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High-Accuracy Numerical Integration of Charged Particle Motion
– with Application to Ponderomotive Force
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A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is
based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal
symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the
advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined;
the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time
dependent fields’ case by introducing the extended phase space. Numerical tests showing the performance of
the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged
particle motion in a rapidly oscillating field.
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Charged particle motion is an essence of plasma
physics. We often need to calculate its orbit very accu-
rately for a long time period, when the plasma is suffi-
ciently collisionless for example. In this letter, we report
a new numerical algorithm which enables us to follow a
charged particle orbit without accumulating discretizing
error.

The algorithm developed here is based on Hamil-
tonian mechanics, especially an operator decomposition.
Also the order of accuracy of the algorithm can be in-
creased to an arbitrary high order by a recurrence formula.
These algorithms were developed separately for quantum
Monte Carlo simulation [1, 2] and celestial mechanics [3].
As we show below, the straightforward application of the
algorithm may not work for a charged particle motion. In
this letter, we will extend the algorithm for a charged par-
ticle motion, where the Poisson tensor will be decomposed
and the non-canonical variables will be used instead of
canonical variables as in the previous studies. Some of
the related results were already presented in [4]. The same
idea was also published in [5], which had been developed
independently. We will first review the operator decom-
position method and the recurrence formula to increase
order of accuracy. Then we will discuss how to decom-
pose the time evolution operator. We will find that a useful
algorithm can be developed by decomposing the Poisson
tensor rather than the Hamiltonian, although this does not
mean the Hamiltonian does not play a role: the Hamilto-
nian should be expressed in a way that the algorithm is
applicable. We will present two numerical tests to show
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the usefulness and effectiveness of the algorithm.
In the following five paragraphs, the basic idea of

the operator decomposition and the recurrence formula of
[1–3] is explained briefly. Let us consider a Hamiltonian
of the following form: H[q, p] = H1[p] + H2[q], where q
and p are canonical coordinate and momentum, respec-
tively. For example, a harmonic oscillator has the Hamil-
tonian of this form H := 1

2 (p2 + q2). Suppose we consider
dynamics only by H1[q]. We then obtain evolution equa-
tions q̇ = ∂pH1[p] = f (p) and ṗ = −∂qH1[p] ≡ 0. Namely,
p does not change during this evolution. Note that ∂p and
∂q denote partial derivative with respect to p and q, re-
spectively, and the dot ˙ denotes time derivative. Since
p is a constant, we can easily and exactly integrate the
evolution equation to obtain q(t) = f (p)t + q0 with q0

being a constant. Similarly, dynamics only by H2 gives
us the following evolution equations q̇ = ∂pH2[q] ≡ 0 and
ṗ = −∂qH2[q] = g(q). Therefore, q does not change and we
obtain p(t) = g(q)t + p0 with p0 being a constant.

Next, let us consider a formal solution of the
Hamiltonian system. The evolution equation can be
rewritten in a symplectic form as ż = J∂zH[z], with

z := (q, p)T and J =
(

0 1
−1 0

)
being an anti-

symmetric tensor, called a Poisson tensor. If we
write J∂zH[z] =: VH[z], we obtain a formal solution as
z(t) = etVH z(0) where z(0) is an initial condition. For the
Hamiltonian of the separable form H[z] = H1[p] + H2[q],
we have J∂zH[z] =: VH1 [z] + VH2 [z], where VHi [z] :=
J∂zHi[z] (i = 1, 2). Therefore the formal solution is
z(t) = et(VH1+VH2 ) z(0).
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Suppose we try to advance time by small Δt. Since the
operator VH1 and VH2 do not commute, we recognize that

eΔt(VH1+VH2 ) = eΔtVH1 eΔtVH2 + O(Δt2). (1)

The right-hand side, except for the O(Δt2) term, expresses
a sequential operation of eΔtVH2 followed by eΔtVH1 . The ex-
ponential operator eΔtVH2 gives us time evolution only by
H2, which can be easily and exactly integrated as we ob-
served. Similarly, eΔtVH1 gives us time evolution only by
H1. Therefore, the decomposed exponential operators give
us an first-order, explicit algorithm. Let us call this sequen-
tial operation of decomposed operators as G1(Δt).

