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A theory to describe coupled dynamics of drift waves and D’Angelo modes is presented. The coupled
dynamics is formulated by calculating fluctuation energy evolution. When drift waves dominate, turbulence
production is due to release of free energy in density profile. Drift waves in turn exert Reynolds stress to drive
secondary axial flows. When parallel flow shear is strong, D’Angelo modes dominate. Turbulent production
occurs from release of free energy in parallel flow shear. D’Angelo modes can generate a secondary structure in
density profile and can peak density profile. It is shown that when D’Angelo modes are unstable, they necessarily
contribute to an inward particle flux, that compete against an outward, down-gradient flux. Net inward, up-
gradient particle flux can result for strong flow shear, which can lead to density peaking in plasmas. Application
to laboratory and astrophysical plasmas is discussed.
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1. Introduction
Structural formation in turbulent plasmas is one of

fundamental problems in plasma physics [1, 2]. A well-
known example is the formation of zonal flows [3]. Pri-
marily, turbulence is driven by free energy stored in den-
sity or pressure gradient [4]. Once excited, drift wave tur-
bulence generate zonal flow by exerting Reynolds stress.
More recently, it is discussed that a different type of sec-
ondary flow structure, i.e. flows along magnetic fields, can
emerge from drift wave turbulence [5]. In this case, drift
wave turbulence with broken parallel symmetry can exert
residual stress to drive flows [6]. Flows in turn impact dy-
namics of turbulence. For example, flows can stabilize the
background turbulence. Flows themselves also can serve
as a source for turbulence. As a consequence, turbulent
plasmas are characterized by multiple driving free energy
and by multiple secondary structures. Their feedback and
cross coupling are key to understand dynamics of turbulent
plasmas.

As a specific example of turbulent plasmas with cou-
pled free energy source and secondary structures, here we
focus on the coupling of gradient in density and flows
along magnetic field lines. Indeed, flows along magnetic
field is ubiquitous and can be found in many systems. For
example, there are toroidal flows in magnetically confined
plasmas [5]. The toroidal rotation can be driven either by
external torque exerted from neutral beam injection or by
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intrinsic torque exerted by drift wave turbulence with bro-
ken parallel symmetry. Another example of flows along
magnetic field can be found in the earth’s magnetosphere
[7]. In this case, flows along the dipole magnetic filed of
the earth can drive several phenomena. In the polar mag-
netic cusp region, the parallel flows drive turbulent fluctu-
ation and can impact anomalous electron pitch angle scat-
tering [7]. In addition to these, astrophysical jets can also
flows along magnetic field. Magnetic field aligned with
flows themselves play an important role in collimating the
jet structure [8]. Thus, flows along magnetic fields play a
key role to understand phenomenology in several systems,
including laboratory, space, and astrophysical plasmas.

Impact of parallel flows on turbulence dynamics has
been studied in basic experiments. In the presence of
parallel flow shear, parallel compression for ion acoustic
waves increases and the phase velocity of ion acoustic in-
creases. As a consequence, the shear modified ion acous-
tic waves (SMIA) are less Landau-damped and are easier
to be destabilized [9–11]. The coupling of SMIA to drift
wave type instability has also been studied [12]. When the
parallel flow shear increases further, the parallel compres-
sion can be negative to drive fluid like, Kelvin-Helmholtz
(KH) type instability. The instability is called a D’Angelo
mode [14] and the recent experiment [13] reveals the cou-
pling of D’Angelo modes and drift waves. Importantly,
that experiment measures transport flux and identifies cou-
pled density and parallel flow transport. In short, it was
reported that: i.) density gradient driven turbulence leads
to outward particle flux and exert Reynolds forcing to drive
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inversion of axial flows. ii.) parallel flow shear can also act
as a source for turbulence. When turbulence is driven by
parallel flow shear, particle flux can be up-gradient to peak
the density profile.

