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The simulation study of nonlocal transport for peripheral density source is performed using the 4-field re-
duced MHD model. A spherical density source is applied in the plasma edge, after saturation of the resistive
ballooning turbulence is attained. After a while, the source is switched off. It is found that the nonlocal transport
appears at the location far from the edge source, which induces not only (0,0) and (±1, 0) modes but also finite n
modes, where (m, n) indicates the set of poloidal mode number m and the toroidal mode number n. These modes
interact with each other by the nonlinear and/or toroidal couplings. After switching-on the source, the forma-
tion of the spiral structure with poloidal rotation is observed, which yields a connection between core and edge
regions. The simulation result indicates that 2D transport plays an essential role to the transient plasma response.
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1. Introduction
The transient transport events are observed in the mag-

netic confinement devices [1–9]. For example, the cold
pulse experiment shows that a rapid transient increase in
the electron temperature in the plasma core in response to
an abrupt cooling of the edge. The time scale of the tran-
sient events is much faster than the diffusive time scale and
the local transport model fails to reproduce them. The non-
local transport was theoretically investigated based on the
1D integral heat flux model [10, 11]. The avalanche was
considered as a candidate to explain the nonlocal trans-
port [12, 13]. Inagaki et al. discussed the electron tem-
perature fluctuations with a long radial correlation length
in ECRH plasma of LHD [14]. It is speculated that such a
long-range fluctuation plays a role for the fast pulse propa-
gation. Recently, we have reported that the nonlocal trans-
port appears when a toroidally-elongated cylindrical den-
sity source is applied at the plasma edge by 4-field Re-
duced MHD simulation [15]. It appears as a transient
plasma response after switching-off the source. It is found
that (1,0) mode plays a role to produce the nonlocal trans-
port which is directly excited by the edge source. The
essential difference with geodesic acrostic mode(GAM)
is that externally applied density source excites it, not
Reynolds stress by turbulence [16,17]. It is confirmed that
nonlocal transport does not appear in the cylinder limit,
therefore, the toroidal coupling is essential like GAM.

In this work, simulation study of nonlocal transport in
tokamak plasmas has been performed using the 4-field re-
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duced MHD model. A spherical density source is applied
in the plasma edge, after the steady state of resistive bal-
looning turbulence is attained. After a while, the source
is switched off. To investigate the geometrical effect of
source shape, it is compared with the toroidally-elongated
cylindrical density source. It is found that the mechanism
to produce the nonlocal transport is the same, however,
it appears after switching-on the source for the spherical
source, on the other hand, it appears just after switching-off
it for cylindrical one. This paper is organized as follows. In
section 2, the model equation is briefly explained and sim-
ulation results are discussed in section 3. The summary is
given in section 4.

2. Model Equation
The 4-field reduced MHD model consists of vortic-

ity equation, Ohm’s law, parallel momentum equation, and
density evolution equation [18, 19]. The poloidal Alfvén
time and the plasma minor radius are used for the normal-
ization. In the circular tokamak geometry (r, θ, ζ), these are
given by

dU
dt
= −∇‖J − [2r cos θ, p] + μ∇2

⊥U, (1)

∂A
∂t
= −∇‖F + η‖J, (2)

dv
dt
= −∇‖p + μv∇2

⊥v, (3)

dp
dt
= β̂[r cos θ, F] − β̂∇‖(v + δJ)

+κ⊥∇2
⊥p + κ‖∇2

‖ p + S , (4)
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where d/dt = ∂/∂t + [φ, ], ∇‖ = ∇(0)
‖ − [A, ], [ f , g] =

(∂ f /∂r)(∂g/r∂θ)−(∂ f /r∂θ)(∂g/∂r), ∇2⊥ = (∂/r∂r)(r∂/∂r)+
∂2/r2∂θ2, U = ∇2⊥(φ + δi p), F = φ − δe p, J = ∇2⊥A,
τ = Te/Ti, δ = c/(aωpi), δi = δ/(1 + τ), δe = δτ/(1 + τ),
β̂ = β/(1 + β). δ is the normalized ion skin depth, which
represents the finite Lamor radius effect. The magnetic
curvature term is retained in Eqs. (1) and (4) to represent
ballooning mode. The electron temperature is assumed to
be isothermal, so that the pressure perturbation is deter-
mined only by the density perturbation. In this study, the
spherical source is introduced in Eq. (4), which is given by

S = SAMP exp

(
− r2 + r2

s − 2rrs cos θ + ζ2/ε2

2Δ2

)
, (5)

where rs represents the location of source, ε is the inverse
aspect ratio and Δ, the half width of source, respectively.
In the code, the finite difference in r, and pseudo-spectral
in θ and ζ are adopted. The time step is advanced by
the predictor-corrector method. The simulation parame-
ters are chosen as β = 10−2, δ = 10−2, τ = 1, ε = 1/3,
μ = 6.5 × 10−6, μv = 2.6 × 10−5, η‖ = 10−5, κ⊥ = 2 × 10−7,
κ‖ = 1, SAMP = 10−2, rs = 0.8, Δ = 0.1. The mesh size and
the time step are given by 257 × 200 × 100 for (r, θ, ζ) and
Δt = 10−3, respectively. 2/3 de-aliasing rule is applied for
the calculation of nonlinear terms. The initial equilibrium
pressure is given by Peq(r) = (β/ε)(1−r2)2. The initial cur-
rent profile is calculated by the cylindrical force balance.

