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Using a dissipation-scale adaptive, wavelet-like shell decomposition method and normalization by
dissipation-scale characteristics, we found a novel sustaining behavior of self-similarity in the quadratic energy
transfer process in freely decaying, fully developed, homogeneous and isotropic turbulences of an incompressible
Hall magnetohydrodynamic medium. The process is associated with the relative reduction of nonlinear energy
transfer in the dissipation range, which was reported in our previous study [K. Araki and H. Miura, Plasma
Fusion Res. 8, 2401137 (2013)]. Gradual reductions in energy transfers by fluid advection and the Hall-term
effect are compensated by enhancement of energy transfers due to mutual interactions between velocity and mag-
netic fields, i.e. between the Lorentz force effect and magnetic induction. This sustaining behavior suggests that
coupling between velocity and magnetic fields may be crucial, even when linear dispersive waves aroused by a
uniform background magnetic field are absent.
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1. Introduction
Hall magnetohydrodynamic (HMHD) systems have

attracted the interests of many researchers from various
viewpoints; for example, the HMHD system has been
used as a simple one-fluid magnetohydrodynamic (MHD)
model that includes minimal two fluid effects of finite ion
skin depth [1] and as a member of “hydrodynamic” math-
ematical models such as neutral fluids, one-fluid MHD
models, and Maxwell-Vlasov systems [2, 3].

In the context of nuclear fusion, an appropriate model
for multiscale physics simulations is needed to simulate
plasma behaviors in large-scale reactors. Large eddy simu-
lations represent one numerical fluid simulation model that
has a long history and is still being studied actively [4].
One key to modeling is the understanding of statistical
features of turbulent flows; in particular, those of subgrid-
scale motions are essential.

Energy transfer processes in fully developed HMHD
turbulence have been studied by direct numerical simula-
tions (DNSs) [5], the closure type approach in the wave tur-
bulence framework [6], mode-truncating coarse-graining
approach [7], etc.

Analyzing freely decaying HMHD turbulence allows
us to obtain those transfer features that are intrinsic to
HMHD systems. By analyzing flow snapshots that exhibit
self-similarity, backscatter by the Hall term effect, for ex-
ample, has been found to occur without forcing [8]. In
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our previous study [9], the selective, relatively slow reduc-
tion of nonlinear effects was found in dissipation-range dy-
namics, even after the self-similar energy spectra were es-
tablished. In the present study, we further investigate this
relatively slow variation in the energy transfer process.

2. Basic Equations, Parameters, and
Analyzed Fields
In an HMHD system, the velocity field u and magnetic

field b in normalized units obey the following equations:

∂tu + (u · ∇) u = ∇P + j × b + ν�u, (1)

∂t b = ∇ × (
(u − α j) × b

)
+ η�b, (2)

∇ · u = ∇ · b = 0, (3)

where P, j := ∇ × b, ν, α and η are generalized pres-
sure, current density field, kinematic viscosity, the param-
eter specifying the relative strength of the Hall term effect,
and resistivity, respectively.

DNSs were carried out using the 2/3-dealiasing pseu-
dospectral method with N = 5123 grid points. The numer-
ical schemes are detailed in [10]. For the present study, the
parameters were set to ν = η = 1 × 10−3 and α = 0.05. No
external force was imposed on the fields.

Analyzed snapshot datasets were taken from two DNS
runs, which we hereafter call Runs A and B. The runs were
carried out with the same parameters given above but with
different initial conditions that had the same kinetic and
magnetic energies with the same energy spectra given in
[10] but different magnetic and hybrid helicities.
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Fig. 1 Time development of energies and helicities in Runs A
and B. Left: kinetic energy Eu and magnetic energy Eb;
right: magnetic helicity Hm :=

∫
a · b d3�x and hybrid

helicity Hh :=
∫

(αu + a) · (α∇ × u + b) d3�x, where a is
vector potential.

Fig. 2 Time development of the Taylor microscale Reynolds
number Re :=

√
10/3νεK Eu, and its magnetic counter-

part Rem :=
√

10/3ηεB Eb, where εK , εB are dissipation
rates of kinetic and magnetic energies.

Six snapshot datasets (t = 1.0, 1.5, ..., 3.5) were taken
from Run A, which were analyzed in [8,11]. Nine snapshot
datasets (t = 1.0, 1.5, ..., 5.0) were taken from Run B,
which were analyzed in [9]. Both snapshot datasets were
collected after turbulence had developed sufficiently.

During the analyzed time period, the two runs showed
very close kinetic and magnetic energies (see Fig. 1, left).
For magnetic and hybrid helicities, which are well known
to be constants of the motion in the dissipationless limit
of HMHD, the Run A solution had moduli approximately
15% larger than Run B (see Fig. 1, right). But both runs
had good constancy in the magnetic Reynolds number (see
Fig. 2) and self-similarity in the magnetic and kinetic en-
ergy spectra [8, 9].