From theoretical perspective, coupling of drift waves
and parallel flow shear driven KH was studied by
D’Angelo [14]. In that study, a detailed feature of instabil-
ity was discussed. Later the effect of magnetic field shear
was addressed [15]. Stabilizing effect of parallel flows on
underlying turbulence is tested numerically [16–18]. For
the impact on transport, application to toroidal momentum
transport and heat transport was studied [19]. However,
the effect of parallel flow shear driven instability on parti-
cle transport has not been understood well. For example,
the observed density peaking behavior cannot be addressed
by existing theories.

In this paper, we present a theory to describe the cou-
pled dynamics of drift waves and D’Angelo modes. We
use a simplified fluid model for collisional drift wave insta-
bility and parallel flow shear driven D’Angelo mode. The
coupled dynamics of drift waves and D’Angelo modes is
formulated in terms of fluctuation energy balance evolu-
tion. The fluctuation energy evolution is determined by
the balance between collisional dissipation and fluctuation
production. When drift waves dominate, the production
of fluctuation energy is due to the release of free energy
in density gradient. Flows along magnetic field can be
driven as a secondary structure. When D’Angelo modes
dominate, fluctuation energy is produced by releasing free
energy in parallel flow shear. As a secondary structure,
peaked density profile can be generated. A simplified
quasilinear calculation implies that when D’Angelo modes
are unstable, inward particle flux is possible.

The remaining of the paper is organized as follows.
In section 2, a simplified fluid model for collisional drift
waves and D’Angelo modes is presented. In section 3, fea-
ture of linear instability is summarized. Instability diagram
is presented. The coupled dynamics of drift waves and
D’Angelo modes is analyzed in terms of fluctuation energy
balance in section 4. In section 5, the form of transport flux
is discussed by using quasilinear calculation. Section 6 is
summary and discussion.

2. Model
Here we describe a model used to analyze coupled dy-

namics of drift waves and D’Angelo modes. The model is
given by:

d
dt
ρ2
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eφ
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− ne
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)
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Here, d/dt = ∂t + (c/B)ẑ × ∇φ is the total time derivative

with E × B advection, ρs is the ion sound Larmor radius,
φ is electrostatic potential, D‖ = v2

the/νe is the parallel dif-
fusivity of electrons, vthe is electron thermal velocity, νe is
electron collision frequency, ne is the electron density, n0

is a reference density, v‖ is the parallel velocity of ions. For
notation, ‖ and ⊥ denote the direction parallel and perpen-
dicular to the magnetic field, respectively. The correspon-
dence ‖↔ z and⊥↔ (r, θ)↔ (x, y) is understood hereafter.
The model describes coupled dynamics of drift waves and
D’Angelo modes. Up to coupling to ion parallel flows,
the model reduces to Hasegawa-Wakatani model for colli-
sional drift wave turbulence [20]. The phase shift for elec-
tron density is caused by electron collision. By including
coupling to ion parallel flows, we introduce another source
of free energy, i.e. parallel flow shear.

3. Linear Analysis
Here we describe linear mode analysis to elucidate the

instability dynamics described by the model. By lineariz-
ing the equations and by Fourier analyzing, we obtain dis-
persion relation as:

ρ2
s k2⊥

ik2
‖D‖
ω =

−(ω − ω∗e)ω + (c2
s k2
‖ − csk‖ρsky〈vz〉′)

(ω + ik2
‖D‖)ω − c2

s k2
‖

.

(2)

Here ω∗e ≡ ρsky(cs/Ln) is the electron drift frequency and
L−1

n = −〈n〉′/n0 is the electron density scale length. The
bracket 〈...〉 is used to denote mean quantities.

