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The two-dimentional meshless time-domain method (2D-MTDM) was used to simulate the electromagnetic
wave propagation phenomena in complex-shaped waveguides considering the influence of metals and to numer-
ically investigate the relation of the dispersion medium with the attenuation rate. The simulation results suggest
that the waveguide with grooves is strongly affected by the frequency of the propagating wave than the waveguide
without grooves because the wave propagating in the waveguide with the grooves penetrates deep into the metal
compared with the waveguide without grooves. The transmission loss for the curved waveguide is greater than
that for the straight waveguide.
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1. Introduction
In the Large Helical Device (LHD), plasma is heated

using the resonance of the millimeter waves. The millime-
ter waves propagate on a long transmission path that bends
several times. In the waveguides without grooves, trans-
mission loss occurs because of the eddy currents induced
into the metal constructing the waveguide. Thus, for ef-
ficient heating, it is necessary to reduce the transmission
loss in the path.

For the transmission of millimeter waves, corrugated
waveguides are used [1]. The transmission efficiency of
the corrugated waveguides has been investigated [2–4].
The waveguide walls are assumed metallic, and the perfect
electric conductor (PEC) was adopted as the boundary con-
ditions to implement this assumption. However, the Joule
heat was not generated because PEC has no electroresis-
tance. In fact, theoretically, there is no energy loss if the
PEC is adopted. The Drude model supports the complex
dielectric constant required for the metals to be used as the
waveguide walls [5].

The purpose of this paper is to develop a two-
dimentional meshless time-domain mathod (2D-MTDM)
code on the basis of the Drude model and the recursive
convolution (RC) method. In addition, the influence of the
dispersion metal and the grooves on the transmission ef-
ficiency is investigated by calculating the electromagnetic
wave propagation in the corrugated waveguide.
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2. Numerical Method
Generally, the finite difference time domain method

(FDTD) is used to analyze electromagnetic wave propaga-
tion. However, the analytic domain must be divided into
orthogonal meshes if FDTD is used for the simulations. In
this paper, the MTDM is adopted to study the propagation
of electromagnetic waves in complex domains. In addi-
tion, the Drude model is adopted by the RC method for the
dispersion model.

2.1 Meshless time-domain method
The governing equations for the two-dimensional

wave propagation phenomena are defined by following
equations:

∂E
∂t
= −σ

ε
E +

1
ε
∇ × H, (1)

∂H
∂t
= −1

μ
∇ × E. (2)

Here, E denotes the electric field and H denotes the mag-
netic field. Moreover, ε, μ, and σ denote the permittiv-
ity, permeability, and electroconductivity, respectively. As
mentioned above, the basic concept of MTDM is the same
as that of FDTD. The time domain is discretized by the
leapfrog algorithm. On the other hand, the space is dis-
cretized by the shape functions obtained with the meshless
method. To this end, the nodes, r1, r2, · · · , and rN , are
scattered in the analytical domain and are on the bound-
aries. Subsequently, we consider an arbitrary function u(r).
The value of the function u(r) on node ri is ui. Then, the
function u(r) is interpolated by the shape functions φi(r) as
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follows:

û(r) =
N∑

i=1

uiφi(r). (3)

Here, û(r) denotes the interpolation function of u(r), and
φi(r) denotes the shape function corresponding to the node
ri. In this paper, we adopted the shape functions obtained
by the radial point interpolation method (RPIM) because a
shape function satisfies the Kronecker delta function prop-
erty [6]:

φi(r j) = δi j. (4)

By the above property, the values of the interpolation func-
tion on the nodes are

û(r j) =
N∑

i=1

uiφi(r j) =
N∑

i=1

aiδi j = u j. (5)

Note that the nodes for the electric and magnetic fields
are scattered separately, as shown in Fig. 2. Thus, the shape
functions φe and φh are built from the nodes for the electric
and magnetic fields, respectively [7]. By using φe and φh,
the electric field E and the magnetic field H are expressed
by the shape functions as

Ên(r) =
Ne∑

k=1

En
kφ

e
k(r), (6)

Ĥn(r) =
Nh∑
l=1

Hn
l φ

h
l (r). (7)

Here, the superscript n denotes the number of time steps.
In the MTDM, E(r) = (Ex(r), Ey(r), Ez(r)), H(r) =
(Hx(r),Hy(r),Hz(r)), and each components (x, y, and z) of
the electric field E and the magnetic field H is present in
the same position. In this paper, 2D-TM mode is adopted
for the evaluation: r = (x, y), E(r) = (0, 0, Ez(r)), and
H(r) = (Hx(r),Hy(r), 0).

