
Plasma and Fusion Research: Regular Articles Volume 9, 3401071 (2014)

Development of In-Situ Visualization Tool for PIC Simulation∗)

Nobuaki Ohno and Hiroaki OHTANI1,2)

Graduate School of Simulation Studies, University of Hyogo, Kobe 650-0047, Japan
1)Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292, Japan

2)Department of Fusion Science, The Graduate University for Advanced Studies (SOKENDAI), Toki 509-5292, Japan

(Received 10 December 2013 / Accepted 17 March 2014)

As the capability of a supercomputer is improved, the sizes of simulation and its output data also become
larger and larger. Visualization is usually carried out on a researcher’s PC with interactive visualization software
after performing the computer simulation. However, the data size is becoming too large to do it currently. A
promising answer is in-situ visualization. For this case a simulation code is coupled with the visualization code
and visualization is performed with the simulation on the same supercomputer. We developed an in-situ visual-
ization tool for particle-in-cell (PIC) simulation and it is provided as a Fortran’s module. We coupled it with a
PIC simulation code and tested the coupled code on Plasma Simulator supercomputer, and ensured that it works.

c© 2014 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: in-situ visualization, PIC, simulation, scalar field visualization, vector field visualization

DOI: 10.1585/pfr.9.3401071

1. Introduction
As the capabilities of supercomputers are improved,

the sizes of computer simulations get larger and larger.
In general, visualization is carried out with a researcher’s
workstation or PC with interactive visualization software
after performing the computer simulations. In short, visu-
alization is done as a post-processing. For this case the re-
searchers have to store the simulation results, the raw data,
and transfer them from the storages of supercomputers to
their workstations or PCs via network. However, it usually
needs large space of storages for store and takes a long time
for disk I/O and data transfer, if the data size is large. Even
if the PC has superb graphics hardware, enough memo-
ries, sufficient CPU power and big HDD space, it is impos-
sible to visualize the large-scale data without downsizing
the data or extracting their regions of interest from them.
There are two other kinds of visualization if classified ac-
cording to the time when visualization is performed, i.e.
visualization as co-processing and in-situ processing. For
co-processing, visualization program runs simultaneously
with the simulation code on the same computer or other
powerful computer. The data is transferred via network
or disk. For in-situ processing, visualization codes are em-
bedded in simulation codes, and visualization is carried out
in tandem with simulation on the same supercomputers,
accessing the data arrays directly. This means that comput-
ers for visualization surely have enough CPU power and
memory size. In the latter two cases, because the coupled
simulation codes or co-processing visualization programs
output image files instead of raw data, it is image files

author’s e-mail: ohno@sim.u-hyogo.ac.jp
∗) This article is based on the presentation at the 23rd International Toki
Conference (ITC23).

to be stored and transferred to researchers. The sizes of
image files are generally much smaller than those of raw
data. Therefore, the file transfer is not time-consuming.
Thus visualization as a co-processing and in-situ process-
ing are considered to be the answers to the problems of
visualization and are paid attention to nowadays. The re-
search of these fields have been done for many years, and
supercomputer venders have developed in-situ visualiza-
tion tools (for example, see Ref. [1]). There is even a re-
search using immersive virtual reality system [2]. Yu et al
reports in-situ visualization of petascale combustion simu-
lation [3]. Recently there are many researches [4–7] using
ParaView and VisIt as visualization engines. ParaView [8]
and VisIt [9] are two famous free visualization software
and both of them are based on VTK. ParaView and VisIt
are basically distributed parallel software (Manta plug-in,
a rendering engine of ray tracing, is multi-threaded).

We believe that in-situ processing is more promising
than co-processing because visualization code can directly
access the data. However, there are problems too. For ex-
ample, interactive visualization is impossible because visu-
alization is performed as a batch job. A tactic for this prob-
lem is reported in Ref. [10]. We have developed a basic and
handy in-situ visualization tool, VISMO (VISualization
MOdule), for PIC (particle-in-cell) [11] codes which are
parallelized based on the domain decomposition method
using MPI such as PASMO [12]. Our tool is parallelized by
MPI/OpenMP hybrid scheme. This feature of parallelism
is suitable for today’s supercomputers with hundreds of
thousands of CPU cores. The purpose of this development
is not only visualizing the simulation data in-situ but also
studying in-situ visualization itself.

