this figure represent the theoretical speeds
in the sheath-limited and periodic boundary cases given
by Eqs. (28) and (33), respectively. In the computation
of these theoretical speeds, we use the initial parameters
shown above and assume that the potential in Ash described
by Eq. (27) is given by Eq. (34). The black solid line des-
ignates the average speed and the black broken line des-
ignates the maximum speed, where the average and maxi-
mum speeds are obtained by the same calculations as those
shown above.

Figures 4 and 7 indicate that the observed propagation
speeds are in agreement with the theoretical estimation. In
the sheath-limited case, the observed propagation speeds

of small blobs and holes are slower than the theoretical es-
timation, which is thought to arise from kinetic effects be-
cause of the approach of structure size to the ion Larmor ra-
dius or from some instabilities because the poloidal width
δby of such blobs is smaller than δ∗ ∼ ρsi [L2

z / (ρsi Lx)]1/5,
where δ∗ is the particular width for the long distance propa-
gation as shown by Eq. (17) in Ref. [1] and δ∗ ∼ 3ρsi in this
study. (In these sheath-limited case simulations, dynam-
ics by instabilities [e.g., the evolution to mushroom shape]
are not observed clearly because the calculation time is too
short to observe such dynamics due to the small Lz.)

Figure 8 shows the time evolutions of the electron den-
sity distribution on the x–y plane at z = Lz/2 in the blob
(a) and hole (b) propagations in the sheath-limited case.
This figure indicates that the distortion of the hole shape is
larger than that of the blob shape. The large distortion of
the hole shape occurs by the velocity shear as mentioned
in Sec. 3.1.

5. Summary and Discussion
We have developed, updated, and verified the electro-

static 3D-PIC simulation code for the study of blob and
hole propagation dynamics, that is, the p3bd code. We are
able to simulate the boundary layer plasma of magnetic
confinement devices by the p3bd code. Although only a
blob structure is initially provided in the simulation sys-
tems in the previous version of the p3bd code, the updated
p3bd code is able to simulate the hole propagation. For
the verification of the code, we have estimated the theo-
retical blob and hole propagation speeds and compared the
observed blob and hole propagation speeds in the simula-
tions with the theoretical estimations. The observed rela-
tions between the propagation speed and the structure size
in both the blob and the hole cases are in good agreement
with the theoretical relations. Also, the code has repro-
duced the large distortion of the hole shape by the velocity
shear.

We plan to study effects of the kinetic dynamics and
the sheath on the blob and hole dynamics and the depen-
dence of the blob and hole dynamics on various parame-
ters, for instance, the ion temperature, the localization of
structure, the spatial profile of magnetic field, and other is-
sues. Although the dependence of the structure dynamics
on z is not observed in the simulations shown in this paper,
the parallel dynamics including the effect of the parallel
current of electrons [13,14] will be also studied by the 3D-
PIC code. Furthermore, we will investigate the effect of
the impurity ion transports by the blob and hole propaga-
tions [7,8] on the total transport by the p3bd code. We will
apply additional collision models [15, 16] and detachment
dynamics [17] to the p3bd code and optimize the code for
large-scale simulations. These topics are also important
in future work. In particular, detachment dynamics may
be important on blob and hole dynamics because the en-
hancement of the radial plasma transport in the boundary
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Fig. 8 Time evolutions of the electron density distribution on the x–y plane at z = Lz/2 in the blob (a) and hole (b) propagations in the
sheath-limited case, where δby/Δg = 4. These simulations are represented by the triangle (�) in the above tables and figures.

layer during the detached state was observed in some ex-
periments [18–21]. Although the electric field in a blob or
a hole, namely, the radial propagation speed, is reduced by
the short-circuit on the end plate in the attached state, the
detached plasma might prevent the short-circuit. Actually,
the simulations in this study show that the radial propa-
gation speed of a blob or a hole without the short-circuit,
i.e., in the periodic boundary case, is faster than that with
the short-circuit, i.e., in the sheath-limited case, as seen in
Figs. 4 and 7.
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