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The extended boundary-node method (X-BNM) with the hierarchical-matrix (#7-matrix) method has been
developed and its performance has been investigated numerically. The results of computations show that the
solver speed of the X-BNM with the J#-matrix method is much faster than that of the standard X-BNM for the
case where the number of boundary nodes exceeds a certain limit. Furthermore, the accuracy of the X-BNM with
the #7-matrix method is almost equal to that of the standard X-BNM. From these results, it is found that the
¢ -matrix method is useful as the acceleration technique of the X-BNM.
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1. Introduction

Recently, the boundary node method (BNM) [1],
which is one of boundary-type meshless methods, has been
proposed. As the feature of the BNM, a boundary does not
need to be divided into a set of elements before executing
the BNM code. In addition, a smooth numerical solution is
obtained because the shape function is determined by us-
ing the moving least-squares approximation. However, it
is the inherent demerit of the BNM that integration cells
must be used for calculating matrix elements.

In order to resolve the above demerit, the BNM
has been reformulated without using integration cells.
Throughout the present study, the method is called the
extended BNM (X-BNM) [2, 3]. The results of compu-
tations have shown that the accuracy of the X-BNM is
much higher than that of the dual reciprocity boundary el-
ement method [4]. In addition, we have also shown that
the number of unknowns can be reduced to half by using
the RPIM shape function which has the Kronecker delta
function property [5].

On the other hands, the hierarchical-matrix (J7-
matrix) method [6-8] has been proposed for accelerating
the calculation speed of the matrix-vector product. By us-
ing the method, it is possible to reduce the computational
cost from O(N?) to O(N) ~ O(Nlog N), where N denotes
the number of boundary nodes. If the Z-matrix method
were applied to the X-BNM, the speed of the X-BNM
could be further accelerated.

The purpose of the present study is to apply the J7’-
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matrix method to the X-BNM and to investigate the perfor-
mance of the proposed method numerically. In this study,
the boundary-value problem of the Grad-Shafranov (G-S)
equation is used as the elliptic boundary-value problems.

2. Extended Boundary-Node Method

2.1 Boundary integral equation and dis-
cretization
Let us first derive a boundary integral equation from

the G-S equation. As an example, we consider a boundary-
value problem of the G-S equation on the domain
bounded by a simple closed curve 9% in the cylindrical
coordinate (7, ):
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where I'p and I'y are parts of 92 such that I'p U I'y = 0Q
and I'p N I'y = ¢. Moreover, ¢ and g are given functions
on I'p and Iy, respectively. Furthermore, n indicates an
outward unit normal on Q. In addition, £ denotes the G-S
operator and its explicit form is defined by
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From the straightforward calculation, we can show

that (1) is equivalent to the following boundary integral
equation:
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where w*(x(s),y) and dw*(x(s),y) /On denote the funda-
mental solution of —ﬁx// = ro(x(s) —y) and its normal
derivative, respectively. Moreover, s indicates an arclength
along 0Q.

Next, we discretize the boundary integral equation (4)
and the associated boundary conditions (2) and (3). To this
end, N boundary nodes, x(s;), x(s2), -+ ,x(sy), are placed
on 02 and, subsequently, the ith RPIM shape function ¢;(s)
[5,9] is assigned to the ith boundary nodes. Furthermore,
¥ and g are assumed as

N
Y(x(s) = ) ¢l Wi,
i=1

N
g(x(s) = )" $i(s) g,

i=1
where i; and g; are the solution on ith boundary node and
its normal derivative, respectively.
Under the aforementioned assumptions, (4) and the
associated boundary conditions are discretized as the fol-
lowing linear system:

Gq—Hu =0. (@)
Here, G, H, q and u are defined by
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where the influence coeflicients, 4;; and g;;, are defined by
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8ij = SE —w(x(s), x(s1)) ¢ (s)ds. (7)
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Furthermore, {e,e,, - , ey} is the orthonormal system of
the N-dimensional vector space.

Reordering (5) such that all unknowns are on the left-
hand side, the above linear system can be rewritten as

Ax = b, ®)

where A denotes the N X N coeflicient matrix obtained by
reordering (5). Moreover, x and b are the N-dimensional
solution vector and the N-dimensional vector generated by
using known boundary conditions, respectively. It is (8)
that the discretization form of the boundary-value problem
of the G-S equation. By solving (8), we can easily get
the solution and its normal derivative on 0%2. In the next
section, we explain how to calculate h;; and g;; without
using the integration cell.

2.2 Calculation of influence coefficients

In the standard BNM, we must divide the boundary
into a set of integration cells because of the calculation of
(6) and (7). However, this means that a concept of bound-
ary elements is partly contained in spite of one of meshless
methods.

In the X-BNM, the influence coeflicients, 4;; and g;;,
are directly calculated by use of a vector equation of 9%.
In fact, it is determined by means of the following three
steps:

1) The isosurface f(x) = O of the boundary is deter-
mined for the curve passing through 9Q.

2) The following ordinary differential equation:

9:MQEL

ds 2/ VS
is solved numerically. Here, R(6) denotes a tensor
representing a rotation through an angle 6.

3) The resulting P data points, xV, x®_ ... ¥ are in-
terpolated with the cubic spline. Here, the detailed ex-
planation for obtaining P data points is shown in [4].

Since the vector equation of 912 is represented as a
function of s, we can easily calculate the influence coeffi-
cients without using integration cells.