In the Sec.2, a design of VISMO is introduced. We

c© 2014 The Japan Society of Plasma
Science and Nuclear Fusion Research

3401071-1



Plasma and Fusion Research: Regular Articles Volume 9, 3401071 (2014)

have coupled this tool with two programs and tested them
on a supercomputer. Sample images are shown in Sec.3.
Finally, a summary is presented in Sec.4.

2. Basic Design
The basic design of VISMO is described in this sec-

tion. The PIC codes usually have data of particles, scalar
and vector fields. This tool provides visualization meth-
ods for the three kinds of data. It can be used for MHD
simulations as well if they are parallelized in the same way
because the incorporated visualization methods for scalar
and vector fields are also suitable to visualization of them.
This tool does not require graphics hardware in order to be
used on supercomputers. And it is provided as a Fortran’s
module. We chose Fortran as the programming language
because many simulation codes are written in it and the
researchers can use this module by only adding Fortran’s
statements in their simulation codes. We believe that it is
important for this kind of tools not to be complex to use
and to be user-friendly, so that it is designed not to require
them to change their simulation codes greatly.

2.1 Target computers
The target computer of this tool is a distributed mem-

ory parallel computer with no graphics hardware such as
Plasma Simulator at NIFS (National Institute for Fusion
Science) in Japan. This is an ordinal environment of su-
percomputers and this condition does not restrict the use
on shared memory systems. Besides, this tool does not re-
quire any special libraries except MPI library (and Fortran
Compiler, of course) so that it may be used with a little or
no modification on various supercomputers and PC clus-
ters.

2.2 Visualization methods
PIC simulations produce three kinds of data, i.e. par-

ticle, scalar field and vector fields. The general visualiza-
tion methods for those kinds of data are incorporated into
VISMO such as “spheres” for particles, isosurfaces, slices
and volume rendering for scalar fields, tubed streamlines
and “arrows” for vector fields. All the visualization meth-
ods are implemented by software rendering because graph-
ics hardware may not be available on the supercomputer.
Tubed streamline is drawn as a collection of spheres and
cylinders, and an arrow is drawn as a collection of cylin-
der and cone. Spheres, cylinders and cones are drawn by
ray casting methods using their equations like a ray trac-
ing software POV-Ray [13]. This means that unlike much
visualization software, three-dimensional objects are not
divided into many polygons, say triangles. This ensures
the output images are more beautiful when objects are near
viewing points.

2.2.1 Spheres
“Spheres” is a visualization method for particle data.

This method displays spheres where there are particles
such as ions and electrons. However, displaying all the
particles is not a good strategy because current PIC simu-
lations handle billions of particles and the image gives no
insight. The visualization of such huge number of particles
is a future work.

2.2.2 Isosurface, slices and volume rendering
Volume rendering [14] and all the other scalar visual-

ization methods are implemented by ray casting method.
On isosurface visualization, it is judged if the ray goes
across the isosurface by comparing the two values of scalar
data on the two sequential sampling points. For slices, the
positions of the two sequential sampling points are com-
pared to judge if the ray goes across the slices. Thanks
to drawing by ray casting, semi-transparent isosufaces and
slices can be drawn. The ray casting is enhanced by the tra-
ditional ways, such as early ray termination [15] and empty
space skipping.

2.2.3 Streamlines and arrows
Streamlines are drawn based on the 4-th order Runge-

Kutta integration. At the cost of MPI synchronization,
streamline can extend through multiple subdomains. “Ar-
rows” are stationed on a plane specified by users. The den-
sity of arrows can be also specified.

2.3 Camera and projection
Multiple cameras, i.e. viewing points, are supported

so that images drawn from various viewing points with the
same visualization parameters can be produced. Both per-
spective and parallel projection are supported.

