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A two-dimensional transport modeling applicable to a whole tokamak plasma is proposed. The model is de-
rived from the multi-fluid equations and Maxwell’s equations and the moment approach of neoclassical transport
is employed as fluid closures. The multi-fluid equations consist of the equations for particle density, momen-
tum, energy and total heat flux transport for each plasma species. The expressions of the parallel viscosity and
heat viscosity are extended in order to be applicable to both inside and outside of the last closed flux surface.
It is confirmed that our neoclassical transport model is consistent with the ordinary flux-surface-averaged one-
dimensional neoclassical transport model. Our transport equations are coupled with the electromagnetic equa-
tions in order to describe the time evolution of tokamak plasmas. The procedure for coupling a transport solver
based on our transport model with an equilibrium solver is also briefly described.
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1. Introduction
The core and peripheral plasmas are strongly cou-

pled with each other in tokamaks. The particle and heat
fluxes from the core determine the behavior of the periph-
eral plasma, while the peripheral plasma determines the
edge density and temperature, boundary conditions of the
core plasma. The transport in the core and the peripheral
regions, however, have been analyzed separately until re-
cently owing to the difference in modeling configurations.

In most conventional transport analyses in the core
region, transport is usually described as one-dimensional
problem in the radial direction based on the magnetic flux
surface average, since the transport along the field lines is
so fast that the poloidal and toroidal dependences of the
plasma quantities such as the particle density and the tem-
perature are small. One-dimensional (1D) core transport
codes or 1.5D core transport codes composed of an one-
dimensional core transport module and a two-dimensional
MHD equilibrium module have been used for analyz-
ing various transport issues [1–8], comparison of turbu-
lent transport models [5], analysis of edge transport mech-
anism [6], analysis of plasma rotation [8] and so on.

A standard core transport modeling consists of diffu-
sion equations for particle, toroidal momentum and en-
ergy transport as well as poloidal magnetic field [9, 10].
The force and the energy-weighted force balances in the
parallel direction are employed to determine the poloidal
particle and heat fluxes in the neoclassical theory [11, 12]
and the charge neutrality is assumed. A new core trans-
port modeling [7,8] has been introduced for the analysis of
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plasma rotation. It includes the equation of motion and the
radial electric field in addition to those mentioned above
and the charge neutrality is not assumed, since the rotation
and the radial electric field are strongly coupled.

On the other hand, in the peripheral region, the trans-
port is usually described as a two-dimensional problem
on the poloidal cross-section, since variation of physical
quantities along a field line is relatively large and important
to understand the transport mechanism in the peripheral
region. Two-dimensional (2D) peripheral transport codes,
for example B2 [13], B2.5 [14], EDGE2D [15], UEDGE
[16] and SONIC [17, 18] have been developed and inte-
grated with the neutral particle transport code and atomic
process data. They are used for various peripheral trans-
port issues, impurity transport analysis [17], divertor de-
signing [18], and so on. Since these analyses are mainly
based on the collisional transport model, they are not di-
rectly applicable to the weakly collisional core plasmas.

A standard peripheral transport modeling consists of
advection-diffusion equations for particle, parallel momen-
tum and energy transport [9]. These are based on the Bra-
ginskii’s equations [19] extended to multi-species plasma
[13]. A new modeling [20] has been introduced for smooth
extension to the weakly collision regime. It includes the
contribution of the heat flux to the parallel viscosity term,
since the contribution of the heat flux is comparable to that
of the particle flux and important in the weakly collisional
regime.

Recently, integrated core-peripheral transport simula-
tions on the whole tokamak plasma have been done by
coupling a 1.5D core transport code with a 2D peripheral
transport code. The simulation with TOPICS-IB [6] and
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SONIC [17] analyzed a L-H transition in JT-60SA [21] and
that with a integrated suite JINTRAC [22] also analyzed a
consecutive ELM-crash in JET [23]. There is an ambiguity,
however, in the connection at the computational boundary
which is an appropriately chosen flux surface inside and
near the last closed flux surface (LCFS).

In order to resolve this issue, the overlap computa-
tional domain in the edge region has been proposed [21].
Since simulation results may depend on the choice of the
location of the boundary and the connection rule, a trans-
port code applicable to a whole plasma is desired for
consistent transport simulation in both core and periph-
eral plasmas. Some efforts have been devoted to two-
dimensional transport modeling, though they have not been
published yet.

