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Finite-Orbit-Width Effects on Energetic-Particle-Induced Geodesic
Acoustic Mode∗)
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We identify linear properties of the energetic-particle-induced geodesic acoustic mode (EGAM) using eigen-
mode analysis based on the gyrokinetic theory. From the perturbed gyrokinetic equation with energetic particles,
we derive a dispersion relation of the EGAM. The behaviors of the roots vary depending on the safety factor.
Taking into account of the finite-orbit-width (FOW) effects, we examine variations of the growth rates of the
EGAM for various beam intensities. The analyses indicate that the FOW effects are small, within several percent
of the growth rates, for experimentally relevant radial wave numbers.
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1. Introduction
Understanding of energetic particles physics is of

great interest in the burning plasmas. The fusion reaction
produces 3.5 MeV alpha particles, while neutral beam in-
jection (NBI) induce the energetic particles as well. Such
energetic particles induce various mode excitations [1, 2].

Recent studies have disclosed the existence of
energetic-particles-induced modes with n = 0, where n is
a toroidal mode number. DIII-D experiments have found
mode excitation in the presence of the counter NBI [3].
The mode structure is identical to that of geodesic acoustic
mode (GAM) [4], but its frequency is about a half of that
of the GAM. Analyses based on a hybrid model includ-
ing MHD modes and energetic particles [5] have revealed
a new GAM-like mode, which has a disparate branch from
the GAM. The mode is referred to as energetic-particle-
induced geodesic acoustic mode (EGAM).

The EGAM has so far been studied with the hybrid,
drift kinetic and gyrokinetic models [3, 5–12]. Notice that
the hybrid model treatments have not considered kinetic
effects of the bulk particles themselves. Thus, they neglect
the Landau damping effects on the EGAM resonances. If
one considers a damping of the EGAM due to higher or-
der resonances, naturally one will come across finite-orbit-
width (FOW) effects. The FOW effects are essential for
estimating the damping rate of GAM [13]. To see its im-
pact on the EGAM, we extend the gyrokinetic theory of
EGAM by taking account of the FOW effects.

In this paper, we identify linear properties of the
EGAM, in terms of eigenmode analyses, for a given bump-
on-tail particle distribution. A perturbed gyrokinetic equa-
tion together with a quasi-neutrality condition closes the
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system to derive a dispersion relation of the EGAM. We
assess the FOW effects on the resonance of EGAM.

The reminder of this paper is the followings. In Sec. 2,
we derive the dispersion relation of the EGAM based on
the linear perturbed gyrokinetic equation with energetic
particles. In Sec. 3, we discuss parametric characteristics
of the roots of GAM and EGAM. In Sec. 4, we conclude
this work and remark the further validation on numerical
simulations.

2. Derivation of the Eigenmodes of
EGAM Based on the Gyrokinetic
Theory
We use the toroidal coordinates (r, θ, ζ), assuming

tokamak plasmas. For a given equilibrium distribution
F0(R, μ, v||), the linear perturbed gyrokinetic equation for
the zonal component with the perpendicular wave number
k⊥ = kr∇r is given by [14]

(
∂t + v||b · ∇ + iωD

)
gk⊥ = −

e
mv||
∂F0

∂v||
J0
∂φk⊥

∂t
, (1)

where J0 is the zeroth-order Bessel function. ωD =

v||b · ∇(krdr) is the magnetic drift frequency, where dr =

(q/ωci)(v|| + v2⊥/2v||) cos θ and ωci = qB/m. μ ≡ mv2⊥/(2B)
is the magnetic moment. We assume radial homogeneity,
so that a term proportional to ∂rF0 is dropped in Eq. (1).
We also neglect a term of the mirror force. The equilib-
rium distribution function F0 satisfies a local Maxwellian.

