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Hall and Gyro-Viscosity Effects on the Rayleigh-Taylor Instability
in a 2D Rectangular Slab
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Effects of the Hall term and the gyro-viscosity on the Rayleigh-Taylor instability in a 2D rectangular slab
are studied numerically. Nonlinear magneto-hydrodynamic (MHD) simulations with these effects reveal that the
combination of the Hall term and the gyro-viscosity causes the lower growth rates and the lower saturation level
of unstable modes relative those in the single-fluid MHD case, while neither the gyro-viscosity nor the Hall term
shows a strong stabilization effect only by itself. It is also shown that the mixing width of the density field can
grow as large as that in the single-fluid MHD case, even though the saturation level of the kinetic energy is
lowered and the detailed density profile becomes sharper. These numerical results suggest that the extension of
the MHD equations can bring about a growth of unstable modes in a lower level, although it does not necessarily
mean a weaker impact of the instability to the equilibrium.
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1. Introduction
Dynamical growth of magneto-hydrodynamic (MHD)

instability has been studied extensively by means of nu-
merical simulations.

A special interest of nonlinear numerical simulations
is on growth and saturation of the ballooning/interchange
instability since behaviors of these instabilities over a
short-length-scale can play a significant role in various as-
pects of torus plasma dynamics, such as high-beta achieve-
ments in the Large Helical Device (LHD) [1] and the edge
localized modes (ELMs) in tokamaks [2, 3]. There have
been some numerical works which report a nonlinear satu-
ration of the ballooning/interchange modes without a large
reduction of the peak pressure [4–6]. In these simulations,
large values of the dissipative coefficients, such as the vis-
cosity and the heat conductivity in the direction perpen-
dicular to the magnetic field lines, are adopted, although
plasma dynamics is considered to be almost collision-less.
However, full three-dimensional (3D) MHD simulations
of LHD with relatively small dissipative coefficients show
that the growth of the ballooning modes can bring about
a reduction of the peak pressure of more than 20% before
the saturation [7], even though the corresponding experi-
ments show a mild behavior without such a large reduc-
tion of the core pressure in spite of its unstable profile [8].
In order to explain the disagreement between numerical
simulations with small dissipative coefficients over experi-
ments, an additional mechanism to suppress the growth of
the ballooning/interchange modes is required.
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Some mechanisms to suppress the growth of the bal-
looning/ interchange modes have been proposed in the
framework of the single-fluid MHD equations [4,5]. Since
simulations of a full set of 3D compressible and non-
linear MHD equations including all these mechanisms
have shown some disagreements with the experiments [7],
it suggests that the mechanisms proposed earlier in the
framework of the single-fluid MHD are insufficient to sup-
press unstable modes, and it may be appropriate to find
a new mechanism not in the single-fluid MHD model but
outside of it. One possibility is short-length-scale effects
such as the finite Larmor radius (FLR) effects and the Hall
term (or the two-fluid terms), which do not appear in the
MHD equations. These effects can not be neglected in
unstable short-length-scale modes, and can influence non-
linear saturation even when the dissipative coefficients are
fairly small.

A set of fluid equations with short-length-scale ef-
fects has been derived by Braginskii in the collisional con-
text [9]. Though Braginskii’s approach is quite rigorous,
the equations are too dissipative for a torus plasma. In
stead of the rigorous Braginskii equations, slightly mod-
ified ones, sometimes referred to as extended MHD equa-
tions [10] can be used. A frequently-used extended MHD
model is similar to the Braginskii’s equation: Braginskii’s
ion stress tensor is modified by discarding the dissipative
part and retaining the non-dissipative part (so-called the
gyro-viscous tensor or the gyro-viscosity), which is added
to the two-fluid MHD equations while electron inertia is
neglected.