Next, we consider an operator decomposition

eΔtVH = e
Δt
2 VH2 eΔtVH1 e

Δt
2 VH2 + O(Δt3). (2)

Since the error term scales as O(Δt3), this gives us the
second-order algorithm S 2(Δt) := e

Δt
2 VH2 eΔtVH1 e

Δt
2 VH2 . We

easily verify that S 2(−Δt)S 2(Δt) = S 2(Δt)S 2(−Δt) = 1;
it is time-reversal symmetric.

Finally, let us introduce a recurrence formula to in-
crease the order of accuracy of the algorithm. It was
shown that a higher-order time evolution operator can be
constructed by multiplying lower-order ones [1]. Here we
adopt a recurrence formula of the form

S 2m(Δt) = S 2m−2(pm1Δt) · · · S 2m−2(pmrΔt), (3)

where a lower order operator S 2m−2 is multiplied r times to
generate a higher order one S 2m, where m = 2, 3, · · · . Each
time step of S 2m−2 is given by pm jΔt with j = 1, · · · , r. We
can preserve the time-reversal symmetry for odd numbers
r without loss of generality. r = 3 gives us rather complex
time stepping. If we choose r = 5, we may use pm j = km

for j = 1, 2, 4, 5 and pm3 = 1 − 4km with a real km :=
1

4−4
1

2m−1
. The order of accuracy is not affected by the choice

of r, however, the numerical factor of the error term may be
different with r. Also the numerical stability may depend
on r. We have not investigated these aspects. These are our
future issues.

Now, let us consider the charged particle case. The
Hamiltonian of a charged particle in an electromagnetic
field is given by H[z] = (p − eA(q))2/2m + eφ(q),
where q = (q1, q2, q3)T and p = (p1, p2, p3)T are canon-
ical coordinates and momenta, respectively, and z =
(q1, q2, q3, p1, p2, p3)T. The mass and the charge are de-
noted by m and e, respectively, A and φ are vector and
scalar potentials, respectively. Note that a static elec-
tromagnetic field is assumed. This Hamiltonian includes
p · A(q). Then the resultant evolution equation does not
have a form which can be easily and exactly integrated in
general. Therefore, we need to devise a method.

One simple way may be to introduce non-canonical
variables x and u, where x is the same as q and u is the
velocity. Then the Hamiltonian can be written in a sum-
mation of two terms, where one depends only on u and

the other only on x. Then we may apply the operator de-
composition to obtain a useful algorithm [4]. However, in
the present paper, let us re-examine under what conditions
we can easily and exactly integrate the evolution equation
by the operator decomposition. We need to examine two
aspects: one is how to choose appropriate variables, and
the other is how to decompose the operator. Suppose we
transform z to a set of new variables z′ = z′(z), and we
obtain a resultant evolution equation as ż′ = J′∂z′H

′[z′].
The Poisson tensor J′ = (J′αβ) with α, β = 1, · · · , 6 is a
6 × 6, anti-symmetric tensor. For αth component of this

evolution equation, the right-hand side is
6∑
β=1

J′αβ∂z′βH
′[z′].

If this is a constant, the evolution equation can be inte-
grated easily and exactly. In order to realize it, we firstly
decompose J′, not the Hamiltonian as in the previous

studies, as J′ =
6∑
α=1

J′α, where the αth row of J′α is the

same as J′ and the other rows are set to be zero. Then
the formal solution of the evolution equation becomes
z′(t) = et

∑6
α=1 J′α∂z′H′[z′] z′(0). Considering a small time step

Δt, the first-order approximation to the exponential opera-

tor is eΔt
∑6
α=1 J′α∂z′H′[z′] =

6∏
α=1

eΔtJ′α∂z′H′[z′] + O(Δt2). For the

decomposed J′α described above, the time evolution by
an exponential operator eΔtJ′α∂z′H′[z′] does not change vari-

ables z′β with β � α. Therefore, if
6∑
β=1

J′αβ∂z′βH
′[z′] does not

depend on z′α, z′α can be easily and exactly time advanced
by the operator eΔtJ′α∂z′H′[z′]. The sequential operations of
eΔtJ′α∂z′H′[z′] with α = 1, · · · , 6 enables us the easy and ex-
act time integration of z′α with α = 1, · · · , 6, respectively.
Note that this is a sufficient condition for our purpose. We
may recognize that the condition cannot be met by using
the canonical variables for a charged particle motion.