In order to elucidate instability caused by parallel flow
shear, here we focus on adiabatic electron limit k2

‖D‖ � ω.
In this limit, the dispersion relation reduces to:

(1 + k2
⊥ρ

2
s )ω2 − ω∗eω − k2

‖ c
2
s

(
1 − ky

k‖
〈vz〉′
ωci

)
= 0. (3)

From this relation, we can see that parallel flow shear mod-
ifies parallel compressibility of ion acoustic waves. When
kyk‖〈vz〉′ < 0, the parallel flow shear enhances parallel
compression. The phase velocity in the parallel direction
becomes faster and as a result, ion acoustic waves are less
Landau-damped. This shear modified ion acoustic waves
(SMIA) are thus easier to be destabilized [9]. For exam-
ple, this effect can be at work for current driven ion acous-
tic waves, where modes are destabilized by electron in-
verse Landau damping. The same mechanism is effective
for electron drift waves, which are driven by inverse elec-
tron Landau-damping and damped by ion Landau-damping
[12]. Here we note that in these cases, parallel sheared
flows are not acting as a direct free energy source. Rather,
it mediates other modes to access to free energy, such as
electron current for ion acoustic waves or density profile
for drift waves. On the other hand, when kyk‖〈vz〉′ > 0, the
parallel compressibility can be ’negative’. In these cases,
parallel flow shear act as free energy source for driving in-
stability. Strong fluid like instability can arise to release
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Fig. 1 Instability diagram. (a) Instability diagram with k‖Ln = 1/50 and (b) Instability diagram with kyρs = 0.8. In both cases, blue is
without coupling to drift waves, green is original work by D’Angelo, and red is this work. Above the red curve, D’Angelo modes
can be unstable and fluctuations are supported by D’Angelo modes. Below the curve, D’Angelo modes are stable and drift waves
are supporting fluctuation.

Fig. 2 Contour plot for unstable D’Angelo modes at a radial location. Surface of the cylinder is opened into 2d plane (θ, z). (a) potential
fluctuation contour. (b) parallel velocity fluctuation contour. Both are plotted for 〈vz〉′ < 0. Due to necessary condition for
instability, only modes with kyk‖ < 0 can be unstable. As a result, fluctuation has a fixed pitch, as shown in the figure.

free energy in parallel flow shear. The unstable ion acous-
tic waves are coupled to drift wave branch ω∗. The cou-
pling to drift waves introduces stabilizing effect on unsta-
ble ion acoustic waves [14].

The above discussion can be summarized into insta-
bility diagram, as shown in Fig. 1. The diagram is evalu-
ated by solving Eq. 3 for marginal condition. The marginal
condition is:

k‖csρskθ〈vz〉′ = k2
‖ c

2
s +

ω2∗e
4(1 + k2⊥ρ2

s )
. (4)

The relation is plotted in Fig. 1 for: (a) k‖Ln = 1/50
and (b) kyρs = 0.8. In both figures, different colors de-
scribe marginal condition for: ion acoustic waves without
drift wave coupling (blue), the original D’Angelo modes
(green), and the marginal condition for the model pre-

sented here (red). As we can see from the graph, the drift
wave coupling is stabilizing for flow shear driven modes.
Compared to the original work, the model in this paper in-
cludes ion finite inertia. As a result, drift wave frequency
reduces from ω∗e to ω∗e/(1 + ρ2

s k2⊥). Thus stabilizing ef-
fect from drift waves is reduced. Above the red curve,
D’Angelo modes are unstable and can support turbulent
fluctuation. Below the curve, D’Angelo modes are stable
and collisional drift waves support turbulent fluctuation.

An important feature of D’Angelo modes is that
modes with a preferred pitch are selectively excited [21].
This is shown in Fig. 2. This property follows from the
fact that the condition kykz〈vz〉′ > 0 must be satisfied in
order to access to negative compressibility. For example,
for 〈vz〉′ < 0, only modes with kykz < 0 is unstable, while
modes with kykz > 0 is stable. In this case, potential fluc-
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tuation has a pattern as shown in Fig. 2. Here, potential
is plotted in (θ, z) plane. The pattern of parallel velocity
fluctuation is also plotted. In terms of phase, the parallel
velocity fluctuation is shifted by δ = tan−1(γ/ωr) � π/4.
This is a relation such that the velocity fluctuation drives
anomalous loss of parallel momentum transport.