In reference to Ref. [9], we adopt a bump-on-tail dis-
tribution for F0, written as

F0 =

(
1

1 + nh

)
F0,bulk +

(
nh

1 + nh

)
F0,beam, (2a)
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)]
. (2c)

We represent Ti to be the temperature of the bulk particles.
Also we define v2

ti = Ti/mi. Other important parameters
are a beam intensity nh, which is defined as the proportion
of the number of the energetic particles to that of the bulk
ones, a beam velocity v0, which we here choose v0 = 4vti,
and a normalized beam temperature, T̂h, which is chosen
as unity for simplicity.

The r.h.s. of Eq. (1) can be rewritten as

− e
mv||
∂F0

∂v||
J0
∂φk⊥

∂t
= Y J0F0

e
Ti

∂φk⊥

∂t
, (3)

where Y ≡ (Ti/mv||)F−1(∂v||F0). Here, Y measures a devi-
ation from the Maxwellian distributions (e.g. for nh = 0,
Y/(Ti/miv||) = 1). The destabilization of the EGAM occurs
in the region Y < 0. The EGAM grows when a parallel
velocity gradient of the distribution function is negative at
the resonance.

The quasineutrality condition is given by
∫

d3vJ0δ f (g)
i,k⊥
+

∫
d3vYFi0(1 − J2

0)
eφk⊥

mi

=

∫
d3vδ fe,k⊥ , (4)

where δ f (g)
i,k⊥

is the perturbed gyrocenter distribution func-
tion for ion species, Fi0 = F0 is the equilibrium distri-
bution function for ion species, and δ fe,k⊥ is the electron
perturbed distribution function. The electrons are assumed
to be adiabatic. Representing Te as the electron temper-
ature, we yield (r.h.s of Eq. (4)) = δne = n0eφk⊥/Te for
(m, n) � (0, 0), or δne = 0 for (m, n) = (0, 0), where
Ti = Te.

Taking into account of modes with n = 0, m = 0, ±1, a
symmetry in the poloidal modes, and ωD � ωt, Eqs. (1 - 4)
yield a linear dispersion relation for EGAMs,

D(ω̂) = −iω̂ − i
q2

4
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[
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(
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2

)4⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ = 0. (5)

Here, q is the safety factor, ρi is the ion Larmor radius, and
Z1, Z2,0, Z4,0, Z2,FOW, Z3,FOW, Z4,FOW are the coefficients
related to resonance integrals. They are calculated from

the following resonance integrals:

Z1 = − Ti
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+

1√
π
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]
, (6a)
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, (6b)
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Here, ω and ζ are normalized by vti/Rq and R is the major
radius Z2,FOW, Z3,FOW, Z4,FOW are the contributions from
the FOW effects proportional to (qkrρi)2. By assuming
|Im[ω]| � |Re[ω]|, we keep only the imaginary parts of
Z2,FOW, Z3,FOW, Z4,FOW. The FOW contribution in the real
part is negligible in order of (krρiq)2, while that in the
imaginary part may not be negligible, since the lower res-
onant frequency and accordingly the larger population of
resonant ions are produced due the FOW effects [13]. Note
that in the limit of nh = 0, Eq. (5) is identical to the disper-
sion relation of the GAM in Ref. [13]. We also note that
the obtained dispersion relation is identical to that obtained
in Ref. [12], without the FOW effects.

In this analysis, we take only (0,0) and (1,0) modes,
but ones with |m| ≥ 2, in accordance with Ref. [13].
This approximation can be valid, since the mode frequency
of the EGAM is the same order as that of the standard
GAM. Furthermore, we compare the analytical results with
those obtained from numerical simulations GT5D [15]
(See Fig. 5). The analytical results are well consistent with
the numerical ones.