Now, let us consider what variables we should adopt.
A simple choice may be the non-canonical variables x =
(x, y, z)T and u = (vx, vy, vz)T. Then the Hamiltonian is

rewritten as H′[z′] =
m
2
u2 + eφ(x), and the Poisson tensor

J transforms to

J′ :=
1
m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

−1
0 e

m Bz − e
m By

− e
m Bz 0 e

m Bx
e
m By − e

m Bx 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 0 and 1 denote 3 × 3 zero and unit matrices, re-

spectively. We can confirm that ∂z′α

⎛⎜⎜⎜⎜⎜⎜⎝
6∑
β=1

J′αβ∂z′βH[z′]

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

Therefore, the operator decomposition and the use of the
non-canonical variables enables us the easy and exact inte-
gration of the evolution equation. The time-reversal sym-
metric and the higher-order algorithm can be obtained as
in the canonical variable case.

As a final part of the theoretical development, we
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Fig. 1 A measure of relative energy change 〈ΔE〉/E0 during 104

cyclotron period is plotted by changing Δt for various al-
gorithms. G1 is first order and is not time-reversal sym-
metric. S 2m is 2mth order and is time-reversal symmetric.
RK4 denotes 4th-order Runge-Kutta method.

extend the formulation to a time-dependent field’s case
by using an extended phase space [6]. In this case, we
adopt z̄′ := (x, y, z, t, vx, vy, vz,−E)T as the non-canonical
variables where E is the energy. The Hamiltonian is

H̄′[ z̄′] =
m
2
u2 + eφ(x, t) − E. Noting that the time-like

variable as τ, we obtain the time evolution equation as
˙̄z′ = J̄′∂ z̄′ H̄′[ z̄′]. The dot ˙ denotes τ derivative here. By
decomposing the Poisson tensor by each row, we can ob-
tain easy and exact integration algorithm as same as above.
Of course, the recurrence formula is applicable to obtain
an arbitrary high order algorithm.

Below we will show numerical results. In this para-
graph, we present a numerical test for demonstrating the
accuracy of the algorithm; A charged particle orbit in a
uniform magnetic field was calculated during 104 times the
cyclotron period. We adopted r = 5 for the recurrence for-
mula. The relative change of energy was measured by

〈ΔE〉
E0

:=
1

(t1 − t0)E0

∫ t1

t0

|E(t) − E0|dt,

where t0 and t1 are the start and the end of time, E0 is
the initial value of the energy. Figure 1 plots 〈ΔE〉/E0 by
changing Δt. G1 is first-order and is not time-reversal sym-
metric. S 2m is 2mth-order and is time-reversal symmet-
ric. RK4 denotes 4th-order Runge-Kutta method shown
for a reference. The cyclotron frequency is denoted by
ωc := |e|B0/m, where B0 is a typical value of the mag-
netic field. We confirmed that the algorithm developed
here showed good scaling property. Note that the rela-
tive energy change of S 4 scales as Δt4 as the theory pre-
dicts. The relative energy change scales as Δt5 for RK4,
however, its magnitude is much larger than S 4. An im-
portant thing is that the developed algorithm does not ac-
cumulate the energy change; it just oscillates in time. On
the contrary, RK4 accumulated the energy change. It is
not surprising that a good numerical accuracy is obtained

Fig. 2 Time evolution of the particle position x(t) is plotted for
several orders of accuracy. RK4 is also shown for a ref-
erence. The time step was Δt/(2π/ωc) = 8 × 10−3 except
for S 2. We observe that S 4 gives almost same result with
S 8 for this calculation. We also observe the deviation of
S 2 and RK4 results from S 4 and S 8 results.

even for Δt/(2π/ωc) > 1, because S 2m is composed of r
steps of S 2m−2 and so on; actual one step is smaller than
the cyclotron period. Some spiky behavior is observed es-
pecially for higher order algorithms. It seems to happen
when Δt is an integer times the cyclotron period. In [4], we
examined a trade-off between the accuracy and the compu-
tational cost. If we adopt higher-order algorithm, we may
need more computational time for one step, although we
can take a larger Δt. Thus there should be an optimum
order of accuracy for obtaining a result for a given error
tolerance. For the same test calculation as Fig. 1, we found
S 4 was optimum. S 6 was even better than RK4.

