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Numerical techniques are proposed for accelerating a linear-system solver appearing in the virtual-voltage
method. After the proposed techniques are implemented to a numerical code for analyzing the shielding current
density in a high-temperature superconducting film, their performance is numerically evaluated. The results of
computations show that, if GMRES is incorporated as a linear-system solver, the speed of the virtual-voltage
method will be remarkably enhanced. Moreover, it is also found that the implementation of theH-matrix method
to matrix-vector multiplications in GMRES will further improve the speed of the virtual voltage method.
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1. Introduction
Recently, a high-temperature superconducting (HTS)

film has been used for numerous engineering applications:
magnet, energy storage system, power cable and so on.
Since evaluation of the shielding current density is indis-
pensable for the design of such engineering applications,
several numerical methods [1–3] have been so far devel-
oped for analyzing the shielding current density. These
methods are classified into two categories, according to the
order of time- and space-discretizations.

After spatially discretized, an initial-boundary-value
problem of the shielding current density is transformed
to an initial-value problem of semi-explicit differential al-
gebraic equations (DAEs) especially for the case where
cracks are contained in an HTS film. The authors pro-
posed a fast and stable algorithm [2] for solving the DAEs
with the block LU decomposition. Throughout the present
study, this method is called the DAE method.

On the other hand, time-discretization of the initial-
boundary-value problem yields a problem in which a non-
linear boundary-value problem is solved at each time step.
However, the solution of the nonlinear problem by the
Newton method is extremely time-consuming. This is
mainly because a linear system with a dense matrix has
to be solved at each iteration of the Newton method. This
method is called the virtual-voltage method [3].

The purpose of the present study is to develop numer-
ical techniques for speeding up the virtual-voltage method
and to numerically investigate how they affect its perfor-
mance.
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2. Governing Equations
We first assume that an HTS film has the same cross

section Ω over the thickness and that it is exposed to the
time-varying magnetic field B/μ0. By taking its thick-
ness direction as z-axis and choosing its centroid as the
origin, we use the Cartesian coordinate system 〈O :
ex, ey, ez〉. Furthermore, the HTS film is assumed to con-
tain m cracks whose cross sections are line segments in the
xy plane. Note that the boundary ∂Ω of Ω is composed
of not only the outer boundary C0 but also crack surfaces
C1,C2, · · · ,Cm. In the following, x and x′ denote position
vectors of two points in the xy plane, whereas t and n are
a unit tangent vector and a unit normal vector on ∂Ω, re-
spectively. In addition, b denotes a film thickness.

In HTS films, the electric field E and the shielding
current density j are closely related to each other through
the J-E constitutive relation. As the relation, we assume
the following power law [2–5]:

E = E( j)
j
j
, E( j) = EC

(
j

jC

)N

,

where j ≡ | j|. Also, jC and EC denote the critical current
density and the critical electric field, respectively, and N is
a positive constant.

Under the thin-plate approximation, there exists a
scalar function T (x, t) such that j = (2/b)∇× (Tez), and its
time evolution is governed by the following equation [2,3]:

μ0
∂

∂t
(ŴT ) + (∇ × E) · ez = − ∂

∂t
〈B · ez〉. (1)

Here, 〈 〉 denotes an average operator over the thickness
and the operator Ŵ is defined by

ŴT ≡ 2T (x, t)
b

+

�
Ω

Q(|x − x′|) T (x′, t) d2x′,
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where Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2].
The initial and boundary conditions to (1) are assumed

as follows: T = 0 at t = 0, T ∈ H(Ω̄) and hi(E) ≡ ∮
Ci

E ·
t ds = 0 (i = 1, 2, · · · ,m). Here, s is an arclength along
crack surfaces C1,C2, · · · ,Cm and H(Ω̄) is a function space
defined by

H(Ω̄) ≡
⎧⎪⎪⎨⎪⎪⎩w(x) : w = 0 on C0,

∂w
∂s
= 0 on

m⋃
i=1

Ci

⎫⎪⎪⎬⎪⎪⎭ .
The boundary condition T ∈ H(Ω̄) is derived from j ·n = 0
on ∂Ω, whereas hi(E) = 0 is the integral form of Faraday’s
law around the crack surface Ci. By solving (1) together
with the initial and boundary conditions, we can investigate
the time evolution of the shielding current density.