The Hall term and the gyro-viscosity have been in-
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troduced in some nonlinear simulation codes, such as the
M3D [11] and the NIMROD code [12]. Our nonlinear sim-
ulation code, the MHD In the Non-Orthogonal System
(MINOS) [5], has also been used to study the Hall effects
on the growth of the ballooning modes in the LHD [13].
However, a large computational resource is often required
to study the effects of the extension of the MHD equa-
tions since many aspects of the effects appear in the short-
length-scales, and it is not very effective to study the ef-
fects of the extension over a wide range of the parameter
space of a toroidal plasma by using full 3D nonlinear code.
Thus, in this paper, we restrict ourselves in this paper to a
simplified problem; the Rayleigh-Taylor (R-T) instability
in a 2D slab. Though a 3D nature is discarded in the sim-
plified problem, a sufficient numerical resolution to study
the effects of the extension of the MHD equations becomes
affordable by the simplification.

In this paper, we further restrict ourselves to an invis-
cid problem in order to see the influence of the Hall and
the FLR terms on the short-length-scale mode clearly.

The R-T instability in a 2D slab has been studied both
theoretically and numerically [14–18]. Roberts and Tay-
lor [14] have introduced the FLR effect as the anisotropic
pressure, which is called now as the gyro-viscous tensor,
and have shown the dispersion relation for an idealized
equilibrium.

Huba [15] has carried out 2D MHD simulations with
the FLR effect (the equations are referred to as FLR MHD
equations) and has shown the stabilization of the short-
wave-length modes and difficulty of the stabilization of
the long-wave-length modes. Winske [16] has carried out
2D hybrid simulation, and has shown that the gyro-viscous
term stabilizes the short-length-scale modes while the Hall
term destabilizes them. Huba and Winske [17] have carried
out both 2D extended MHD simulations and hybrid simu-
lations, and have shown that the short-length-scale modes
in the hybrid simulations are highly stabilized compared
with the single-fluid MHD simulations.

Zhu et al. [18] have reported their numerical results of
extended MHD simulations for the linear stage of time evo-
lution. Although these studies have revealed some aspects
of the two-fluid effects and the FLR effects, there still re-
main some important aspects to be clarified. For example,
typical parameters such as the β-value and the density ra-
tio are sometimes suitable for the space plasma parameters
and can be different from those in fusion plasma. Simula-
tions for extended MHD simulation with low density ratio
and low β values can provide some advances in our knowl-
edge on the extended MHD effects. Furthermore, extended
effects in the nonlinear stage of the R-T instability are not
clarified yet.

In this paper, the growth of the R-T modes in a rectan-
gular slab is studied numerically by means of the extended
MHD simulations. This paper is organized as follows. In
§2, the outline of our simulations is shown. In §3, nu-
merical results are shown. In §3.1, the linear stage of the

instability in our simulations is characterized by the lin-
ear growth rates. In §3.2, some nonlinear aspects in the
time evolution of the R-T modes are studied. Summary is
shown in §4.

2. System of Equations and Initial
Equilibrium
The Braginskii-type MHD equations that include the

Hall term and the gyro-viscosity, or the extended MHD
equations, in a 2D rectangular slab can be expressed as

∂ρ

∂t
= −∇ · (ρu) , (1)

∂

∂t
(ρu) = −∇ ·

[
ρuu + I

(
p +

B2

2

)
− BB + δΠgv

]
+ρg, (2)

∂Et

∂t
= −∇ · [(Et + p)u + u · δΠgv]
+u · J × B + ρg · u, (3)

∂B
∂t
= −∇ · (uB − Bu)

−∇ ×
[
ε

ρ
(J × B − ∇pe)

]
, (4)

where the total energy Et is defined as Et ≡ p/(γ − 1) +
ρu2/2, and γ = 5/3 is the ratio of specific heats. The total
pressure is defined as p = pi + pe = (α + 1)pe, α = pi/pe

where pi and pe are the ion and the electron pressures,
respectively. The system is assumed to be uniform in
the third direction, ∂/∂z = 0 and the two-dimensional
velocity field vector u = (u, v, 0) in Eqs. (1)-(4), while
keeping the third component of the magnetic field vector
B = (Bx, By, Bz). The gyro-viscosity is given by