3. Simulation Result
In this simulation, the spherical source is applied at

t = 960 after saturation of the resistive ballooning turbu-
lence, which is excited in the peripheral region. Then, the
source is switched off at t = 1800. Figure 1 shows the time
evolution of internal energy for each Fourier mode, which
is defined by

Em,n ≡ 1
2

∫ 1

0
rdr|pm,n(r)|2, (6)

where m and n represent the poloidal and toroidal mode
numbers. The discrete Fourier transform (DFT) is given
by

pm,n(r) =
1

MN

M∑
m=0

N∑
n=0

p(r, θ, z) exp(imθ + inζ). (7)

It is shown that the energy is directly transferred into (0, 0)
and (±1, 0) modes as well as finite n modes from the source
at t = 960. Figure 2 shows the time evolution of flux-
averaged total density profile at t = 960, 1800, 2500, which
is calculated by

Ptot(r) = Peq(r) + p0,0(r). (8)

It is shown that the nonlocal transport appears after
switching-on the source, namely, at t = 1800, which is dif-
ferent from the case with toroidally-elongated cylindrical

Fig. 1 Time evolution of internal energy for each Fourier mode.

Fig. 2 Time evolution of flux-averaged total density profile and
q-profile at t = 1800.

source(ζ2/ε2 → 0 in Eq. (5)). In that case, it appears just
after switching-off the source. The essential difference be-
tween these sources is that the spherical source consists of
not only (0, 0) and (±1, 0) modes but also finite n modes.
The q-profile is also shown in Fig. 2, where q indicates the
safety factor. Although the nonlocal transport appears in
the vicinity of q = 3/2 surface, it is not an exact location of
q = 3/2 surface. Figure 3 shows the contour plots of den-
sity fluctuation in the poloidal cross section with ζ = 0 at
t = 960 (top) and t = 1800 (bottom), which consist of only
(±1, 0) Fourier mode. The dipole structure starts to deform
after the switching-on the source and the spiral structure
appears, which connects the core region and edge region.

The detail analysis is carried out based on the energy
balance equations for p0,0(r) p±1,0(r) and v±1,0(r), which
are given by

∂

∂t
1
2
|p0,0(r)|2 = p0,0(r)NLp

0,0(r)

+i
β̂

2
p0,0(r)(−kθF−1,0(r) + kθF1,0(r))

−i
β̂

2
p0,0(r)

(
∂F−1,0(r)
∂r

− ∂F1,0(r)
∂r

)

+κ⊥p0,0(r)∇2
⊥p0,0(r) + p0,0(r)S 0,0, (9)
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Fig. 3 Contour plot of density fluctuation in the poloidal cross
section ζ = 0 at t = 960 (top) and t = 1800 (bottom),
respectively. It consists of only (±1, 0) Fourier mode.

∂

∂t
1
2
|p1,0(r)|2 = p∗1,0(r)NLp

1,0(r)︸������������︷︷������������︸
PRHS1

+i
β̂

2
p∗1,0(r)(2kθF2,0(r))︸����������������������︷︷����������������������︸

−i
β̂

2
p∗1,0(r)

(
∂F0,0(r)
∂r

− ∂F2,0(r)
∂r

)
︸�������������������������������������︷︷�������������������������������������︸

PRHS2

−iβ̂δp∗1,0(r)k‖J1,0(r)︸������������������︷︷������������������︸
PRHS3

−iβ̂p∗1,0(r)k‖v1,0(r)︸�����������������︷︷�����������������︸
PRHS4

+κ⊥p∗1,0(r)∇2
⊥p1,0(r)︸�������������������︷︷�������������������︸

PRHS5

+ip∗1,0
dPeq

dr
kθφ1,0(r)︸�������������������︷︷�������������������︸

PRHS6

−κ‖p∗1,0k2
‖ p1,0︸����������︷︷����������︸

PRHS7

+p∗1,0(r)S 1,0, (10)

∂

∂t
|v1,0(r)|2 = v∗1,0(r)NLv

1,0(r)︸������������︷︷������������︸
VRHS1

−iv∗1,0(r)k‖p1,0(r)︸���������������︷︷���������������︸
VRHS2

−i
dPeq

dr
v∗1,0(r)kθA1,0(r)︸����������������������︷︷����������������������︸
VRHS3

+μvv∗1,0(r)∇2
⊥v1,0(r)︸������������������︷︷������������������︸

VRHS5

. (11)