3. Virtual-Voltage Method
Throughout this section, a superscripts (l) denotes a

value at time t = lΔt, where Δt is a time-step size. For
example, T (x, lΔt) is denoted by T (l)(x). Also, an inner
product is defined by

( f , g)Ω ≡
�
Ω

f (x)g(x) d2x.

If the initial-boundary-value problem of (1) is dis-
cretized with respect to time, T (l)(x) becomes a solution
of the following nonlinear boundary-value problem:

G(T ) ≡ μ0ŴT + Δt ez · (∇ × E) − u = 0 in Ω, (2)

hi(E) = 0 (i = 1, 2, · · · ,m), (3)

T ∈ H(Ω̄), (4)

where u ≡ μ0ŴT (l−1) − 〈(B(l) − B(l−1)) · ez〉.

Although the above boundary-value problem can be
easily solved with the finite element method (FEM), the
accuracy of its numerical solution will be degraded with a
decrease in the film thickness b. Especially, the numeri-
cally calculated value Ni(E) of hi(E) does not always be-
come negligibly small. In order to resolve this difficulty,
the authors proposed the virtual-voltage method [3]. In the
method, virtual voltages φ1, φ2, · · · , φm are applied around
C1,C2, · · · ,Cm, respectively, so as to have Ni(E) = 0
exactly satisfied. In other words, (3) is replaced with
hi(E) = φi and Ni(E) = 0 (i = 1, 2, · · · ,m). The resulting
boundary-value problem is solved for (T, {φi}mi=1) by means
of the Newton method.

In each iteration of Newton method, the following lin-
ear boundary-value problem is solved for (δT, {δφi}mi=1):

δG = −G(T ), (5)

δhi − δφi = −[hi(E) − φi] (i = 1, 2, · · · ,m), (6)

δNi = 0 (i = 1, 2, · · · ,m), (7)

δT ∈ H(Ω̄). (8)

Here, δT and δφi are corrections of T and φi, respectively,
whereas δG, δhi and δNi denote Fréchet derivatives of

G(T ), hi(E) and Ni(E), respectively. After a straightfor-
ward calculation, we can prove that (5) and (6) are equiva-
lent to the following weak form:

∀w ∈ H(Ω̄) :

μ0(w, Ŵ(T + δT ))Ω + Δt (1, (∇w × ez) · (E + δE))Ω

+Δt
m∑

i=1

w(Ci) (φi + δφi) = (w, u)Ω. (9)

Here, w(Ci) is a unknown constant1, which w(x) takes on
Ci, and δE is given by

δE =
2
b

{
d
d j

[
E( j)

j

]
j ⊗ j

j
+

E( j)
j

I
}
· (∇δT × ez),

where I is an identity tensor of the 2nd order.
If (7), (8) and (9) are spatially discretized with the

FEM, we get
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(T) C F
CT O O

DT (T) O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δT
λ

δφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = G(T,φ), (10)

where δT is a nodal vector corresponding δT and δφ is de-
fined by δφ ≡ [δφ1, δφ2, · · · , δφm]T . In addition, A(T), C
and F are the n × n, n × k and n ×m matrices, respectively,
and DT (T) δT = 0 is a discretized form of (7). Further-
more, G(T,φ) ∈ Rn+k+m is a vector-valued function of T
and φ. Also, n and k denote the total number of nodes
and that of nodes only on crack surfaces, respectively, and
they are assumed to satisfy n � k > m. Equation (10) has
an asymmetric coefficient matrix and, hence, it has been
so far solved with the LU decomposition. In contrast, we
propose that (10) be solved by GMRES. Since the opera-
tion count required for GMRES is almost proportional to
the square of the number of unknowns, the operation count
required for the virtual-voltage method is expected to be
reduced to O(n2). For this reason, GMRES is incorporated
into the virtual-voltage method as a linear-system solver.

For the purpose of comparing the speed of virtual-
voltage method with that of the DAE method, CPU times
required for both methods are measured on FUJITSU
PRIMEHPC FX100 of LHD Numerical Analysis Server in
National Institute of Fusion Science. Dependences of CPU
times on the number n of nodes are depicted in Fig. 1. Al-
though CPU times for both methods are in rough propor-
tion to n2.5±0.1, the virtual-voltage method is about 10 times
faster than the DAE method.

