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The finite difference time domain method (FDTDM) is a robust numerical scheme for time-dependent elec-
tromagnetic wave propagation phenomena that uses orthogonal meshes, like staggered meshes, also known as Yee
lattices. However, treating complex shaped domains is challenging for the FDTDM. Meshless methods, in con-
trast, do not require meshes for a geometrical structure. The meshless time domain method (MTDM), based on
the radial point interpolation method, can be used for numerical simulations in computational electromagnetics.
In MTDM, shape functions have to be generated before the time-dependent calculation, and the computational
cost involved can be very large. We herein propose a new method for reducing the computational cost of gener-
ating shape functions and we confirm the effectiveness of the proposed method by numerical experiments.
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1. Introduction
In the electron cyclotron heating system used for he-

lical plasma heating in the Large Helical Device (LHD), a
long corrugated waveguide transmits electrical power gen-
erated by a gyrotron system to the LHD. The length of the
waveguide is about 100 meters and the waveguide is bent
at right angles several times between the gyrotron and the
LHD. Miter bends are implemented to reduce transmission
loss in the bends. It is not clear what effect the shape of
the corrugated waveguide has or what the performance of
the miter bends is. It is important that the shape of the
waveguide and the miter bends are evaluated by numerical
simulation.

Generally, the finite difference time domain method
(FDTDM) is applied for time-dependent electromagnetic
wave propagation simulations. The FDTDM provides a di-
rect solution of Maxwell’s equations. Orthogonal meshes,
like staggered meshes, also known as Yee lattices, are
adopted for the standard FDTDM [1]. The FDTDM has
great advantages in terms of discretization and paralleliza-
tion, as well as other advantages [2]. In order to treat prob-
lems in complex shaped domains, a fine mesh or an adap-
tive mesh is adopted. The computational cost of this ap-
proach is high and treating domains with different mesh
sizes is complicated. Hence dealing with complex shaped
domains is a challenge.
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A meshless method, in contrast, does not require fi-
nite elements or meshes with a geometrical structure, and
allows solutions for arbitrary shaped domains to be eas-
ily obtained [3]. Various meshless methods, such as the
radial point interpolation method (RPIM), have been de-
veloped [4]. The meshless time domain method (MTDM),
based on RPIM, can be applied to time-dependent elec-
tromagnetic wave propagation simulations [5–7]. In the
MTDM, a shape function is generated before the time-
dependent calculation. The computational cost of gener-
ating shape functions can be very large, and should be re-
duced as much as possible.

The purpose of the present study is to propose a new
method to reduce the computational cost of generating
shape functions. The effectiveness of the proposed method
will also be verified by numerical experiments.

2. Meshless Time Domain Method
Various meshless methods have been developed,

which employ a governing equation that is discretized us-
ing a shape function or a partial derivative of the shape
function. In the present study, we consider the RPIM
meshless method. In the RPIM [4], an approximate func-
tion u∗(x) and its partial derivative ∂u∗(x) are expanded us-
ing a shape function φ(x), its partial derivative ∂φ(x) and a
known vector u as:
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u∗(x) = φ(x) · u =
∑

i

φi(x)ui, (1)

∂u∗(x) = ∂φ(x) · u =
∑

i

∂φi(x)ui, (2)

where x is the position vector and · denotes an inner prod-
uct. ∂ means ∂/∂x or ∂/∂y in 2D. The shape function and
its partial derivative are generated by solving systems of
linear equations generated from a polynomial basis func-
tion (PBF) and a radial basis function (RBF) [4]. The PBF
and RBF are functions of the relative distances between
the nodes in the calculation of the shape function. RBFs of
various types have been proposed [8, 9].

A shape function based on RPIM satisfies the Kro-
necker delta function property:

φi(x = x j) =

{
1, i = j,
0, i � j,

(3)

where i and j denote node numbers. From this property, the
approximate function can be written in a simplified form:

u∗(xi) = φ(xi) · u = ui. (4)

This property is very important for discretization.
In the present study, an electromagnetic wave propa-

gation simulation of a 2D TM-mode is applied for a nu-
merical examination of the method. Maxwell’s equations
in a vacuum domain are written as:

ε
∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
, (5)

μ
∂Hx

∂t
= −∂Ez

∂y
, (6)

μ
∂Hy

∂t
=
∂Ez

∂x
, (7)

where Ez denotes the z-component of the electric field,
Hx and Hy denote the x- and y-components of the mag-
netic field, and ε and μ denote the electric permittivity and
permeability, respectively. Equations (5)–(7) can be dis-
cretized with respect to time by the leapfrog method, and
are then written as:

ε

Δt
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En+1
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, (9)
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(
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)
=
∂En

z

∂x
, (10)

where n and Δt denote a time step and an interval of the
discrete time. The derivation up to this point is the same as
for the FDTDM. In the present study, equations (8)–(10)
can be discretized with respect to space by using the shape
function, and are then written as:

En+1
z,i = En

z,i

+
Δt
ε

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

j

∂φ
Hy

i, j
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H

n+ 1
2

y, j −
∑

k

∂φHx

i,k

∂y
H

n+ 1
2

x,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (11)
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En
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where k denotes the node number and ∂φH and ∂φE denote
the partial derivatives of the shape function for the mag-
netic and electric fields, respectively. It is important that
the term in the left side and the first term in the right side
can be written in a simplified form by satisfying the Kro-
necker delta function property (4). By solving (11)–(13)
and updating n, the time-dependent solutions for an arbi-
trary shaped domain are obtained. This method is known
as the MTDM.