Here ∗ indicates the complex conjugate, p∗1,0(r) = p−1,0(r),

Fig. 4 Radial profile of each term in RHS of Eq. (9) at t = 1800.

v∗1,0(r) = v−1,0(r) and kθ = m/r, k‖ = mq(r) + n with m = 1
and n = 0 are wave numbers for (1, 0) mode. In Eq. (10),
PRHS1 indicates the convective nonlinearity, PRHS2, the
toroidal coupling, PRHS3, the compressibility by the cur-
rent, PRHS4, the compressibility by the parallel ion ve-
locity, PRHS5, the dissipation, PRHS6, the diamagnetic
contribution of convective nonlinearity, PRHS7, the paral-
lel thermal transport, respectively. In Eq. (11), VRHS1 in-
dicates the the convective nonlinearity, VRHS2, the com-
pressibility by the density, PRHS3, the compressibility by
the electromagnetic perturbation, PRHS5, the dissipation,
respectively.

The convective nonliearities are expressed by the three
wave coupling as

NLp
m,n(r) =

∑
m
′
+m

′′
=m

n′+n′′=n

{
−[φm′

,n′ (r), pm′′
,n′′ (r)]

+β̂[Am′
, n′ (r), vm′′

,n′′ (r) + δJm′′
,n′′ (r)]

}
, (12)

NLv
m,n(r) =

∑
m
′
+m

′′
=m

n′+n′′=n

{
−[φm′

,n′ (r), vm′
,n′′ (r)]

+[Am′
,n′ (r), pm′′

,n′′ (r)]
}
. (13)

Figures 4-6 show the radial profile of each term in
RHS of Eqs. (9), (10) and (11) at t = 1800.

It is confirmed that the convective nonlinearity in
Eq. (9) contributes the nonlocal transport, via three wave
coupling (1, 0) + (−1, 0) → (0, 0) comparing to the case
without the convective nonlinearity in Eq. (9) after t = 960.
On the other hand, the balance between the toroidal cou-
pling (PRHS2) and the compressibility by the parallel ion
velocity (PRHS4) in Eq. (10) mainly drives p±1,0 modes
(Fig. 4). Similarly, v±1,0 mode is driven by the balance be-
tween the convective nonlinearity (VRHS1) and the com-
pressibility by the electromagnetic perturbation (VRHS3)
(Fig. 5). To confirm the importance of the toroidal cou-
pling, the simulation in which the toroidal coupling is
switched off at t = 960 (in the cylinder limit) is also carried
out. It is found that the nonlocal transport does not appear
in this case [16, 17].
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Fig. 5 Radial profile of each term in RHS of Eq. (10) at t = 1800.

Fig. 6 Radial profile of each term in RHS of Eq. (11) at t = 1800.

4. Summary
The nonlinear simulation is performed using the 4-

field RMHD model with density source to investigate the
nonlocal transport phenomena. It is found that the nonlo-
cal transport appears in the vicinity of q = 3/2 surface af-
ter switching-on the source as a transient plasma response.
In this simulation, p±1,0(r) modes play an important role
in the nonlocal transport. The simulation result is sum-
marized as follows: (1) When the spherical source is ap-
plied in the plasma edge, the energy is directly transferred
into p0,0(r) and p±1,0(r) modes as well as finite n modes
(Fig. 1). (2) When the source is switched on, the dipole
structure starts to deform and the spiral structure is formed
by p±1,0(r) modes, which connects the core and the edge
regions (Fig. 3). (3) p±1,0(r) modes interact with p0,0(r) via
the three wave coupling and the toroidal coupling, which
produces the nonlocal transport in the vicinity of q = 3/2
surface, which corresponds to the least rational number
in this system. We confirm this mechanism not only by
simulations without the convective nonlinearity in p0,0(r)

evolution equation or without the toroidal coupling (in the
cylinder limit), but also by the detail analysis on each en-
ergy balance equation. It is found that the mechanism to
produce the nonlocal transport is the same as the cylin-
drical source, however, it just appears after applying the
source. The nonlocal transport obtained in this simulation
is driven by the macroscopic structure, which shows some
similarity to experimental observation [14]. Since the con-
ventional 1D model can not reproduce such a macroscopic
structure [10, 11], 3D treatment is necessary to understand
the nonlocal transport. Introducing sink instead of source
in peripheral region, we have preliminary investigated non-
local transport, so far we did not find nonlocal transport in
4-field model. As future works, (1) the q-dependence (the
role of rational surface), (2) the cold pulse propagation tak-
ing electron temperature fluctuation into account should be
investigated to identify the nonlocal transport.
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