3. Dissipation-Scale Adaptive,
Wavelet-Like Shell Decomposition
Method
For this study, we used the dissipation-scale adaptive,

dyadic wavelet like, shell decomposition method that was
introduced in our previous study [9]. Wavenumber space
was decomposed into spherical shells with the j-th shell
occupying the wavenumber range given by 2−( j+1)/2 kη <

k < 2− j/2 kη, where kη := 4
√
εB(t)/η3 is the characteristic

wavenumber of the dissipation range and εB(t) := η
∫ |∇ ×

b(�x, t)|2d3�x is the dissipation rate of the magnetic field at

time t. Each field was decomposed into band-pass-filtered
components as

f (�x, t) =
∑

j

f j(�x, t), (4)

where f stands for the velocity and magnetic fields. Note
that the shell index j, which denotes the characteristic mo-
tion scale of the corresponding field, is

√
2 j times the Kol-

mogorov scale of the magnetic field.
Since here we are analyzing freely decaying turbu-

lence, the wavenumber of the Kolmogorov scale gradually
decreases over time. Therefore, the width of the wavenum-
ber range for the j-th shell also gradually decreases over
time; this corresponds to dissipation of small-scale mo-
tions and enlargement of coherent structures such as vortex
tubes and current sheets.

Decomposing the basic equations (1)-(3) and taking
inner products with the j-th mode, we obtain the energy
budget equations for velocity and magnetic fields as fol-
lows:

d
dt

E(u)
j =

∑
k,m

〈
u j

∣∣∣um

∣∣∣uk
〉

adv +
∑
k,m

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor + Dj, (5)

d
dt

E(b)
j =

∑
j,m

〈
b j

∣∣∣bm

∣∣∣uk
〉

Ind +
∑
j,m

〈
b j

∣∣∣bm

∣∣∣bk
〉

Hall + Rj, (6)

where the quadratic interaction terms are defined by

〈
u j

∣∣∣um

∣∣∣uk
〉

adv := −
∫ (

(um · ∇)uk
) · u j d3�x, (7)

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor :=
∫ (

jk × bm
) · u j d3�x, (8)

〈
b j

∣∣∣bm

∣∣∣uk
〉

Ind :=
∫ (∇ × (uk × bm)

) · b j d3�x, (9)

〈
b j

∣∣∣bm

∣∣∣bk
〉

Hall := −α
∫ (∇ × ( jk × bm)) · b j d3�x. (10)

Definitions of the other terms and a discussion of the
choice of integrands are given in [9, 12]. In the follow-
ing section, we sum them up with respect to k and m and
denote the sums as

〈
u j

∣∣∣u∣∣∣u〉
adv :=

∑
k,m

〈
u j

∣∣∣um

∣∣∣uk
〉

adv, and
so on.

4. Numerical Result
Figure 3 shows normalized net quadratic transfer

functions for the kinetic and magnetic energies. As dis-
cussed in [9], normalization by the dissipation-scale char-
acteristics, εB(t) and η, renders the amplitudes of the en-
ergy transfer functions comparable between different time
snapshots. Thus, we expect that the principal differences
at different times are due to topological features of their
vector fields of each run.

The panels in Fig. 3 show that the functional profiles
of the total kinetic and magnetic energy transfers tend to
converge, over time, to a single profile. This convergence
occurs for wavenumber-space shell numbers j ≤ 4 (k/kη >
0.2) for kinetic energy and 2 ≤ j ≤ 6 (0.1 < k/kη < 0.4) for
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Fig. 3 Time development of total energy transfer functions
for kinetic and magnetic energies. Left: kinetic en-
ergy,

〈
u j

∣∣∣u∣∣∣u〉
adv
+

〈
u j

∣∣∣b∣∣∣b〉
Lor

; right: magnetic energy〈
b j

∣∣∣b∣∣∣u〉
Ind
+

〈
b j

∣∣∣b∣∣∣b〉
Hall

. Top: Run A; bottom: Run B.
Changes in line colors from red to blue denote time de-
velopment of the transfer functions. Abscissa of j-th shell
data is set to k j =

√
2− j−1/2kη.

Fig. 4 Time development of magnetic energy transfers due to
each term of HMHD equations. Left: magnetic induc-
tion effect

〈
b j

∣∣∣b∣∣∣u〉
Ind

; right: Hall-term effect
〈
b j

∣∣∣b∣∣∣b〉
Hall

.
Top: run A; bottom: run B. Meaning of the line colors are
same as Fig. 3.

magnetic energy. The magnetic energy transfer function
also shows a tendency to converge to a single profile for
smaller motion scales j ≤ 1 (k/kη > 0.4).