3. Eigenmode Analyses of the EGAM
with the FOW Effects
Numerically solving the dispersion relation of Eq. (5)

for various nh and q, we can find roots with the mode struc-
ture with m = 1 and n = 0. Without the beam injection we
see a single root in higher frequency and damping region.
We find that the root is consistent with the GAM. Includ-
ing the beam injection, we identify a new mode emerging.
We possibly identify the new root as the EGAM. Scan-
ning on nh, we see that the two distinct roots move on the
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Fig. 1 Plots of the GAM (rectangular) and EGAM (diamond)
roots mapping on the complex frequency plane (ω, γ),
for various beam intensities, in (a) q = 3.0, (b) q = 1.4,
and (c) q = 2.1 cases. Here, kr = 0 (i.e. no FOW effects)
is chosen.

complex frequency plane continuously. Thus, we can label
each mode either GAM or EGAM, by plotting the evolu-
tion of the roots from the zero-limit of the beam intensity.

Figure 1 illustrates evolutions of the calculated roots
mapping on the complex frequency plane (ω, γ), where ω
is a real frequency and γ is a growth rate normalized by
the standard GAM frequency ωGAM. For simplicity, we
here do not consider the FOW effects, but these findings
are consistent for cases including the FOW effects. In the
higher q case, as nh increases, an EGAM root becomes a
growing mode, while a GAM root keeps a damping one
(See Fig. 1 (a)). The real frequencies of the EGAM de-
creases with increasing nh, while those of the GAM in-
creases. We also see the frequency of the EGAM is mostly
half of that of the standard GAM, consistent with the pre-
vious literature [5, 7].

The behaviors of the two roots are qualitatively
changed depending on q. As seen in Fig. 1 (b), as nh in-
creases, the GAM root becomes a growing mode for the
lower q case, while the EGAM keeps damping one. So
we find that bifurcation of the growing mode is expected
depending on q.

Then, what happened in the critical q? We plot the
evolutions of the roots in the case for the intermediate q
(q = 2.1) in Fig. 1 (c). For nh = 0.003 - 0.004, the two
roots are very close. This observation indicates that the
two branches cross each other by a reconnection of the
two roots. Thus, decreasing q below the critical value or
q ∼ 2.1, the EGAM roots become damping modes and the
GAM ones become growing modes. A similar bifurcation
is also analyzed in Ref. [5].

We investigate the root evolution for various q (q =
1.3 - 3.0) and the fixed beam intensity nh = 0.15 in Fig. 2.
Notably, either the growing or damping modes are aligned
continuously, though their origins are different depending
on q. The growing mode maximizes its growth rate at q ∼
1.8 - 2.0. The damping mode minimizes its damping rates
at q ∼ 2.3. Increasing q, the real frequencies of both the
growing and damping mode decreases.

We here use krρi = 0.02 on plotting the damping mode
including the FOW effects in Fig. 2. We find a signifi-

Fig. 2 For a fixed beam intensity nh = 0.15 and the FOW effects
(krρi = 0.02), plots of growing and damping roots for
various q (q = 1.3 - 3.0). Labels of EGAM/GAM are
switched at q = 2.1. Either EGAM or GAM, one mode
is growing and the other is damping. We also plot the
evolution of the damping mode without FOW.

Fig. 3 Plots of the growth and damping rates of the analytical
roots as a function of q, for cases with and without the
FOW effects.

cant difference of the damping modes with and without the
FOW effects for the higher q (q > 2.3).

Continuously tracing roots as a function of q, we plot
the behaviors of both growing and damping roots, in Fig. 3.
For the growing mode, the difference, due to the FOW, is
small, within several %. On the other hand, the difference
of the damping rate is significant, especially for the case for
the GAM, i.e. q > 2.1. Thus, we conclude that the effects
of the FOW on the EGAM are weak for the experimentally
relevant parameter.

In Fig. 4, we plot the growth rates of the EGAM for
cases of q = 3.0 with various beam intensities, nh = 0.03 -
0.2. We compare cases with and without the FOW effects.
The results indicate that there is almost no difference for
the experimentally relevant parameters. The difference is,
at most, several percent.