Πgvxx = −Πgvyy = −pi

(
∂v

∂x
+
∂u
∂y

)
, (5)

Πgvxy = Π
gv
yx = pi

(
∂u
∂x
− ∂v
∂y

)
. (6)

The last term on the right-hand-side of Eq. (4) consists of
the Hall term and the electron pressure gradient, which rep-
resents two-fluid effects. All variables in Eqs. (1)-(4) have
already been normalized by representative quantities: the
scale length L, the characteristic values of the background
magnetic field B0 which is in the z direction and the mass

density ρ0 = mn0, the Alfven velocity VA =

√
B2

0/(μ0ρ0)
where μ0 is the vacuum permeability, the Alfven time scale
L/VA, B2

0/μ0 for the pressure, and V2
A/L for the gravita-

tional acceleration g = (0,−g, 0). The symbols δ and ε
represent the coefficients of the gyro-viscosity and the Hall
term, respectively. The two coefficients are related to each
other as ε = 2BZδ = di/L where di =

√
m/(μ0n0e2) is

the ion skin depth, e is the electric charge, and BZ is the
strength of the normalized magnetic field in the equilib-
rium in our normalization. However, the Hall term and
the gyro-viscosity term are often adopted independently in
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Fig. 1 Schematic view of the initial equilibrium for the R-T in-
stability study. The profiles of ρ, p0 and B2

z0/2 are re-
fracted at y = ±d, in accordance with Eqs. (7) and (8).

some fluid models, dependent to the ordering in the mod-
els. In this article, the two parameters are given indepen-
dent to each other and examine the roles of these terms to
study the effect of the adoption/omission of these terms.

For studying the R-T problem, a 2D rectangular re-
gion −π ≤ x ≤ π and −3π ≤ y ≤ 3π is considered. Periodic
boundary condition is imposed at x = ±π, while the simple
outflow condition ∂/∂y → 0 are used at y = ±3π. The ini-
tial density profile ρ0(y) is given by connecting the upper
region of the density ρ2 and the lower region of the density
ρ1 by the linear function as

ρ0(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ρ2 (y ≥ d)

ρ1 +
ρ2 − ρ1

2d
(y + d) (|y| < d)

ρ1. (y ≤ −d)

(7)

The initial pressure p0(y) and the magnetic field Bz0(y) sat-
isfy the equilibrium equation

∂

∂y

(
p0(y) +

Bz0(y)2

2

)
= −ρ0g, (8)

which is integrated

p0(y) +
Bz0(y)2

2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ρ2gy +
1
4

(ρ2 − ρ1) gd +
B2

Z

2
(y ≥ d)

−ρ1gy − ρ2 − ρ1

2d
g

(
y2

2
+ dy

)
+

B2
Z

2
(|y| < d)

−ρ1gy +
1
4

(ρ2 − ρ1) gd +
B2

Z

2
. (y ≤ −d)

(9)

Here, the integration constants are given by the condition

p0(0) +
B2

z0(0)

2
=

B2
Z

2
. (10)

Finally, the initial pressure p0(y) and the magnetic field
Bz0(y) are given from Eq. (9) with the beta value β ≡
2p0/B2

z0 kept constant, which is given as the control pa-
rameter.