It is remarkable that this stationarity of normalized en-
ergy transfer is not caused by constancy of transfer of in-
dividual quadratic terms, but by compensating switching
between them.

In Fig. 4, we separately show the time development
in magnetic energy transfer due to magnetic induction〈
b j

∣∣∣b∣∣∣u〉
Ind and the Hall-term effect

〈
bk

∣∣∣b∣∣∣b〉
Hall.

For example, for the shell having j = 4 (k/kη ∼ 0.2),
the modulus of nonlinear transfer by the Hall-term effect
gradually decreases over time, even after the quantities are
normalized by the dissipation rate. The modulus of the

Fig. 5 Time development of kinetic energy transfers due to each
term in HMHD equations. Left: fluid advection effect〈
u j

∣∣∣u∣∣∣u〉
adv

; right: Lorentz force effect
〈
u j

∣∣∣b∣∣∣b〉
Lor

. Top:
Run A; middle: Run B; bottom: MHD run with the same
dissipation coefficients and initial conditions as Run B
[9]. Meaning of line colors are same as in Fig. 3.

magnetic induction effect also decreases over time, while
the positive peak values in the induction effect are almost
constant (

〈
b j

∣∣∣b∣∣∣u〉
Ind ∼ 2.8 for Run A, 1.5 for Run B). De-

spite these decreases, the net transfer shows remarkable
constancy.

As another example, for the shell with j = 1 (k/kη ∼
0.6), reduction in the Hall-term effect is compensated by
enhancement of induction effect, therefore, the net transfer
is also nearly constant for t ≥ 1.5.

Figure 5 shows the time development of kinetic en-
ergy transfer due to fluid advection and the Lorentz force
effect. Note that the peak values of fluid advection energy
transfer occur at somewhat higher wavenumbers than those
in the Lorentz force effect.

Noticeable reduction in the fluid advection effect and
compensation by the Lorentz force effect occur in the
wavenumber shell number j < 2 (k > 0.4kη), especially
for Run B.

5. Discussion
In the present study, we found constancy in the net

quadratic energy transfer of kinetic and magnetic ener-
gies and compensating switching between the effects of
quadratic terms. These compensating effects occur in dis-
sipation scale motions whose characteristic wavenumbers
have k > 0.1kη; these scale motions are smaller than about
10 times the Kolmogorov scale. As is discussed in [9],
such slow relaxation phenomena are not found in MHD
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systems (see Fig. 5), which suggests that they may be in-
trinsic to HMHD systems.

Our finding suggests that the energy transfer due to ve-
locity and magnetic fields may not independently occur but
in some coupled manner. One possible explanation for this
coupling is that interactions occurs via coupling of linear
eigenmodes, i.e., ion cyclotron modes and whistler modes
of the HMHD system

It is well known that, when an external uniform mag-
netic field (say B0) is imposed, a linearized system of
the basic equations (1) and (2) gives a dispersion re-
lation whose eigenfrequencies are given by ωs(�k, σ) =
λs(�k, σ) B0 · �k (for example, see [6]). Here, the λ’s are
defined by

λs(�k, σ) :=
1
2

(
−σα|�k| + s

√(
α|�k|)2

+ 4

)
, (11)

where s = ±1 and σ = ±1 are the signs that defines the
eigenmode branches and polarity of the polarized Fourier
mode, respectively. The associated eigenvectors are given
by

(
u
b

)
=

û + λs b̂
λ2

s + 1

⎛⎜⎜⎜⎜⎝ φ(�k, σ; �x)
λs φ(�k, σ; �x)

⎞⎟⎟⎟⎟⎠ , (12)

where φ(�k, σ; �x) is a complex helical wave (CHW) vector
field (see [4], Sect. V-5) with wavenumber �k and polarity
σ, while û and b̂ are the Fourier coefficients of the velocity
and magnetic fields with respect to CHW. It is interesting
that, since the λ’s in equation (11) do not include B0 as a
parameter, the decomposition to these eigenmodes is appli-
cable to systems without external uniform magnetic fields.

The moduli of the eigen frequencies are |ωs(�k, σk)| =

|B0 · �k|λ and |B0 · �k|/λ, where λ = 1
2

(
α|�k| +

√(
α|�k|)2

+ 4

)
,

and correspond to whistler and ion cyclotron waves, re-
spectively. In the present study, we imposed no such exter-
nal magnetic field B0, but large scale structures of the mag-
netic field may surrogate B0. The split to these rapid and
slow modes may explain the slow relaxation of quadratic
interaction effects, and an analysis is now underway.
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