En
z,k =

1 − α
1 + α

En−1
z,k

+
Δt/ε
1 + α

Nh∑
l=1

H
n− 1

2
y,l

∂φh
l

∂x
(rk)

− Δt/ε
1 + α

Nh∑
l=1

H
n− 1

2
x,l

∂φh
l

∂y
(rk), (8)

H
n+ 1

2
x,l = H

n− 1
2

x,l − Δt
μ

Ne∑
k=1

En
z,k

∂φe
k

∂y
(rl), (9)

H
n+ 1

2
y,l = H

n− 1
2

y,l +
Δt
μ

Ne∑
k=1

En
z,k

∂φe
k

∂x
(rl). (10)

Here, Δt denotes the computation time step and should sat-
isfy the Courant condition. For the delta function property
of Eq. (4), the values of the interpolation function on the
nodes would be Ên

z (rk) = En
z,k; the same applies to the mag-

netic field and other components. In addition, the summa-
tion is required in the case of using the partial derivative of

shape functions that are obtained by RPIM, because they
do not satisfy the Kronecker delta function property [6].
Parameter α is defined as follows:

α =
σΔt
2ε

. (11)

In MTDM, E and H are calculated using Eqs. (8), (9), and
(10) at each time step, respectively.

2.2 Dispersion model
In the Drude model, the permittivity depends on the

frequency of the propagating wave. Thus, the electric flux
density in the frequency-space D̄ is defined by the follow-
ing equation in the dispersion medium:

D̄(ω) = ε̄(ω)Ē(ω). (12)

Here, ω denotes the angular frequency of the input wave,
and the overline denotes the frequency-space function. Ap-
plying the inverse Fourier transform to Eq. (12), the time-
space function is obtained as follows:

D(t) =
∫ t

0
ε(τ)E(t − τ) dτ. (13)

Here, all electromagnetic fields are zero for negative time,
because the input field is induced at t = 0. The past values
of the electric field are stored to calculate Eq. (13) by the
integral convolution. In this paper, the RC method is used
to reduce the storage cost. In the Drude model, the relative
permittivity ε̄r(ω) is defined by

ε̄r(ω) = 1 +
ω2

p

iωγ − ω2
, (14)

where ωp denotes the plasma frequency and γ denotes
the inverse of the relaxation time. The Drude model is
achieved using the RC method, and the electric field is up-
dated using the following equation:

En
z,k =

1
1 + χ0

En−1
z,k +

1
1 + χ0

ψn−1
z (rk)

+
Δt/ε0

1 + χ0

Nh∑
l=1

H
n− 1

2
y,l

∂φh
l

∂x
(rk)

− Δt/ε0

1 + χ0

Nh∑
l=1

H
n− 1

2
x,l

∂φh
l

∂y
(rk). (15)

Here, ε0 denotes the permittivity in vacuum. The convolu-
tion summation ψn−1

z (ri) and the initial value of the relative
electric susceptibility χ0 are defined by following equa-
tions

ψn−1
z,k = En−1

z,k Δχ
0 + e−γΔtψn−2

z,k , (16)

ψ0
z,k = 0, (17)

χ0 =
ω2

p

γ2

(
γΔt − 1 + e−γΔt

)
. (18)

Moreover, Δχ0 is defined as

Δχ0 = −ω
2
p

γ2

(
1 − e−γΔt

)2
. (19)
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The magnetic field is assumed to be frequency indepen-
dent. Therefore, the magnetic field is updated by Eqs. (9)
and (10).

3. Numerical Evaluation
The effects of the dispersion metal and grooves on

the attenuation rate using the 2D-MTDM with the Drude
model are investigated. Two types of analytical models
are used. The models are shown in Fig. 1. The perfectly
matched layer (PML) is adopted for absorbing the bound-
ary conditions on the progressive wave direction [8], and
the perfect electric conductor (PEC) is adopted for the
boundary conditions of the analysis area. The values of
the geometrical parameters used are as follows: The width
of the waveguide is 2b + 2d + w, the length of the straight
waveguide is 15λ, the length of the curved waveguide is
5λ, the curvature radius of the curved waveguide is 5.25λ,
b = 0.5λ, w = λ, p = 0.5λ, a = 0.25λ, and d = 0.25λ,
where λ denotes the wavelength of the input wave. Fur-
thermore, the node alignment of the electric and the mag-
netic fields is shown in Fig. 2. The value of the attenuation
rate “RA” used in this paper is defined by the following

Fig. 1 Conceptual diagrams of the corrugated waveguide: (a)
straight waveguide and (b) right-angle waveguide.

Fig. 2 Conceptual diagram of the nodes alignment in the waveg-
uide.

equation:

RA = 1 −

〈∫
Γout

P · nout dΓ

〉
t〈∫

Γin

P · nin dΓ

〉
t

. (20)

Here, P denotes the Poynting vector, nin denotes the nor-
mal vector of Γin, nout denotes the normal vector of Γout,
and the values of the attenuation rate RA are evaluated us-
ing the values on the source input line Γin and the observa-
tion line Γout. Moreover, the bracket 〈 f 〉t denotes the time
average of f . The physical parameters used in this paper
are the amplitude of the source wave (1 V/m), the wave
speed (3 × 108 m/s), the distance of the neighboring node
(λ/40), the plasma frequency of aluminum ωp (2.8 PHz)
[5], the collision frequency of aluminum (12 THz) [5], the
number of layers for PML (24), the dimension of PML (4),
and the reflection factor of PML (−120 dB). Besides, the
value of Ez is used as the input wave with the equation

Ez(rin, t) = β1

{
β2 sin(ωt), ωt < 8π,

sin(ωt), ωt ≥ 8π.
(21)

Here, rin ∈ Γs, and β1 and β2 are defined by the following
equations:

β1 = sin

(
rx,in − (b + d)

w
π

)
, (22)

β2 =
1
2

{
1 − cos

(
ωt
8

)}
. (23)

The following equation is adopted for the radial basis func-
tion F(|r|).