3. Faster Generation of Shape Func-
tions
In the MTDM, shape functions have to be generated

before the time-dependent calculation can be performed.
As described in the previous section, it is necessary to
solve a system of linear equations as Ax = b to generate
a shape function, where A is a coefficient matrix, x is an
unknown vector and b is a known vector. The sizes of the
matrices are ninfl×ninfl, where ninfl denotes the number of
nodes in the domains of influence. The conceptual diagram
of the node distribution based on a Yee lattice, which is ap-
plied in the FDTDM, is shown in Fig. 1. Here R denotes
a support radius which determines the domain of influence
and W and L denote the width and length of the analysis
domain. The computational cost to generate shape func-
tions is O(n3

infl×N) using a direct method to solve systems
of linear equations, where N denotes the number of sys-
tems in generating the shape functions. If N is very large,
the computational cost also becomes very large.

Even if a simulation is performed in a complex shaped
domain, it is not usually the case that the entire analysis do-
main is complicated. Taking as an example the corrugated
waveguide introduced above, the interior surface of the
waveguide is corrugated and complicated, but most of the
interior of the waveguide is a vacuum domain and simple.
Therefore, we propose a new method to reduce the com-
putational cost of generating shape functions in a domain,
which assumes a regular nodal distribution, as shown in
Fig. 1 left. Due to translational symmetry, the relative dis-
tances between nodes involved in the calculation of shape
functions are the same. Consequently, instead of calculat-
ing shape functions for each node, they are calculated only
once and are then translated to all other nodes (i.e., they
are reused).
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Fig. 1 Node distributions based on a Yee lattice (left) and a cir-
cular sector (right).

Let us consider a specific example. A rectangular do-
main is divided into two domains Ω1 and Ω2, as shown in
Fig. 1 left. Ω1 is the domain within R of the boundary, and
Ω2 is the interior domain. The shape function is gener-
ated only once in Ω2, and it is reused at the other nodes.
Therefore, the computational cost in the interior domain
becomes O(1). In applying this method, it is expected that
the computational cost of generating the shape functions is
cut drastically.

The proposed method is also applicable to domains
other than Yee lattices. For example, a circular sector do-
main having constant curvature is shown in Fig. 1 right.
The analysis domain is divided into two domains Ω1 and
Ω2, as in the rectangular domain. Nodes on the same col-
ored line in Ω2 have the same shape functions. Therefore,
the shape function is generated only once on a colored line
and is reused along the colored line. In the next section, the
proposed method and the conventional method are com-
pared by numerical experiments to verify the effectiveness
of the proposed method.

4. Numerical Experiments
A rectangular waveguide in which the nodes are ar-

ranged based on a Yee lattice and a circular sector waveg-
uide having constant curvature are applied for a electro-
magnetic wave propagation simulation of a 2D TM-mode.
A direct method is adopted to solve the systems of linear
equations. The computation environment is shown in Ta-
ble 1.

First, to investigate the effectiveness of the proposed
method for a domain in which the nodes are arranged based
on a Yee lattice, it is applied to the rectangular domain
shown in Fig. 1 left. The waveguide parameters are shown
in Table 2. The distances between the nodes are all 2 mm.
W and L are determined so that the areas of both domains
are the same (WL = 1). The support radius R is 6 mm.
The computational time to generate shape functions and
the actual speedup rates are given in Table 2. We can see
that the computational time for generating shape functions

Table 1 Computational environment.

OS CentOS 5.9
CPU Intel Xeon E5-2660 2.20GHz

Memory 64GB
Compiler gcc 4.1.2

Table 2 Parameters for rectangular waveguide, computational
time for generating shape functions and actual speedup
rates.

Comp. time [sec]

# W[m] L[m]
Conven-

tional
Prop-
osed

Actual
speedup

rates
1-1 0.1 10 192 24.2 7.93
1-2 0.2 5 193 12.1 16.0
1-3 0.5 2 196 6.05 32.4
1-4 1 1 196 5.80 33.8

Table 3 Computational cost, cost reduction rate and theoretical
speedup rate for a rectangular waveguide.

Computational cost Cut rates [%]

#
Conven-

tional
Prop-
osed

Theor-
etical

Nume-
rical

Theoretical
speedup

rates
1-1 1015152 161691 87.9 84.1 8.24
1-2 1007802 80778 93.7 92.0 16.0
1-3 1003752 39528 97.0 96.1 33.2
1-4 1003002 36714 97.6 96.3 41.4

using the proposed method is significantly lower than for
the conventional method. In addition, the speedup rate in-
creases if the area of Ω2 becomes large. Note that it has
been confirmed that solutions using the proposed method
and the conventional method corresponds exactly. It is thus
shown that the proposed method is very effective for do-
mains in which the nodes are arranged based on a Yee lat-
tice.