In this paper, we formulate two-dimensional fluid
transport equations including the neoclassical transport
[11] in the magnetic surface coordinate system. Our model
is applicable to both core and peripheral plasmas in the ax-
isymmetric tokamak configuration.

This paper is organized as follows. In Sec. 2, the prop-
erty and advantage of the magnetic surface coordinate sys-
tem are described. The orderings used in this paper is
discussed in Sec. 3. The set of the multi-fluid equations
and its closure are discussed in Sec. 4. The set of two-
dimensional transport equations is derived and it is con-
firmed that our two-dimensional transport model is con-
sistent with the conventional one-dimensional neoclassical
transport model in Sec. 5. In Sec. 6, the set of the electro-
magnetic equations is derived from Maxwell’s equations.
In Sec. 7, the procedure for coupling a 2D transport solver
with a 2D equilibrium solver is discussed. Summary and
discussion are given in Sec. 8.

2. Assumptions and Coordinate
System
In this paper, we assume axisymmetry of the system

and the existence of flux surfaces with two-dimensional
equilibrium magnetic field. Based on these assumptions,
we employ a magnetic surface coordinate system (MSCS)
(ρ, χ, ζ) in order to develop a two-dimensional transport
model applicable to both the core and the peripheral re-
gions. Here ρ is the radial coordinate label, χ is the
poloidal angle, and ζ is the toroidal angle. In our MSCS,
ρ is defined as the direction perpendicular to the mag-
netic field B and constructed by the toroidal flux function
φ ≡ ∫ ρ

0
dρ′

∫
dχ
√
gBζ/

∫
dχ, χ is defined by the normal-

ized length of the field line projected on a constant-ζ sur-
face and ζ is defined by the geometrical toroidal angle.

Since the poloidal and toroidal angles are defined in-
dependently of the magnetic flux functions, MSCS is a
kind of the non-flux coordinate system and is applica-
ble even outside the separatrix on which the safety factor
q ≡ dφ/dψ diverges to infinity, where ψ ≡ ∫ ρ

0
dρ′ √gBχ

is the poloidal flux function. The axisymmetric magnetic

field B can be written by the use of the two flux functions
ψ and I = Bζ [24],

B = ∇ζ × ∇ψ + I∇ζ. (1)

The contravariant basis vectors (eξi ≡ ∇ξi) for the
MSCS (ξi = ρ, χ, ζ) are eρ ≡ ∇ρ, eχ ≡ ∇χ, eζ ≡ ∇ζ. The
covariant basis vectors ( eξi ≡ ∂x/∂ξi) are eρ ≡ √g∇χ×∇ζ,
eχ ≡ √g∇ζ × ∇ρ, eζ ≡ √g∇ρ × ∇χ. The Jacobian is√
g−1 ≡ ∇ρ · ∇χ×∇ζ. Since the geometrical toroidal angle

is employed, the constant-ζ surface is orthogonal to both
the constant-ρ and -χ surfaces so that eζ and eζ are parallel
to one another,

eζ = R2∇ζ = R2eζ , Bζ = BζR2, (2)

where R is the major radius.
In this paper, the time evolution of the direction of the

magnetic field and that of the metric tensor are neglected
by assuming the slow change of magnetic flux surface.
This assumption will be satisfied in most of phenomena
with transport time scale, while it is not satisfied in rapid
phenomena with Alfvén time scale.

The relation between the time derivatives in a fixed
laboratory frame and in a moving magnetic surface frame
can be expressed with a drift velocity of the flux surface ug
as

∂

∂t

∣∣∣∣∣
x
=

∂

∂t

∣∣∣∣∣
ρ,χ,ζ
− ug · ∇, (3)

where the subscript x indicates the time derivative in the
laboratory frame and the subscript ρ, χ, ζ in the magnetic
surface frame. In the following discussion, the latter sub-
script is dropped for simplicity. The drift velocity of the
magnetic surface is defined by

ug ≡ − ∂ρ

∂t

∣∣∣∣∣
x

eρ − ∂χ

∂t

∣∣∣∣∣
x

eχ = uρgeρ + uχgeχ, (4)

and its actual expression depends on the definitions of ρ
and χ. From the conservation of volume, Eq. (3) can be
transformed as

∂ f
∂t

∣∣∣∣∣
x
=

1√
g

∂

∂t
(√
g f

) − ∇ · (ug f
)
. (5)

