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The finite-difference time-domain method (FDTDM) is commonly applied to time dependent electromag-
netic wave propagation simulations. In the FDTDM, the nodes of electric and magnetic fields are located based
on an orthogonal mesh called the Yee-lattice. However, using this method, it is difficult to express a complex
shaped domain. The radial point interpolation method (RPIM) is a meshless method that can be applied to elec-
tromagnetic wave propagation simulations. The meshless time-domain method (MTDM) based on RPIM can
treat complex shaped domains easily. In previous studies, the computational accuracy and numerical stability of
the three-dimensional (3-D) MTDM has not been clear. The present study numerically investigates the influence
of weight functions on the computational accuracy and numerical stability of the 3-D MTDM. We perform nu-
merical simulations, the results of which show that the multi-quadratic, reciprocal multi-quadratic and quadratic
spline functions should be employed for the weight functions.
c© 2015 The Japan Society of Plasma Science and Nuclear Fusion Research
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1. Introduction
The finite-difference time-domain method (FDTDM)

is widely used for numerical simulations of electromag-
netic wave propagation phenomena. The governing equa-
tions of the FDTDM are discretized by using the leapfrog
and central difference methods [1]. The nodes of the elec-
tric and magnetic fields are located based on an orthogonal
mesh called the Yee-lattice. FDTDM has a great advantage
with respect to discretization, but cannot easily express a
complex shaped domain.

Recently, various meshless methods such as the ra-
dial point interpolation method (RPIM) have been pro-
posed [2, 3]. The meshless time-domain method (MTDM)
based on RPIM can be applied to electromagnetic wave
propagation simulations [4–6]. In the MTDM, the govern-
ing equations are discretized using the leapfrog method, a
shape function and a partial derivative of the shape func-
tion. The nodes of the electric and magnetic fields can be
located without requiring a mesh. Therefore, it is easy to
express a complex shaped domain. However, the influ-
ence of weight functions on the computational accuracy
and numerical stability has not been clarified in the three-
dimensional (3-D) MTDM in previous studies. The pur-
pose of the present study is to numerically investigate the
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influence of weight functions on the computational accu-
racy and numerical stability of the 3-D MTDM.

2. Meshless Time-Domain Method
In the MTDM, a shape function and a partial deriva-

tive of the shape function are derived, based on the RPIM,
which is a meshless method. In the RPIM, nodes are scat-
tered at arbitrary positions in the analysis domain Ω, as
shown in Fig. 1. An approximation function u∗(x) and a
partial derivative of the approximation function ∂u∗(x) are
expanded as follows using a shape function φ(x), a partial
derivative of the shape function ∂φ(x) and a known vector
u:

u∗(x) = (φ(x),u) =
∑

i

φi(x)ui, (1)

∂u∗(x) = (∂φ(x),u) =
∑

i

∂φi(x)ui, (2)

where x is the position vector and (a, b) denotes an inner
product of the vectors a and b. ∂ means ∂/∂x, ∂/∂y and
∂/∂z in the 3-D case. The domain of influence is defined
by a parameter R, called the “support radius”. Nodes in the
domain of influence (the open circles within the circle of
radius R in Fig. 1) contribute to the value of the approxima-
tion function at the point x. A shape function and a partial
derivative of the shape function are generated by solving a
system of linear equations as:
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Fig. 1 Conceptual diagram of node distribution and domain of
influence in the radial point interpolation method.

G(x)
[
φ(x)
X(x)

]
=

[
b∗(x)
p∗(x)

]
, (3)

G(x)
[
∂φ(x)
X(x)

]
=

[
∂b∗(x)
∂p∗(x)

]
, (4)

where G(x) is a coefficient matrix, X(x) is an unknown
vector and b∗(x) and p∗(x) are known vectors. b∗(x) and
p∗(x) are generated by the radial basis function (RBF) and
the polynomial basis function (PBF). The coefficient ma-
trix G(x) consists of sub matrices as:

G =
[

B0 P0

PT
0 O

]
, (5)

where B0 and P0 are also generated by the RBF and PBF,
and PT

0 is the transverse of P0. In the 3-D case, PBF
is defined as p(x) =

[
1, x, y, z

]
. The RBF, b(r), is de-

fined as a function of the distance r between a point x and
nodes in the domain of influence xi (r = |x − xi|) [7] [8].
Here, the computational accuracy and numerical stability
depend on the type of RBF and the support radius R. In
the present study, four types of RBF are employed for nu-
merical investigations, defined by equations (6)–(8) below.
Equation (6) with s = 0.5 is called the “multi-quadratic
(MQ)”, and with s = −0.5 it is called the “reciprocal multi-
quadratic (RMQ)”. Equations (7) and (8) are the “expo-
nential weight function (EWF)” and “the quadratic spline
function (QSF)”. c is called the “support coefficient”, and
is fixed at 1.0 in the present study. RBF of all types satisfy
equation (9).