4. Turbulence Energetics
In order to elucidate the coupled dynamics of drift

waves and D’Angelo modes, here we discuss fluctuation
energetics [22]. From the model equations, the evolution
of the total fluctuation energy, I ≡ ∫

d3x{(ρs∇⊥eφ̃/Te)2 +

(ñe/n0)2 + (ṽ‖/cs)2}/2 is given as:

∂tI =
∫

d3x(P −D), (5a)
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Te
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n0

∂x〈ne〉
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+ csρs∂y
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Te

ṽ‖
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∂x〈vz〉
cs
, (5b)

D = D‖
{
∇‖
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ñe

n0
− eφ̃

Te

)}2

. (5c)

Here P is the production term for turbulent fluctuation and
D is the collisional dissipation. The production term takes
the form of flux times gradient. For example, the first term
is the product of turbulent particle flux and the gradient in
the particle profile, while the second term is the product
of turbulent momentum flux 〈ṽxṽ‖〉 and the gradient in par-
allel flow velocity. In this sense, the production term can
be thought of as entropy production term for fluctuation.
Importantly, the production term identifies the direction of
energy flow (Fig. 3). For example, if the production term is
positive, fluctuation gains energy from free energy source.
On the other hand, if the production term is negative, fluc-
tuation loses energy to drive secondary structures, such as
parallel flows or peaked density profiles.

As an illustration of the fluctuation production, here
we first look at fluctuations dominated by drift waves.
In this case, by keeping leading order contribution in the
particle and momentum transport channel, the production

Fig. 3 A schematics for fluctuation production. When the pro-
duction is positive, turbulence gains energy by releasing
free energy stored in gradients. When the production is
negative, turbulence loses energy and can drive a sec-
ondary structure.

term is given as:

〈P〉 = Dn

L2
n
−

∑
k

kyρscsk‖
k2
‖D‖
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eφ̃k

Te

∣∣∣∣∣∣
2

∂x〈vz〉. (6)

Here the average is evaluated by integrating in y and z di-
rection. Dn =

∑
k c2

s/(k
2
‖D‖)ρ

2
s k2

y |eφ̃k/Te|2 is the turbulent
diffusivity. The first term is the production term associated
with density relaxation. This term is positive definite; thus
density gradient is driving turbulent fluctuation. This is
plausible since we are investigating drift wave dominated
regime. In contrast, the second term, which is due to paral-
lel flow coupling, can be negative. In this case, drift wave
turbulence can generate secondary flow structures in mag-
netic field direction. Importantly, to have a finite contribu-
tion in this channel, we must have kyk‖ � 0 where (...) de-
notes spectrum average. In other words, we need a symme-
try breaking of drift wave turbulence in the magnetic field
direction. This is very analogous to the nature of resid-
ual stress to drive intrinsic rotation in toroidal plasmas [6].
In the case of basic experiment, we note that experimental
configuration can break the symmetry, since source is lo-
cated at one end while sink is located at the other end. Thus
the symmetry in the magnetic field direction of typical ba-
sic experiments is broken and it is quite likely to have non-
zero residual stress. As a consequence, it is quite likely to
produce a secondary flow structure along magnetic field by
drift wave turbulence.

As the second illustration, we discuss production term
for D’Angelo modes. In this case, the production term is
evaluated as:

〈P〉 = DV

( 〈vz〉′
cs

)2

−
∑

k

csk‖ρsky〈vz〉′
γKH + k2

‖D‖

∣∣∣∣∣∣
eφ̃k

Te
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2

. (7)