4. Acceleration Techniques
4.1 Speedup strategy

As is apparent from Section 3, the numerical solu-
tion of (10) becomes a rate-determining step at each time
in the virtual-voltage method. On the other hand, GM-
RES is an iterative linear-system solver and matrix-vector

1Since ∂w/∂s = 0 is satisfied on Ci, w(x) becomes constant on the
crack surface Ci.
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Fig. 1 CPU times as functions of the number of nodes. Here,
the initial-boundary-value problem of (1) is solved from
t = 0 to t = Aw/(4v) by means of either the DAE method
or the virtual voltage method. Physical and geometrical
parameters are assumed to be the same values as used in
Section 4.3.

multiplications are the most time-consuming at each iter-
ation of GMRES. Thus, in order to accelerate the virtual-
voltage method, matrix-vector multiplications have to be
performed with high speed.

Let W be an FEM matrix, corresponding to the op-
erator Ŵ, in which the boundary condition on C0 is also
taken into account. Apparently, W is a dense matrix. If the
contribution of W is subtracted from the coefficient ma-
trix in (10), the remaining matrix becomes sparse. This
means that the matrix-vector multiplication Wv is the most
time-consuming at each iteration of GMRES. Therefore,
the virtual-voltage method can be accelerated by using the
high-speed matrix-vector multiplication Wv.

In order to realize the fast matrix-vector multiplication
Wv, the following two transformations are applied to W.

1. The matrix W is divided into a set of submatrices.
2. Only if a p × q submatrix W(σ,τ) satisfies a specified

condition, it is approximated by the ACA decomposi-
tion [6, 7]: W(σ,τ) � UVT . Here, U and V are p × r
and q × r matrices, respectively, and r denotes an ap-
proximate rank of W(σ,τ).

In fact, O(pq) and O(r(p + q)) operations are required for
matrix-vector multiplications W(σ,τ)vτ and UVT vτ, respec-
tively. Hence, if the inequality r < pq/(p + q) is satisfied
for all approximated submatrices, the high-speed matrix-
vector multiplication Wv is realized.

4.2 H-matrix method
In the present study, the above two transformations

are simultaneously performed by means of the H-matrix
method [6, 7]. In the H-matrix method, a cluster tree is
first generated on the basis of the information on node po-
sitions. In other words, after a set of all nodes is assumed
as a root cluster σR, a cluster tree is constructed by using
the following two steps:

1. A minimum axis-parallel rectangle is formed so as to

contain all nodes belonging to the cluster. Such a rect-
angle is called a bounding box of the cluster.

2. The cluster is divided into two child clusters by means
of a line segment linking middle points on two longer
sides of the bounding box.

The above two steps are recursively repeated while the
number of nodes contained in a cluster is greater than a
certain threshold. In the following, each cluster is consid-
ered to contain not a set of nodes but a set of node numbers.

Next, W is transformed to an H-matrix by using the
cluster tree. Specifically, for a cluster pair of σ and τ on
the same level in the tree, we check whether the admis-
sibility condition, min[diag(σ), diag(τ)] ≤ η dist(σ, τ), is
satisfied or not. Here, diag(σ) denotes a diagonal length
of the bounding box of σ, whereas dist(σ, τ) is a distance
between bounding boxes of σ and τ. In addition, η is a
positive constant. The results of this check are classified
into the following three cases:

A For the case where the admissibility condition is sat-
isfied, the submatrix W(σ,τ), which corresponds to σ
and τ, is approximated by the ACA decomposition.

B For the case where the admissibility condition is not
fulfilled and either σ or τ is a leaf of the cluster tree,
W(σ,τ) is not approximated but stored as it is.

C Otherwise, the admissibility condition is checked for
four pairs, each of which is composed of child clusters
of σ and τ.

By starting the above check for a pair of two root clusters2,
σR and σR, we can obtain anH-matrix for W.