Initial equilibrium is characterized by such parameters

Table 1 Parameter space used in our simulations.

run number Nx Ny β δ ε D
1 1024 4096 10.0% 0.00 0.00 2.0
2 1024 4096 10.0% 0.07 0.00 2.0
3 1024 4096 10.0% 0.10 0.00 2.0
4 1024 4096 10.0% 0.00 0.10 2.0
5 1024 4096 10.0% 0.00 0.30 2.0
6 1024 4096 10.0% 0.07 0.10 2.0
7 1024 4096 10.0% 0.10 0.10 2.0
8 1024 4096 10.0% 0.07 0.30 2.0
9 1024 4096 10.0% 0.00 0.00 3.0

10 1024 4096 10.0% 0.10 0.00 3.0
11 1024 4096 10.0% 0.00 0.10 3.0
12 1024 4096 10.0% 0.10 0.10 3.0

as the density ratio D = ρ2/ρ1, the jump width of the den-
sity Λ = 2d, and the β value, as illustrated in Fig. 1. In or-
der to study the R-T instability, the system of equations (1)-
(4) are solved numerically by using the fourth-order cen-
tral difference scheme and fourth-order Runge-Kutta-Gill
method. Since neither the physical viscosity nor the resis-
tivity is added, the fourth-order hyperviscosity is added to
the system to suppress a numerical noise. Numerical tests
have carried out for various numbers of grid points (Nx,Ny)
and for various coefficients of the hyperviscosity to clarify
the range of wave numbers affected by the hyperviscosity.
In the numerical results in the following sections, we re-
strict ourselves to the range of wave numbers in which the
influence of hyperviscosity can be neglected.

3. Numerical Results
Numerical simulations of some parameters shown in

Table 1 are carried out. The ratio between ion and electron
pressures pi/pe = 1.0, g = 0.1, β = 10.0%, BZ = 10.0, and
Λ = 1.0 is assumed throughout the simulations. In §3.1,
the linear stage of the R-T instability which is governed by
the extended MHD equations (1)-(4) is seen. In §3.2, some
aspects in the nonlinear evolution are discussed.

3.1 Linear stage of the R-T instability
The linear stage of the time evolution of unstable

modes can be well studied by Fourier power spectra. The
Fourier transform of a variable A(x, y, t) in the x-direction
gives the Fourier coefficient Ã(kx, y, t) of the wave number
kx. Integration of the Fourier energies in the y-direction,
PA(kx, t) =

∫ |Ã(kx, y, t)|2dy gives the power spectrum of
the variable A. Figure 2 shows the time evolution of the
kinetic energy spectrum 1

2 [Pu(kx, t) + Pv(kx, t)] in runs (a)
1, (b) 3, (c) 4 and (d) 7. For simplicity, the wave numbers
in the figures is limited for 1 ≤ kx ≤ 20, although the expo-
nential growth of the Fourier energies are observed well for
larger values of kx’s. While the growth rates of the Fourier
modes of the velocity field in Figs. 2 (a)-(c) are compara-
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ble to each other and show only a little dependence on the
wave number, Fig. 2 (d) shows a clear dependence of the
growth rates on the wave numbers. (See the next para-
graph on the dependence of the growth rates on the wave
number). It may be worth noting on a period of the lin-
ear stage in the simulations. In Figs. 2 (a)-(c), many of the
Fourier modes move to their nonlinear stage after t ∼ 40
and are saturated at t 	 60. However, in Fig. 2 (d), the lin-
ear growth of some Fourier modes continues untill t 	 60
and saturated only after t 	 70. It is considered that the
difference can be attributed to the reduction of the growth
rates of high wave number modes in Fig. 2 (d). Because of
the reduction, the numbers of Fourier modes which can
influence the growth of the low Fourier modes through
the nonlinear couplings with sufficient amplitudes are de-
creased. Consequently, the period of the linear stage in
Fig. 2 (d) continues longer than in the other three runs.