We also examined basic drift motions such as E × B,
∇B and curvature drifts. The drift motion was successfully
calculated [7]. The velocities agreed with the theoretical
values. This will be reported elsewhere.

In this paragraph, another numerical test is presented.
A charged particle motion in a rapidly oscillating elec-
tromagnetic field is calculated, by using the formulation
in the extended phase space. By averaging the equa-
tion of motion in time, we obtain an equation showing
that the ponderomotive force acts on the oscillation cen-
ter of the charged particle. If we write the oscillation
center velocity as U, the averaged equation of motion

is m
dU
dt
= −e∇Φpond, with Φpond :=

1
4

e
mω2
|E0|2, where ω

and E0(x) are the angular frequency and the amplitude
of the oscillating electric field, respectively [8]. In our
test calculation, we apply an external field with E(x, t) =
Ē sin kx cosωt ŷ and B(x, t) = − k

ω
Ē cos kx sinωt ẑ, where

Ē is an amplitude of the electric field, k is the wave number,
ŷ and ẑ are the unit vectors in y and z directions, respec-
tively. This is a standing wave, andΦpond is zero at kx = nπ
with n being an integer and is maximum at kx = (n + 1

2 )π.
Therefore, we expect that a charged particle is confined in
the well of Φpond for an appropriate initial condition.

Figure 2 shows x(t) during 105 times the oscillation
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period of the electromagnetic field, starting with x(0)/L0 =

π/4, y(0) = z(0) = 0, u(0) = 0. Here, L0 denotes a
typical value of length, which coincides with the Larmor
radius of a charged particle of its speed being a typical
value V0 in a constant magnetic field with typical value
of magnitude. The angular frequency, the wave number
and the amplitude of the oscillating field is ω/ωc = 102,
kL0 = 1 and Ē = 1, respectively. The time step was cho-
sen as Δt/(2π/ωc) = 8 × 103 for S 8, S 4 and RK4. For S 2,
Δt/(2π/ωc) = 4× 103 was used because the calculation di-
verged for Δt/(2π/ωc) = 8×103. Here, RK4 means that the
evolution equation for z̄′ is solved by the 4th-order Runge-
Kutta method in this numerical test. As we expected, we
observe that the particle oscillates in the potential well of
Φpond. As we observe, S 4 almost overlaps S 8. Note that
the result of S 8 did not change by choosing smaller Δt.
We also observe that S 2 gives a longer oscillation period
in the x direction. The RK4 result is closer to S 2 than S 4.
Note that the RK4 result with Δt/(2π/ωc) = 4 × 103 al-
most overlaps with the S 8 and S 4 results. In y direction,
the particle oscillates rapidly due to the acceleration by the
electric field itself.

Figure 3 shows the phase-space plots for the same data
as Fig. 2. Used colors are also the same as Fig. 2. We ob-
serve that the amplitudes of vx for S 2 and RK4 are much
smaller than those of S 8 and S 4. The smaller vx makes the
motion in the x direction slower, giving the longer oscilla-
tion periods for those algorithms in Fig. 2.

In summary, we have extended the operator decom-
position method for a charged particle motion. We have
shown that the operator decomposition based on the Pois-
son tensor is effective, together with the appropriate choice
of the variables. Here the non-canonical variables are
adopted. The time-reversal symmetry leads to the second-
order algorithm, and the recurrence formula leads to the
arbitrary high-order algorithm. Note that one of the ad-
vantage of this algorithm is that it is explicit. Another ad-
vantage is that the algorithm does not accumulate error;
the Hamiltonian just oscillates. We also extended the algo-
rithm to the time-dependent field’s case by introducing the
extended phase space. We have examined the accuracy and
effectiveness of the algorithm via two numerical tests. One
was to follow pure cyclotron motion for a long time pe-
riod. We observed the good scaling property of the devel-
oped algorithm. The other was to examine ponderomotive

Fig. 3 Phase-space plots are shown for the same data as Fig. 2.
Used colors are also the same as Fig. 2. Substantial dif-
ference in vx is observed, that leads to the different oscil-
lation periods in Fig. 2.

force on a charged particle in a rapidly oscillating electro-
magnetic field. We observed that the particle is trapped in
the potential well of the field energy density as the theory
predicts. The algorithm presented here can be extended
even for a relativistic case. One of the important applica-
tion may be runaway electrons in tokamaks. This will be
reported in near future.
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