2.4 Interface
VISMO is provided as a Fortran’s module and used

by embedding it into simulation codes. Users need to add
Fortran statements of VISMO in their simulation codes.
This tool requires all the MPI process to know the global
coordinates information in addition to its local coordinates.
This may lead to a little modification to users’ codes.

Visualization parameters such as isosurface levels,
camera, light and so on are specified in text files, not in the
simulation codes. By this feature, when a user wants to try
other visualizations, he/she need not modify and compile
the simulation codes again. He/she only needs to prepare
another text files in which new visualization parameters are
specified.

2.5 Parallelization
VISMO is parallelized based on MPI/OpenMP hy-

brid scheme. The target simulation code is parallelized
PIC codes based on the domain decomposition method by
MPI. If the MPI processes of PIC code are parallelized by
OpenMP, this tool also works as a hybrid code. Each MPI
process has its own local data. They visualize their local

3401071-2



Plasma and Fusion Research: Regular Articles Volume 9, 3401071 (2014)

data using visualization methods parallelized by OpenMP
and render a subimage. Then all the images are compos-
ited into a final image. Direct send method [16], which can
be used on an arbitrary number of rendering processes, is
employed for the image composition. Finally the master
process of MPI outputs the final image on the storage.

3. Test Runs
We tested VISMO coupled with two programs

on Plasma Simulator (Hitachi SR16000 Model M1,
POWER7). They worked and outputted visualization im-
ages successfully. Sample images are shown in the follow-
ing subsections. In addition, we measured the additional
costs for and caused by the coupling.

3.1 Data visualization
We prepared a program which made particle, scalar

and vector data in memory using Fortran’s mathematical
functions. It is parallelized based on MPI/OpenMP hybrid
scheme. We coupled VISMO with this program and tested
it on Plasma Simulator to make sure if all the visualization
methods worked. The number of MPI processes is 8 and
that of OpenMP threads is 4. The domain (101× 81× 121)
is divided into 8 subdomains in x, y and z directions. The
total number of particles is 400.

To draw Fig. 1, all the visualization methods are used.
Green and brown clouds are scalar data visualized by
volume rendering. The streamlines successfully crossed
among the data.

3.2 PASMO with VISMO
We tested in-situ visualization by coupling PASMO

with VISMO. PASMO is parallelized by MPI and com-
piler’s auto-parallel function.

3.2.1 Small scale of PASMO
The domain (130× 129× 34) is divided into 4 subdo-

mains in the z direction. The number of MPI processes is 4
and that of threads is 16. This tool also uses the same num-

Fig. 1 Volume rendering, slice, isosurface, arrows, streamlines
and spheres are used to visualize the data.

bers of MPI processes and OpenMP threads as the simula-
tion code. Figure 2 is an image drawn by the coupled sim-
ulation code. To visualize data, isosrface, slice and arrows
are used.

3.2.2 Middle scale of PASMO
The domain (514× 257× 130) is divided into 64 sub-

domains in the z direction. The number of MPI processes
is 64 and that of threads is 32. Totally, 2,048 CPU cores
were used in both the simulation and visualization. The
number of ions and electrons is about 650 million each
during this test run. Figures 3 (a), (b) and (c) are images
drawn by the coupled simulation code.

3.3 Costs for VISMO
To couple PASMO with VISMO, we had to add For-

tran statements in the code. Totally, 24 lines were added in
the PASMO code including declarations of variables and
some computation for coordinates settings, and the target
attribute were given to the data arrays to be visualized.
This may not be heavy burden for simulation researchers.
Other than this, users have to prepare text files specifying
visualization parameters.

Fig. 2 This picture was drawn by small scale of PASMO, a PIC
simulation code, coupled with VISMO.

Fig. 3 (a) color slice, isosurface and arrows are used to visual-
ize x-component of magnetic field, electron density and
magnetic field respectively. (b) All the electrons are vi-
sualized by spheres but this picture gives no insight. (c)
Electron density is visualized by volume rendering.