By fitting an exponential function to the Fourier power
spectra, the linear growth rate σ in the simulation can
be estimated as a function of the wave number kx. The
growth rates are shown in Fig. 3 (a) for D = 2.0 and (b)
for D = 3.0, respectively. The growth rates in Fig. 3 (b)
look being amplified by a factor of about 3/2 compared to
those in Fig. 3 (a). In the single-fluid MHD cases (the run
1 in Fig. 3 (a) and the run 9 in Fig. 3 (b)), σ increases as a
function of the wave number kx and approaches to the con-
stant value in the large wave number limit. This behavior is
consistent with our preliminary results of linear eigenmode
analysis of the R-T instability (the detailed results will be
shown elsewhere). In runs 2 and 3 in Fig. 3 (a) and 10 in
Fig. 3 (b), the FLR effect on the R-T instability is examined
by varying δ and keeping ε = 0.00. The results do not show
a large change in the growth rates excepting a weak reduc-
tion of σ at high wave number region. In runs 4 and 5, the
two-fluid effect is examined by varying ε while keeping
δ = 0.00. The introduction of the two-fluid effect does not
bring about a clear difference from the single-fluid MHD
case. Even in run 5 with ε = 0.30, which is the largest ε
among our numerical simulations, σ is increased by only a
several percent from that of the single-fluid MHD case.

Though the change of the growth rates by the FLR and
the two-fluid effects is not very large, the tendency of the
decrease/increase of the growth rates are consistent with
the earlier results seen in Refs. [14–18]. In those papers,
it has been reported that the gyro-viscosity can stabilize
unstable modes, whether the stabilization is complete or
partial, while the two-fluid term can destabilize the modes.
A notable change of the growth rate is found in our simu-
lations when δ and ε are set to be non-zero. In run 7 where
δ = 0.10 and ε = 0.10, the growth rate at relatively high
wave number modes are reduced considerably. In fact,
the reduction is much larger than that expected from the
growth rates in run 3 and 4, where only one of δ or ε is set
non-zero. While Huba and Winske [17] have reported the
growth rates similar to those in runs 7 and 8, they have not
reported separate dependence of the growth rates on the

Fig. 2 Time evolution of the integrated kinetic energy in runs
(a) 1 (ε = δ = 0.00), (b) 3 (ε = 0.10, δ = 0.00), (c) 4
(ε = 0.00, δ = 0.10) and (d) 7 (ε = 0.10, δ = 0.10) . In
(a)-(c), many of the Fourier modes move to the nonlinear
stage after t ∼ 40 and are saturated at t 	 60. However,
in (d), the linear growth of some Fourier modes continues
untill t 	 60 and is saturated only after t 	 70.
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Fig. 3 Linear growth rates obtained by simulations with the den-
sity ratio (a) D = 2.0 and (b) D = 3.0. The growth rates
of high wave number modes are strongly decreased when
both of δ and ε are finite.

Hall term and the gyro-viscosity. It may be partially be-
cause the effects of δ and ε can not be separated in the hy-
brid simulations. As Huba and Winske have reported that
their hybrid simulations agree well with fluid simulations
(for finite δ and ε) [17], it is expected that our growth rates
will also agree if we carry out hybrid simulations. Our nu-
merical results show that the reduction of the growth rates
is provided by the coupled effect of the gyro-viscosity and
the two-fluid term. The observation suggests that, in com-
parison to models which include either the two-fluid term
or the gyro-viscosity, a model with both of them can show a
considerable reduction of the growth rates. In other words,
the truncation of the two-fluid term in some assumptions
can weaken the FLR effect to suppress the growth of the
R-T instability.

3.2 Some aspects of nonlinear evolution
One convenient measure of the impact of the insta-

bility on initial equilibrium is the saturation level of the

Fig. 4 Energy spectrum of the velocity field at t = 70. Energy
of the low wave number modes (kx ≤ 30) are reduced in
run7.

growth of unstable modes. In Fig. 4, the velocity energy
spectrum at t = 70 is shown. (See also Fig. 2 again for
the time evolution of the energy spectra). The wave num-
ber range is restricted to kx ≤ 100 since the observation
of the spectrum at high wave numbers is meaningless be-
cause the high wave number range is artificially suppressed
by the hyperviscosity.