b(r) =
(( r

R

)2
+ 1.0

)s

, (6)

b(r) =
e−(r/c)2 − e−(R/c)2

1.0 − e−(R/c)2 , (7)

b(r) = 1.0 − 6.0
( r
R

)2
+ 8.0

( r
R

)3
− 3.0

( r
R

)4
, (8)

b(r) = 0 : r ≥ R. (9)

The shape function based on the RPIM satisfies the
delta function property as:

φi(x = x j) =
{

1, i = j,
0, i � j.

(10)

From this, an approximation function can be described in
a simplified form:

u∗(xi) = (φ(xi),u) = ui. (11)

This property is very important for the discretization and
approximation of the governing equations.

The Maxwell equations, which are the governing
equation of MTDM, are discretized and approximated.
The Maxwell equations are written as:

ε
∂E
∂t
= −σE + ∇ × H, (12)

μ
∂H
∂t
= −∇ × E, (13)

where E and H are the electric and magnetic fields, ε, μ
and σ are the electric permittivity, magnetic permeability
and electrical conductivity, respectively. Equations (12)
and (13) can be discretized with respect to time and space
by using the leapfrog method, a shape function and a par-
tial derivative of the shape function, giving:

En+1
x,i = CE En

x,i

+CEH

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φ
Hz
i, j

∂y
Hn+ 1

2
z, j −

∑
k

∂φ
Hy

i,k

∂z
Hn+ 1

2
y,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (14)

En+1
y,i = CE En

y,i

+CEH

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φHx
i, j

∂z
Hn+ 1

2
x, j −

∑
k

∂φ
Hz
i,k

∂x
Hn+ 1

2
z,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (15)

En+1
z,i = CE En

z,i

+CEH

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φ
Hy

i, j

∂x
Hn+ 1

2
y, j −

∑
k

∂φHx
i,k

∂y
Hn+ 1

2
x,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (16)

Hn+ 1
2

x,i = Hn− 1
2

x,i

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φ
Ey

i, j

∂z
En

y, j −
∑

k

∂φ
Ez
i,k

∂y
En

z,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (17)

Hn+ 1
2

y,i = Hn− 1
2

y,i

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φ
Ez
i, j

∂x
En

z, j −
∑

k

∂φEx
i,k

∂z
En

x,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (18)

Hn+ 1
2

z,i = Hn− 1
2

z,i

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φEx
i, j

∂y
En

x, j −
∑

k

∂φ
Ey

i,k

∂x
En

y,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (19)

CE =

(
1 − σΔt

2ε

)
/

(
1 +
σΔt
2ε

)
, (20)

CEH =

(
Δt
ε

)
/

(
1 +
σΔt
2ε

)
, (21)

where n is the time step. Ex, Ey, Ez, Hx Hy and Hz are
the x-, y- and z-components of the electric and magnetic
fields, and ∂φH and ∂φE are the partial derivatives of the
shape functions for the magnetic and electric fields, re-
spectively. A vacuum region (σ = 0) is employed in the
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Fig. 2 Conceptual diagram of waveguide (a) and node distribu-
tion based on a 3-D staggered mesh (b).

Table 1 Physical parameters for the waveguide and input wave.

Size of waveguide 10 [m] × 1 [m] × 1 [m]
Distance between nodes 5 [cm]

Source wave form Sine wave
Frequency of source 6.0 ×108 [Hz]

analysis domain in the numerical evaluation of the present
study and thus equations (20) and (21) become CE = 1
and CEH = Δt/ε. A time dependent solution is given by
solving equations (14)–(21) while updating the time step
n.