3401071-3



Plasma and Fusion Research: Regular Articles Volume 9, 3401071 (2014)

To measure the computational cost of VISMO, we set
the coupled middle scale of PASMO described in Sec.3.2.2
to perform visualization once in 5 steps. We carried out
10 steps computation, which did visualization twice, on
Plasma Simulator 10 times. The coupled code output an
image with the same visualization parameters as Fig. 3 (a)
when performing visualization. The resolution of the im-
ages is 1,024× 768 pixels. The HITACHI’s profiler re-
vealed that the average ratio of CPU time spent for visual-
ization was about 38.7%. The required CPU time is about
1.63 times larger than the original PASMO code. For the
case that the coupled code is set to output 3 images with the
same parameters as Figs. 3 (a-c) for a visualization, the av-
erage ratio of CPU time spent for visualization was about
64.2%. The required CPU time is about 2.79 times larger.
When VISMO is set to output large number of images or
high resolution images, the CPU time needed for VISMO
surely becomes large. Those ratios are also influenced by
the condition of the system. The researchers have to strike
a right balance between simulation and visualization.

4. Summary
We developed an in-situ visualization tool VISMO for

PIC simulation. It is provided as a Fortran’s module and
general visualization methods for particle, scalar and vec-
tor data are incorporated. In-situ visualization can be made
use of by embedding this tool into simulation codes. By
this tool, researchers can investigate the phenomena with-
out moving raw data from the supercomputers’ storage to
theirs, or storing large raw data in their storages. In addi-
tion, this tool can be used to visualize MHD simulations
too. This must enhance simulation researches about plas-
mas and there must be lots of applications in other research
fields.

5. Acknowledgements
This work was performed with the support and

under the auspices of the National Institute for Fu-
sion Science (NIFS) Collaborative Research Program
(NIFS12KNSS027).

[1] A. Ogasa, H. Maesaka, K. Sakamoto and S. Otagiri, FU-
JITSU Sci. Tech. J. 48, No.3, 348 (2012).

[2] Y. Tamura, H. Nakamura and N. Ohno, IEEJ Transac-
tions on Electronics, Information and Systems 126-C, 401
(2006) (in Japanese).

[3] H. Yu, C. Wang, R.W. Grout, J.H. Chen and K. Ma, Tech-
nical Report CSE-2009-9, University of California at Davis
(2009).

[4] J. Soumagne, J. Biddiscombe and J. Clarke, 5th Inter-
national SPHERIC Workshop, B. Rogers (Ed.) (2010)
pp.186-193.

[5] N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P. Mar-
ion, B. Geveci, M. Rasquin and K.E. Jansen, IEEE Sym-
posium on Large-Scale Data Analysis and Visualization
(2011) pp.89-96.

[6] M. Rivi, L. Calori, G. Muscianisi and V. Slavnic, PRACE,
whitepaper (2012) pp.1-18.

[7] S. Benjaminsson, D. Silverstein, P. Herman, P. Melis,
V. Slavnic, M. Spasojevic, K. Alexiev and A. Lansner,
PRACE, whitepaper (2012) pp.1-20.

[8] http://paraview.org/
[9] https://wci.llnl.gov/codes/visit/home.html

[10] A. Kageyama and T. Yamada, Comput. Phys. Commun.
185, 79 (2014).

[11] C.K. Birdsall and A.B. Langdon, Plasma Physics Via Com-
puter Simulation (McGraw-Hill, New York, 1985).

[12] H. Ohtani and R. Horiuchi, Plasma Fusion Res. 4, 024
(2009).

[13] http://www.povray.org/
[14] R.A. Drebin, L. Carpenter and P. Hanrahan, Comput.

Graph. 22, 65 (1988).
[15] M. Levoy, ACM Trans. Graph. 9, 245 (1990).
[16] W.M. Hsu, Proc. IEEE Symposium on Parallel Rendering

(1993) pp.7-14.

3401071-4