Let us estimate the computational cost of the first ex-
periment. It is considered that the computational cost is
in proportion to the area of the domain. The areas of
the whole domain, Ω1 and Ω2 are SΩ1∪Ω2 = WL, SΩ1 =

2R(W+L)−4R2 and SΩ2 = (W−2R)(L−2R), respectively.
By using the proposed method, the computational cost in
Ω2 becomes O(1). Therefore, it is estimated that the com-
putational cost is reduced to SΩ1/SΩ1∪Ω2 . These estima-
tions and the results of the first experiment are compared to
verify the validity of the proposed method. The computa-
tional cost, cost reduction rate and theoretical speedup rate
are given in Table 3, where the computational cost means
the number of systems used to generate the shape func-
tions, the theoretical cost reduction rate is calculated using
SΩ2/SΩ1∪Ω2 × 100[%] and the numerical and theoretical
reduction rates are calculated from the rates for the com-
putational cost. These results show that the theoretical and
numerical reduction rates largely correspond. The actual
speedup rates (Table 2) are slightly lower than the theoret-
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Table 4 Width of a circular sector waveguide, computational
time to generate shape functions and actual speedup
rate.

Computational time [sec]

# W[m] Conventional Proposed

Actual
speedup

rates
2-1 0.1 31.5 4.06 7.76
2-2 0.2 60.4 4.06 14.9
2-3 0.4 109 4.22 25.8
2-4 0.8 171 4.32 39.6

Table 5 Computational cost, cost reduction rate and theoretical
speedup rate for a circular sector waveguide.

Computational cost Cut rates [%]

#
Conven-

tional
Prop-
osed

Theor-
etical

Nume-
rical

Theoretical
speedup

rates
2-1 159507 25958 87.9 83.7 8.23
2-2 316657 26151 93.8 91.7 16.2
2-3 630957 31510 96.8 95.0 31.4
2-4 1259557 35916 98.3 97.1 59.3

ical speedup rates (Table 3). It is believed that this is be-
cause memory copying occurred when the functions were
reused. If memory copying could be eliminated, greater
speedup is expected, and this will be explored in future
work. The above quantitative analysis, demonstrates the
validity of the proposed method for a rectangular domain.

In the second experiment, the proposed method is ap-
plied to a circular sector domain having constant curva-
ture, as shown in Fig. 1 right. The distances between nodes
along the radial direction are 2 mm. The distances between
the nodes along an angular direction and the support radius
R along the outside of the curve are 2 mm and 6 mm, re-
spectively, and become gradually smaller inside the curve.
The radius of the outside of the waveguide Rout and the
central angle θ are fixed at 1 m and π/2, respectively. The
width of the waveguide W can be varied from 0.1 to 0.8 m.
The computational time to generate shape functions and
the actual speedup rates are given in Table 4. These re-
sults show that the computational time to generate shape
functions using the proposed method is significantly lower
than when using the conventional method, as in the first
experiment. In addition, the effectiveness of the proposed
method increases if the area ofΩ2 becomes large. It is thus
confirmed that the proposed method is very effective for a
circular sector domain having constant curvature.

Let us estimate the computational cost of the second
experiment in the same way as for the first experiment. The
area of the whole domain is SΩ1∪Ω2 = (WRout−W2/2) θ, and
the areas of Ω2 and Ω1 are SΩ2 ≈ (WRout+RW−2RRout−
W2/2)(θ−2R/Rout) and SΩ1 ≈ SΩ1∪Ω2 − SΩ2 , respectively.
Here, the central angle includes few approximate errors.
By using the proposed method, the computational cost in

Ω2 becomes O(nl), where nl is the number of colored lines
in Ω2. Therefore, if W increases, the computational cost in
Ω2 also increases. These estimations and the results of the
second experiment are compared to verify the validity of
the proposed method in a circular sector domain. The com-
putational cost, cost reduction rate and theoretical speedup
rate are given in Table 5. These results show that the theo-
retical and numerical reduction rates largely correspond in
the second experiment.

The above quantitative analysis demonstrates the va-
lidity of the proposed method for a circular sector domain.

5. Conclusion
In the present study, a new method to reduce the

computational cost of generating shape functions has been
proposed and its effectiveness for a rectangular domain
in which the nodes are arranged based on a Yee lattice
and for a circular sector domain having constant curvature
have been confirmed by numerical experiments using the
MTDM. The conclusions obtained in the present study are
summarized as follows.

• The computational cost of generating shape functions
decreases significantly by using the proposed method.

• The effectiveness of the proposed method increases if
the area of the interior domain is large.

• The proposed method can be applied to a Yee lattice
or a circular sector domain.

• The actual computational cost of the proposed method
largely corresponds to the theoretical estimations.

Future works will examine automating the search for nodes
that can reuse the shape function and applying the pro-
posed method to 3D simulations and real problems such
as a corrugated waveguide.
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