4.3 Speedup effect ofH-matrix method
The authors developed a numerical code for analyz-

ing the time evolution of the shielding current density in
an HTS film with cracks. For the purpose of further speed-
ing up the code, the H-matrix method is implemented to
GMRES.

In order to investigate the effect of the H-matrix
method on the speedup of the shielding current analysis,
the scanning permanent-magnet method (SPM) [2, 8] is
numerically simulated. In the SPM, a cylindrical perma-
nent magnet of radius R and height H is moved along the
surface of an HTS film and, simultaneously, an electro-
magnetic force acting on the film is monitored. During the
movement of the magnet, the distance L between the mag-
net bottom and the film surface is kept constant. In the
following, an HTS film is assumed to have a rectangular
cross section Ω of width w and length Aw, and cross sec-
tions of cracks are assumed to be line segments of length
Lc. In addition, the longitudinal direction of Ω is taken
as x-axis. Also, the symmetry axis of the magnet is de-
noted by (x, y) = (xA, yA), and its movement is assumed

2The matrix W can be expressed as its submatrix W(σR ,σR) correspond-
ing to a pair of two root clusters, σR and σR. Hence, the admissibility
condition is first checked for a pair of σR and σR.
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(a)

(b)

Fig. 2 Residual histories of GMRES at t = Aw/(1200v). Here,
(a) and (b) are obtained for the 1st and 13th iterations of
the Newton method, respectively.

as xA = vt − Aw/2 and yA = const. Here, v is a scanning
speed. Throughout the present study, the physical and ge-
ometrical parameters are fixed as follows: R = 0.8 mm, H
= 2 mm, L = 0.5 mm, v = 10 cm/s, yA = 0 mm, jC = 1
MA/cm2, EC = 1 mV/m, N = 20, b = 1 µm, A = 11, w =
12 mm, Lc = 4 mm and m = 2.

Let us first investigate how the H-matrix method af-
fects the residual history of GMRES. To this end, residual
histories are determined for GMRES with/without the H-
matrix method and they are depicted in Figs. 2 (a) and 2 (b).
At the initial iteration of the Newton method, the residual
history is hardly influenced by the implementation of the
H-matrix method (see Fig. 2 (a)). On the other hand, at
the almost final iteration of the Newton method, the resid-
ual norm is slightly affected by the H-matrix method (see
Fig. 2 (b)). However, if the number of iterations required
for convergence of GMRES is denoted by Mc, the H-
matrix method scarcely changes Mc. In order to investigate
these tendencies quantitatively, the sum of Mc is calculated
as a function of time and is depicted in Fig. 3. This fig-
ure indicates that curves for GMRES with and without the
H-matrix method are overlapping with each other. This
result shows that, at each time step, the H-matrix method
has little effect on the total number of GMRES iterations.
Hence, it is the speed of the matrix-vector multiplication
Wv that essentially determines the speed of the virtual-
voltage method.

Fig. 3 Total number of GMRES iterations as functions of time.

Fig. 4 Dependence of the speedup ratio τN/τH on the number of
nodes.

Finally, we investigate the influence of the H-matrix
method on the speedup of the virtual-voltage method. To
this end, the speedup ratio τN/τH is measured as functions
of n and is depicted in Fig. 4. Here, τN and τH denote CPU
times required for the execution of the code with and with-
out the H-matrix method, respectively. The speedup ratio
τN/τH increases roughly with increasing number of nodes
and it always exceeds unity. In other words, the H-matrix
method can accelerate the numerical code for the shielding
current analysis and its speedup effect will be enhanced
with an increase in the number of nodes. From these re-
sults, we can conclude that the H-matrix method is effec-
tive for a large-sized shielding current analysis in an HTS
film containing cracks.

5. Conclusion
We have proposed numerical techniques for acceler-

ating a linear-system solver that appears in the virtual-
voltage method. In addition, we have implemented them to
a numerical code for analyzing the shielding current den-
sity in an HTS film with cracks. By using the code, the per-
formance of the proposed techniques has been evaluated
numerically. Conclusions obtained in the present study are
summarized as follow.

1. When GMRES is implemented as a linear-system
solver, the virtual-voltage method is about 10 times
faster than the DAE method.

2. The implementation of theH-matrix method to GM-
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RES enables the virtual-voltage method to show an
even higher speed.
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