3. Fast Calculation of Matrix-Vector

Product

The coefficient matrix A becomes asymmetric and
dense. In addition, it has not a diagonal-dominant. There-
fore, we cannot solve (8) by using stationary iterative
methods. For this reason, the Krylov subspace methods
have been adopted as the solver of (8). In order to further
accelerate the speed of the X-BNM, the .7#-matrix method
is applied to the matrix-vector product in the Krylov sub-
space methods.

In the J#-matrix method, we first generate a hier-
archical cluster structure from a location information of
boundary nodes. Next, by using the structure, the co-
efficient matrix A is divided into a set of sub-matrices,
Al A2 ... AM where M is the total number of clusters.
When the cluster distance is near, the original sub-matrix
is stored. Otherwise, it is approximated as the potential
low-rank matrices by using the adaptive cross approxima-
tion.

When the ratio of the number of far clusters to the total
number of clusters is large, the matrix-vector product can
be computed fast. As a result, the speed of the X-BNM
becomes fast. Throughout the present study, we adopt the
GMRES(200) method as the solver of (8). Moreover, the
convergence condition &g is fixed as eg = 10712,

4. Numerical Results
In this section, the performance of the X-BNM with
the .7#-matrix method is investigated numerically. In the
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following, we adopt the boundary-value problem of the G-
S equation with the Dirichlet condition:
-0 5,

u=—T+rz,

on 9Q. Furthermore, €2 is assumed as
00= {xeR2| 0= [x-2-40/22] + (/271 =0},

where 4 is the triangularity.
As the measure of the accuracy of the numerical solu-
tion, we adopt the relative error defined by

_ “‘]A - QN”
laa]

)

where subscript notations, A and N, are analytic and nu-
merical solutions, respectively. Moreover, | “ denotes an
maximum norm.

In the X-BNM, the radial basis function r;(s) used in
the RPIM shape function is given by

ri(s) =p(s—sil /R,

) exp(ar?) (r<l),
r)=
p 0 (r> 1.

Here, s; denotes the arclength from the first boundary node
to the ith boundary node and R; is defined by

R; = ymin (|S mod (i+1,N) = Sii, |S mod (i—1,N) — Si|),

where y is a constant. Throughout the present study, the
number m of terms in the basis and the parameters are fixed
as follows: m =1, =53 andy = 1.1.

Let us first investigate the accuracy of the X-BNM
with the 7-matrix method. The relative errors are calcu-
lated as a function of the number N of boundary nodes and
are depicted in Fig. 1. We see from this figure that the con-
vergence rate of the X-BNM with the #-matrix method
is almost equal to that of the standard X-BNM. Further-
more, this figure indicates that the accuracy of the X-BNM
with the Z-matrix method is almost equal to that of the
standard X-BNM.

Next, the speed of the X-BNM with the JZ-matrix
method is compared with the standard X-BNM. In Fig. 2,
the computation time required for the solver is measured
and 7g and 74 are plotted as a function of N. Here, 75 and
7 denote the computation time of the standard X-BNM
and that of the X-BNM with the .7#-matrix method, re-
spectively. This figure indicates that the speed of the X-
BNM with the .7#-matrix method is 0.93 -34.8 times as
much as the standard X-BNM for the case with N > 500.

For investigating the above reason, the residual his-
tories of the X-BNM with the .77-matrix method and the
standard X-BNM are shown in Figs. 3 (a) and 3 (b), respec-
tively. For the case with both methods, the residual norm
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Fig. 1 Dependence of the relative error £ on the number N of
boundary nodes for the case with 4 = 1. Here, the blue
symbol and red one denote the X-BNM with the .7-
matrix method and the standard X-BNM, respectively.
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Fig. 2 Dependence of the computation time, 7s and 74, on the
number N of boundary nodes for the case with 4 = 1.
Here, the blue symbol and red one denote 7 and s, re-
spectively.

decreases monotonously with an increase in the iteration
number. This tendency does not depend on the value of
N. In addition, the total iteration number of the X-BNM
with the -matrix method is a little larger than that of
the standard X-BNM. Although the total iteration number
of the X-BNM with the 7-matrix method increases by
comparing with the standard X-BNM, it is found that the
calculation cost of the X-BNM with the 7#’-matrix method
extremely decreases by means of the effect of the potential
low-rank matrix.

Finally, we investigate the influence of the boundary
shape on the accuracy of the solution. The relative errors
are calculated as a function of the triangularity 4 and are
depicted in Fig. 4. Both the accuracy of the X-BNM with
the Z-matrix method and that of the standard X-BNM
monotonously increase with an increase in 4. Moreover,
the accuracy of the X-BNM with the #7-matrix method is
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Fig. 3 Residual histories of (a) the X-BNM with the .7#’-matrix
method and (b) the standard X-BNM for the case with
4 = 1. Here, black, red, blue and green lines denote N =
4000, N =500, N = 64 and N = 16, respectively.
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Fig. 4 Dependence of the relative error € on the triangularity 4
(N = 4000). Here, the blue symbol and red one denote
the X-BNM with the .7#-matrix method and the standard
X-BNM, respectively.

almost equal to that of the standard X-BNM regardless of
the value of 4.

From these results, we can conclude that the J7-
matrix method is useful for accelerating the X-BNM.

S. Conclusion

We have applied the 7#-matrix method to the X-BNM
and have numerically investigated its performance by com-
paring with the standard X-BNM. Conclusions obtained in
this paper are summarized as follows.

1. The solver speed of the X-BNM with the Z°-matrix
method is much faster than that of the standard X-
BNM for N > 500.

2. The accuracy of the X-BNM with the J#-matrix
method is almost equal to that of the standard X-
BNM. Even if the boundary shape is concave, this
tendency does not change.
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