Here DV =
∑

k c2
s/(γKH)ρ2

s k2
y |eφ̃k/Te|2 is the eddy viscosity

on parallel flows. The first term is positive definite. This
term is associated with release of free energy in parallel
flow velocity gradient. Turbulent fluctuation is produced
from parallel flow shear. On the other hand, D’Angelo
modes can create a secondary structure in density profile.
This effect is captured in the second term. Note that the
second term is explicitly dependent upon 〈vz〉′, i.e. a tensor
quantity, thus it may look peculiar at the first glance. How-
ever, the quantity is multiplied by another tensor quantity,
i.e. k‖ky, thus the second term as a whole is a scalar. The
second term is negative definite, when D’Angelo modes
are unstable. This is since if D’Angelo modes are unsta-
ble, the condition kyk‖〈vz〉′ > 0 must be satisfied so as to
have ‘negative compressibility’ effect. As a consequence,
D’Angelo modes can convert fluctuation energy to produce
a secondary structure in density profile. In this case, up-
gradient, net inward flux can arise and can peak density
profile.
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5. Transport
In order to elaborate the impact of the coupled dy-

namics on transport processes, here we explicitly evaluate
transport fluxes. By using a simplified quasilinear theory,
we have:

Γn
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, (8a)
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Here Θ(γKH) is the step function. The transport flux has
both diagonal and off-diagonal terms. The first term in the
particle flux is diagonal term, which is driven by density
gradient. At the simplest level, this term is related to turbu-
lent diffusivity. The second term is off-diagonal term that
is related to gradient in parallel flow velocity. Importantly,
when D’Angelo modes are unstable, the last term tend to
drive inward flux. Later we show that the net inward flux
is indeed possible for certain plasma parameters. The mo-
mentum flux also has diagonal and off-diagonal terms. The
second term is diagonal term, which is driven by parallel
flow velocity gradient. At the simplest level, this term is
related to eddy viscosity on the flow. The first term is
off-diagonal term. This is akin to residual stress, which
is important to understand the generation mechanism of
intrinsic rotation. Symmetry breaking is required to have
non-vanishing residual stress.

To be more specific, here we discuss transport caused
by D’Angelo modes. When D’Angelo modes are domi-
nant, the turbulent flux reduces to:

Πrz � −DV〈vz〉′, (9a)
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2
KH)ρ2

s k2
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∣∣∣eφ̃k/Te
∣∣∣2 is the

eddy viscosity on flows. When D’Angelo modes are dom-
inant, momentum flux is down the gradient. The flux is
characterized by the eddy viscosity. The particle flux con-
sists of two terms. The first part is due to density gradi-
ent. This term yields diffusive, outward flux. The second
term is off-diagonal term due to gradient in parallel flows.
Importantly, this term is negative definite for peaked pro-
file Ln ∝ −d〈n〉/dx > 0, since necessary condition for
D’Angelo modes to be unstable requires k‖ky〈vz〉′ > 0.

Physically put, the condition is required for turbulence to
mix free energy in parallel flow velocity gradient. For a
given configuration, the parallel momentum flux ∝ kyk‖
must have a corresponding sign to relax velocity profile.
In this situation, the mixing in parallel momentum re-
sults in inward flux of particle. The inward particle can
compete against the outward, diffusive flux. When the
influx due to the parallel flow velocity becomes strong
enough, net inward, up-gradient particle flux can result
and can peak density profile. By using plasma parame-
ters for D’Angelo instability: ρsky = 0.8, k‖Ln = 0.06,
eφ̃/Te ∼ 0.2, cs = 3 × 103 [m/sec], Ln = 0.04 [m],
v′z = 2 × 105 [1/sec], and D‖ = 1.4 × 104 [m2/sec], we have
Γn ∼ −0.17×1021 [1/m2sec]. Thus net inward flux and den-
sity peaking is possible for typical plasmas parameters, as
observed in experiments. Finally, we note that Ln < 0 for
hollowed profile, so the off-diagonal term produces out-
ward flux. In this case, D’Angelo mode tends to further
hollow the profile.