3. Numerical Evaluation
Previous studies have investigated the influence of the

weight functions or node arrangement on the computa-
tional accuracy and numerical stability in two-dimensional
MTDM [9]. In the present study, in order to investigate
the influence of the weight functions on the computational
accuracy and numerical stability of the 3-D MTDM, simu-
lations are performed using a straight waveguide as shown
in Fig. 2 (a). For simplicity, the nodes of the electric and
magnetic fields are arranged based on a staggered mesh
as shown in Fig. 2 (b). A perfect electric conductor is em-
ployed as the wall of the waveguide so that the perpen-
dicular component of the electric field is set to zero at the
wall as the Dirichlet boundary condition. The source of the
electromagnetic wave is input at the edge of the waveguide.
The other physical parameters are summarized in Table 1.
The Poynting vector [10] is measured on the surfaces at Γin

and Γout, and the transmission rate TR is defined as:

TR =
〈P〉Γout

〈P〉Γin

, (22)

〈P〉 =
∫

T

∫
Γ

PdS dt

T
, (23)

where T and P are the period of the source wave and Poynt-
ing vector, and

∫
Γ

dS and 1
T

∫
T dt denote the surface inte-

gration and the average of time, respectively. In the present
study, it is considered that the computational accuracy is
good if TR is near to 1.0.

The transmission rates TR for the support radius R and
RBF are summarized in Table 2. If the EWF is employed

Table 2 Transmission rates TR for support radius R and RBF.

R [cm] MQ RMQ QSF
7.5 0.96220 0.96838 0.89398

10.0 1.01445 1.02405 1.00680
12.5 1.00129 1.01970 0.99985

Fig. 3 Transmission rates TR for Nmin plotted using MQ, RMQ
and QSF.

for the RBF, the calculations failed for all R and hence the
results for EWF are not listed in Table 2. It can be seen that
the MQ, RMQ or QSF can be employed for the RBF. Some
values of TR are over 1.0, representing reflections from the
wall. In addition, we found that numerical unevenness is
caused by variation of the number of nodes in the domain
of influence. In order to investigate the influence of the
number of nodes in the domain of influence on the compu-
tational accuracy, we measured the transmission rates TR

for Nmin, where Nmin is the minimum number of nodes in
the domain of influence.

Fig. 3 shows the transmission rates TR for Nmin. The
calculations failed if Nmin is less than 10. Specifically,
if Nmin is less than 10, the generation process of partial
derivatives of the shape functions failed. This contrasts
with our expectation that calculation should be possible
if N is more than 4. In addition, Nmin should be set to
be more than 16 for stable computation. Furthermore, the
computational accuracy is not improved necessarily if Nmin

increases. The reasons for these results are not currently
clear and a detailed mathematical analysis is necessary.

A stability condition for the time step is necessary
because the Maxwell equations are hyperbolic partial dif-
ferential equations and the leapfrog method is an explicit
method. The stability condition for the time step in MTDM
is written as:

Δt <
min |xi − x j|

C
, (24)

where C is the velocity of light and xi and x j are the posi-
tions of the nodes of the electric or magnetic field [6]. In
order to investigate the influence of the time step on the
numerical stability, we measured the transmission rates TR
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Fig. 4 Transmission rates TR for Ct plotted using MQ, RMQ and
QSF.

for Δt. For the evaluation, Δt is set as:

Δt = Ct
min |xi − x j|

C
, (25)

where Ct is the stability coefficient. The transmission rate
TR for Ct was measured using the MQ, RMQ and QSF for
Nmin = 16, and is plotted in Fig. 4. We can see from this
result that TR using each RBF shows similar behavior. Ct

should be set to be less than 0.8, lower than the theoreti-
cal value. The computational accuracy does not improve
even if Ct becomes small. The reason for this result is not
currently clear and further detailed mathematical analysis
is required.

4. Conclusion
In the present study, the influence of the weight func-

tions on the computational accuracy and numerical stabil-
ity of the 3-D MTDM is investigated numerically. The con-
clusions obtained in the present study are summarized as
follows.

• The multi-quadratic, reciprocal multi-quadratic or
quadratic spline functions should be employed for the

radial basis function.
• At least 10 nodes in the domain of influence are nec-

essary for a stable calculation.
• The support radius R should be decided in consider-

ation of the number of nodes in the domain of influ-
ence.
• The computational accuracy does not necessarily im-

prove if the minimum number of nodes in the do-
main of influence increases and the time step becomes
small.
• The time step Δt should be set to be lower than the

theoretical value.

Some difficult problems for stable computation using
MTDM are still unclear, such as, the relation between the
number of nodes in the domain of influence and the com-
putational accuracy, and the relation between the time step
and numerical stability. To clarify these problems, a de-
tailed mathematical analysis is necessary, and is planned
as a future study.
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