F(|r|) =
(
|r|2 + R2

)−0.5
. (24)

Here, the value of the support radius R is 2lmin, where lmin

denotes the minimum distance between the nodes.
First, it was varified if the Drude model was embedded

correctly. The value of the reflection rate when the plane
wave is vertically generated against the dispersive wall is
plotted as a function of the input wave frequency in Fig. 3.
We can see from this figure that the reflection rate is cal-
culated with high precision because the analytical solution
and the simulation results are almost identical. In addition,
the reflection rate is reduced when the frequency of the in-
put wave is greater than the plasma frequency.

Second, the influence of the grooves on the attenuation
rate in the straight waveguide is investigated. The values
of the attenuation rate RA are plotted as a function of the
input wave frequency in Fig. 4. We see from this figure that
the values of the attenuation rate are changing irregularly
because the waves penetrate into the metal for ω/ωp > 1.
In addition, the attenuation rate is negative because the de-
nominator of Eq. (20) increases for waves at approximately
Γin that penetrate deeply into the metal compared to those
at approximately Γout. This difference is not observed in
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Fig. 3 Reflection rate of the plane wave. The wave is vertically
generated against the dispersive wall.

Fig. 4 The values of attenuation rate RA plotted as a function of
input wave frequency in the straight waveguide.

Fig. 5 Distribution of the electric field Ez in the straight waveg-
uide. The gray background indicates the area of the cor-
rugated groove, or the boundary of the vacuum and the
metal. (a), (b), and (c) without groove, (d), (e), and (f)
with groove, (a), (d) ω/ωp = 0.1, (b), (e) ω/ωp = 1, and
(c), (f) ω/ωp = 3.

the distributions of the waveguide with grooves and with-
out grooves for ω/ωp = 0.1 (see Figs. 5 (a) and 5 (d)). In
the waveguide without grooves, periodic distribution is ob-

Fig. 6 Distribution of the electric field Ez in the curved waveg-
uide without groove. The gray background is the bound-
ary of the vacuum and the metal. ω/ωp = 1, (a) w = 3λ
and the curvature radius is 15.75λ and (b) w = λ and the
curvature radius is 5.25λ.

Fig. 7 The values of attenuation rate RA plotted as a function of
the input wave frequency in the curved waveguide.

tained (see Fig. 5 (b)), although a distorted waveform is ob-
served for ω/ωp > 1 (see Fig. 5 (c)). On the other hand, we
can see from Figs. 5 (e) and 5 (f) that the distorted wave-
forms are observed even if ω/ωp > 1; this is induced by
the corrugated waveguide.

Next, we investigate the influence of the width of the
curved waveguide without grooves on the electromagnetic
wave propagation as a run-up to evaluate the attenuation
rate. The distribution of the electric field Ez in the waveg-
uide is shown in Fig. 6 for ω/ωp = 1. In the case of
w = 3λ (see Fig. 6 (a)), the incident wave is reflected on
the waveguide wall. On the other hand, the wave propa-
gates while maintaining the waveform in the case of w = λ
(see Fig. 6 (b)). This is due to the larger cutoff frequency
owing to the narrowing width of the waveguide.

Finally, we evaluate the values of attenuation rate RA

in the curved waveguide. The attenuation rate RA is plot-
ted as the function of the corrugated channels in the curved
waveguide (see Fig. 7). The distributions of the electric
field Ez in the waveguide is shown in Fig. 8. From Figs. 7
and 8, we see that the corrugated waveguide is strongly af-
fected by the dispersion metal of the waveguide wall more
than the waveguide without grooves, similar to the straight
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Fig. 8 Distribution of the electric field Ez in the curved waveg-
uide. The gray background denotes the area of the cor-
rugated groove or the boundary of the vacuum and the
metal. (a), (b), and (c) without groove, (d), (e), and (f)
with groove, (a), (d) ω/ωp = 0.1, (b), (e) ω/ωp = 1, and
(c), (f) ω/ωp = 3.

waveguide. In addition, the transmission loss of the curved
waveguide is greater than that of the straight waveguide
because the incident wave is reflected on the waveguide
wall.

4. Conclusion
We have developed a numerical code for analyzing

the electromagnetic wave propagation in complex-shaped
waveguide. In addition, we have evaluated the influence of
the dispersion metal on the attenuation rate. The conclu-
sions are summarized as follows:

1. In the case of the curved waveguide without grooves,
the wave was propagated along the narrow width
of the waveguide because the cutoff frequency in-
creased.

2. In both the straight and curved waveguides, the wave
propagating in the waveguide with the grooves pene-
trated deep into the metal compared with the waveg-
uide without grooves.

3. The transmission loss for the curved waveguide was
greater than in the case of the straight waveguide be-
cause the incident wave was reflected on the waveg-
uide walls.
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