6. Summary and Discussion
In summary, we have discussed coupled dynamics of

drift waves and D’Angelo modes. Plasma parameters that
determines which modes are dominant are estimated from
Fig. 1. Dynamics is characterized by calculating turbu-
lent fluctuation production. The results are summarized
in Table 1. When drift waves are dominant, fluctuation is
driven by density gradient. Instability is set by phase shift,
which is due to electron collision in this model. Trans-
port is characterized by diffusive particle flux and residual
stress on flows. In particular, to have non-zero residual
stress, symmetry breaking in the parallel direction is re-
quired. When D’Angelo modes are dominant, fluctuation
is driven by parallel velocity gradient. Instability is due to
negative compressibility, which is only available for fluc-
tuation with kyk‖〈vz〉′ > 0. As a consequence, mode pat-
terns are characterized by fixed pitch, as depicted in Fig. 2.
Parallel momentum flux is down the gradient and is char-
acterized by eddy viscosity. Particle flux consists of both
density gradient driven diffusive flux and parallel flow ve-
locity driven off-diagonal term. The off-diagonal particle
flux is inward for unstable D’Angelo modes. For typical
plasma parameters, net inward, up-gradient particle flux is
possible, which can be thought of as an origin of density
peaking behavior.

We discuss a few caveats on the model presented in
this work and necessary future development. First of all,
in this work we have not addressed the role of perpendic-
ular flow. In particular, turbulence driven zonal flows can
be important element in understanding the coupled dynam-
ics. In this case, coupling among drift waves, zonal flows,
and axial flows must be formulated. A possible approach
for this is to calculate fluctuation energetics as well as po-
tential fluctuation balance, which would yield momentum
theorem akin to that by Charney and Drazin in geophys-
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Table 1 A summary of analysis. Relevant driving free energy, relevant destabilizing mechanism, impact on transport are listed. In the
presence of multiple driving source, transport interfere each other. For example, drift waves drive transport of parallel momentum,
which can result in parallel flow inversion. Alternatively, parallel flow shear driven D’Angelo modes tend to drive inward particle
flux, which can cause net inward particle flux to peak density profile.

Drift waves D’Angelo modes
Driving free energy ∇n ∇vz

Destabilizing mechanism Phase shift Negative compressibility
ñ ∝ (1 − iδ)φ̃ Necessary condition for instability:

(electron collision in this model) kyk‖〈vz〉′ > 0

Transport: particle Outward, diffusive particle flux Inward contribution in particle flux
parallel momentum Residual stress Eddy viscosity on flows

ical fluid dynamics [23–25]. Secondary, we note that the
simplified quasilinear transport modeling presented in this
work may not be applicable when plasmas are dynami-
cally perturbed [26]. In this case, dynamical perturbation
can immediately couple to turbulence dynamics to impact
transport processes [27]. This effect may be relevant when
we try to control particle transport via parallel flows by in-
jecting neutral beam. In this case NBI would dynamically
perturb plasmas and transport in these perturbed plasmas
would require transport modeling beyond quasilinear the-
ory. Finally, another important extension is to extend the
analysis presented in this work to collisionless plasmas,
where kinetic effect plays an important role. Indeed, some
of the branches driven by parallel flows are characterized
by resonance drive. Then we may ask a question of what
happens when the resonance is strong enough. In this case,
we would expect that phase space structures can form and
phase space turbulence can develop [28]. Transport in this
situation is described not by simplified quasilinear diffu-
sive flux but by Lenard-Balescu flux with dynamical fric-
tion [29, 30]. Phase space structures may convert poloidal
and toroidal flows to produce doubly connected flow struc-
ture [31].

With the caveat in mind, here we discuss a possible ap-
plication of the ideas presented in this paper. In the context
of fusion research, this type of parallel flow shear driven
turbulence may be used for fueling control. When parti-
cle source is localized in peripheral region, the particles
can be transported inward by using the parallel flow shear
driven turbulence. In the context of astrophysical plasmas,
we may be able to exploit this type of ides to explain colli-
mation of jets. After injected, astrophysical jets may drive
Kelvin-Helmholtz like instability as presented in this work.
In that case, parallel flow shear driven instability may drive
inward flux of plasmas and may introduce pinching effect,
whereby collimation may result.
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