The energy of Fourier modes in run 7 is smaller than
those in runs 1 and 4 for all wave number region in this
figure. In addition, the Fourier energy in run 7 is smaller
than those in run 3 for kx ≤ 30, but it is larger for kx ≥ 30.

These differences between the two spectra are at-
tributed to the value of the Hall coefficient (ε = 0.00 and
0.10 in the runs 3 and 7, respectively). It may be that in run
7, the two-fluid term can raise the energy in the high wave
number region while it can reduce the energy in the low
wave number region, although we can not assert it now.

For the purpose of characterizing the impact of the in-
stability in the nonlinear process, we introduce the mixing
width. The mixing width at each horizontal coordinate x is
defined as the distance between two points, the maximum
y where the mass density becomes smaller than the heav-
ier mass density ρ2 by 1%, that is max[y(0.99ρ2)], and the
minimum y where the mass density becomes larger than
the lighter mass density ρ1 by 1%, that is min[y(1.01ρ1)].
Here, the distance between two points in the y-direction is
defined as the local mixing width. In Fig. 5 (a), the density
contours of t = 50 in run 1 (the D = 2.0 runs) are shown,
together with two thick black lines, which give the two lev-
els ρ = 0.99ρ2 and ρ = 1.01ρ1. The local mixing width is
the distance between the two black lines in the y-direction.
Then the mixing width is given as the averaged value of
the local mixing width,

dmix,xi ≡
1

2π

∫ {
max

[
y (0.99ρ2)

] |x
−min

[
y (1.01ρ1)

] |x} dx. (11)

From the definition, the initial value of the mixing width
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Fig. 5 (a) Contours of the mass density at t = 50 in run 1 for
−1 ≤ x ≤ 1 and −π/2 ≤ y ≤ π/2 , drawn together with
the two black lines, distance of which in the vertical line
gives the mixing width. (b) Time evolution of mixing
width for the density ratio for D = 2.0. While the mixing
width in runs 1 and 3 begin to grow earlier than the others,
the mixing width of runs 4 and 7 catch up by t = 70.

dmix is almost the same as the jump width Λ. The mixing
width dmix gives an obvious growth of the mixing (turbu-
lent) region in the nonlinear stage of the time evolution.
Similar characterization is often found in R-T turbulence
studies. (See Ref. [19], for example). In Fig. 5 (b), the time
evolution of the mixing width in the four D = 2.0 runs
(runs 1, 3, 4, and 7) are shown.

While the mixing width in the runs 1 and 3 begin to
grow earlier than that in the others, the mixing width of
runs 4 and 7 catch up by t = 70.

The growth of the mixing width is not saturated even
though the growth of the unstable modes in these runs are
saturated by t = 70 as seen in Fig. 2. It is another expres-
sion of the simple fact that the growth of the displacement
is not saturated even though the growth of the velocity is

Fig. 6 Contour plots of the mass density ρ at t = 70 in runs (a)
1 (δ = ε = 0.00) and (b) 7 (δ = 0.10, ε = 0.10). The
region of −π ≤ x ≤ π and −π ≤ y ≤ π is shown. In (a),
the two contour lines ρ = ρ2 and ρ = ρ1 are relatively
separated and the density contours change smoothly be-
tween them. In (b), the distance between the two contour
lines, being drawn as the mixture of the red (ρ = ρ2) and
blue (ρ = ρ1) regions, are much narrower than that in (a)
meaninig that there is a sharp density gradient in (b).

saturated. In order for the growth of the mixing width to
be saturated, the Fourier energies of the velocity must be
damped quickly.

In Fig. 6, the contour plots of the mass density ρ at
t = 70 are shown. Figure 6 (a) is for run 1, which is the
single-fluid MHD case. Due to this simultaneous growth
of the R-T modes, many mushroom-like structures are
formed in the mixing or turbulent region. Figure 6 (b) is
for run 7, where two-fluid and FLR effects are included si-
multaneously. Here, two runs 1 and 7, are compared, and
other runs, such as runs 3 and 4, are omitted because their
mass density contours are qualitatively similar to those in
Fig. 6 (a).