In Fig. 5, we examine how much the FOW affects the
EGAM and GAM in the case with q = 3.0 and nh = 0.15.
For the assessment of the FOW effects, we use typically
krρi ∼ 0.02 - 0.06. For the EGAM, reduction of the growth
rate is of order (krρiq)2. We compare the growth rates of the
EGAM obtained from the eigenmode analyses with those
from the GT5D simulations, showing consistency.

On the other hand, scan of the GAM damping rate ex-
hibits significance of the FOW effects. Since the higher-q
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Fig. 4 Plots of the growth rate of the EGAM as a function of
beam intensity nh, fixed q = 3.0, for cases with and with-
out the FOW effects. The difference is quite small, within
several %.

Fig. 5 Plots of (a) growth rates and (b) damping rates of the
EGAM and GAM, respectively, as a function of krρi,
fixed q = 3.0 and nh = 0.15. We compare the results ob-
tained from the eigenmode analysis with those obtained
from the initial value problem calculated by GT5D.

damping rate without the FOW effects are almost negligi-
ble due to the proportionality of the damping rate to exp(-
q2ω2R2/2v2

ti). Whereas, the FOW involves an additional
damping term proportional to (qkrρi)2exp[-q2ω2R2/(8v2

ti)],
due to the resonance 1/(ω̂ − 2ζ) of Eqs. (6d) - (6f).

4. Conclusions
We have investigated the linear properties of the

EGAM. Together with the quasi-neutrality, we have solved
m = 0, ±1, n = 0 modes of the linear perturbed gyrokinetic
equations. We have derived the dispersion relation of the
EGAM and GAM including the energetic particles. Here,

bump-on-tail distributions represent the energetic particles.
We have taken into account of the finite-orbit-width (FOW)
effects on the EGAM. Obtained results are the followings:
i) Including the energetic particles, a new root emerges, be-
sides the original GAM root. The new root is the EGAM,
driven by the beam injection. ii) Depending on q, evo-
lutions of the two distinct roots can vary. For higher q,
the EGAM becomes a growing mode. On the other hand,
for lower q, the GAM becomes a growing one. For the
intermediate or critical q, typically at q ∼ 2.1, the two
roots reconnect with each other. iii) The FOW effects on
the EGAM are relatively weak, within the several percent,
for experimentally relevant parameters. For larger krρi, the
difference may be significant. The difference of the GAM
damping rates with and without the FOW effects are signif-
icant, since without the FOW effects the Landau damping
of the GAM is almost negligible at high q. The further
general reason why significance of the FOW effects only
on the GAM roots is put on future works.

This work was supported by the MEXT, Grant for
HPCI Strategic Program Field No.4: Next-Generation In-
dustrial Innovations. The computation was performed on
the Helios at the IFERC. One of the author (K.M.) thanks
H. Sugama for fruitful discussions regarding the derivation
of the eigenmode analyses.

[1] F. Zonca and L. Chen, Phys. Rev. Lett. 68, 592 (1992).
[2] H.L. Berk et al., Phys. Rev. Lett. 87, 185002 (2001).
[3] R. Nazikian et al., Phys. Rev. Lett. 101, 185001 (2008).
[4] N. Winsor et al., Phys. Fluids 11, 2448 (1968).
[5] G.Y. Fu, Phys. Rev. Lett. 101, 185002 (2008).
[6] H. Wang et al., Phys. Rev. Lett. 110, 155006 (2013).
[7] Z. Qiu et al., Plasma Phys. Control. Fusion 52, 095003

(2010).
[8] H.L. Berk and T. Zhou, Nucl. Fusion 50, 035007 (2010).
[9] D. Zarzoso et al., Phys. Plasmas 19, 022102 (2012).

[10] D. Zarzoso et al., Phys. Rev. Lett. 110, 125002 (2013).
[11] D. Zarzoso et al., Nucl. Fusion 54, 103006 (2014).
[12] J.-B. Girado et al., Phys. Plasmas 21, 092507 (2014).
[13] H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501

(2006).
[14] E.A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
[15] Y. Idomura et al., Nucl. Fusion 49, 065029 (2009).

3403068-4