The density contour plots in Fig. 6 (b) look more com-
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Fig. 7 Mass density ρ from t = 40 to t = 70 in runs 1 and 7.
From lower to upper, the panels are for t = 40, 50, 60,
65 and 70. While the density plot of run 1 (red) shows
strong variations, the density of run 7 (blue) changes
quite slowly in comparison to that of run 1.

plicated than those observed by Huba and Winske [17],
in which the fine structures are called as the bubbles and
spikes. Though there are many bubbles and spikes in Ref.
[17], each of them look smoother than the fine structures
in our simulation. The difference may be attributed to the
difference of the numerical resolution because the number
of the grid points in Ref. [17] is typically (100, 256), while
in our simulations it is (1024, 4096).

In Figs. 6 (a) and (b), some differences are observed,
especially in the fine structures of the contours. In
Fig. 6 (a), the contour lines of ρ = ρ2 and ρ = ρ1 consist
of relatively smooth lines, which can be recognized as the
simple consequence of the growth of mushroom-like struc-
tures associated with the R-T instability. Furthermore, the
two contour lines ρ = ρ2 and ρ = ρ1 are relatively sepa-

rated and the density contours change smoothly between
them. In contrast, in Fig. 6 (b), the distance between two
contour lines, being drawn as a mixture of red (ρ = ρ2) and
blue (ρ = ρ1), are much narrower than that in Fig. 6 (a).
It means that there is a sharp density gradient in Fig. 6 (b).
Such a difference between Figs. 6 (a) and (b) can be seen
more clearly by plotting the density along the coordinate
line.

In Fig. 7, densities in the runs 1 and 7 are plotted along
the y-coordinate line for t = 40, 50, 60, 65 and 70. While
the density plot of run 1 shows strong variations, the den-
sity of run 7 changes quite slowly in comparison to that of
run 1. At the final time t = 70, it is obviously observed that
the density in run 7 falls sharply from ρ = ρ2 to ρ = ρ1,
while that in run 1 shows sharp oscillations between the
two levels ρ = ρ1 and ρ = ρ2. It indicates a tendency that
strong density fluctuations are removed by the effects of
the gyro-viscosity and the Hall term, and the stabilization
effects influence even in the nonlinear stage. However, we
have not clarified the reason behind the occasional fall of
density from ρ = ρ2 to ρ1 so sharply. A detailed analysis
of the mechanism, as well as behaviors of other variables,
will be presented in our forthcoming paper with finer nu-
merical resolutions.

4. Summary
The effects of the two-fluid term and the gyro-

viscosity are studied by the nonlinear extended MHD sim-
ulations.

The numerical simulations have been carried out by
changing the coefficients of the two-fluid and the gyro-
viscosity terms independently to each other for a parameter
region which is closer to that of a torus plasma.

Introduction of the Hall term slightly increases the lin-
ear growth rate over entire range of wave numbers, while
the gyro-viscosity reduces the growth rates of modes hav-
ing relatively high wave number. Inclusion of both terms
causes larger reduction of the growth rates than that ex-
pected from the growth rates in the other simulations.

Our numerical results show that the truncation of the
two-fluid term in some orderings can weaken the FLR ef-
fect that suppresses the growth of the R-T instability.

The impact of the reduction of the growth rates at high
wave numbers on low wave number modes are studied by
using the mixing width. Although the growth of the mixing
width is slowed down by combining the Hall term and the
gyro-viscosity, the mixing width finally reaches the same
level in all runs. However, the density profile in runs with
the Hall term and the gyro-viscosity, is quite sharper than
that in the single-fluid MHD run, suggesting a smoothing
effect of the gyro-viscosity.

In this paper, we have restricted ourselves 2D simula-
tions. However, 3D natures can play important roles in a
torus plasma. Full 3D simulations will be presented in our
forthcoming paper.
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