3. Small Gyro-Radius Ordering
In this paper, we employ the small gyro-radius order-

ing in order to formulate the two-dimensional transport
model. In this ordering, a small expansion parameter δa

for particle species a

δa ≡ 
a

L⊥
� 1, (6)

is introduced, where 
a ≡ vTa/ωca is the Larmor radius,
L⊥ is the macroscopic characteristic length in the perpen-
dicular direction, vTa ≡

√
2Ta/ma is the thermal velocity,

ωca ≡ |ea|B/ma is the cyclotron frequency, ea is the charge
and ma is the mass. Since δi ∼

√
mi/meδe in general, we

consider δ ∼ δi as the most severe restriction for the small
gyro-radius ordering.
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4. Multi-Fluid Equations
We consider the multi-fluid equations which describe

the time evolution of macroscopic quantities, such as the
particle density na, the momentum manaua, the pressure pa

and the total heat flux Qa, derived from the kinetic equation
for each plasma species,

∂ fa
∂t

∣∣∣∣∣
x
+ ua · ∇ fa +

ea

ma
(E + ua × B) · ∂ fa

∂u

= C( fa) + DQL( fa) + S ( fa), (7)

where fa is the distribution function in six-dimensional
phase space, ua is the particle velocity, C is the colli-
sion operator, DQL represents the quasi-linear interaction
with waves, and S is the kinetic source. The multi-
fluid equations are obtained by taking velocity moments
(1,mu,mv2/2,mv2u/2) of the kinetic equation as [25]

∂na

∂t

∣∣∣∣∣
x
+ ∇ · (naua) = S na, (8)

∂

∂t
(manaua)

∣∣∣∣∣
x
+ ∇ · ↔Pa

= eana (E + ua × B) + Fa + FQL
a + Sma, (9)

∂

∂t

(
3
2

pa

)∣∣∣∣∣∣
x

+ ∇ ·
(
Qa −

1
2

manau2
aua

)

= ua · ∇pa + ua · ∇ · ↔πa + QΔa + S pa, (10)

∂Qa

∂t

∣∣∣∣∣
x
+ ∇ · ↔Ra

=
ea

ma

{
5
2

paE +
↔
πa · E + Qa × B

}

+ Ga + GQL
a + Sqa. (11)

The energy transport equation for internal energy (10) is
employed instead of that for total energy. In the multi-fluid

equations (8)-(11), S na is the particle source,
↔
Pa is the total

stress tensor, Fa is the friction force, FQL
a represents the

interaction with waves, Sma is the momentum source, Qa is
the total heat flux, QΔa is the energy equipartition [26], S pa

is the internal energy source,
↔
Ra is the energy-weighted

(EW) total stress tensor, Ga is the EW friction force, GQL
a

is the EW interaction with waves, and Sqa is the total heat

flux source. The quantities
↔
Pa, Qa, QΔa, S pa,

↔
Ra, Ga are

defined by

↔
Pa ≡ pa

↔
I +

↔
πa + manauaua, (12)

Qa ≡ qa +
5
2

paua +
↔
πa · ua +

1
2

manau2
aua, (13)

QΔa ≡
∑

b

3
2

na
Tb − Ta

τab
, (14)

S pa ≡ S Ea − ua · Sma +
1
2

mau2
aS na, (15)

↔
Ra ≡ 5

2
Ta

ma
pa
↔
I +

↔
r a +

[[
Qaua

]] − 3
2

pauaua, (16)

↔
r a ≡ Ta

ma

(
5
2
↔
πa +

↔
θ a

)
, (17)

Ga ≡ Ta

ma

(
5
2

Fa + Ha

)
, (18)

where
↔
πa is the viscosity tensor, S Ea is the total energy

source,
↔
θ a is the heat viscosity tensor, and Ha is the heat

friction force. The double square brackets [[· · · ]] is defined
as

[[
fg

]] ≡ fg + g f . (19)

In Eq. (14), τab is the heat exchange time defined by

τab ≡
3
√

2π3/2ε2
0mamb

nbe4Z2
aZ2

b lnΛ

(
Ta

ma
+

Tb

mb

)3/2

, (20)

where lnΛ is the Coulomb logarithm.
The turbulent transport is induced by the interaction

with low-frequency fluctuations. In the present framework,
the quasi-linear term in the kinetic equation generates the
force FQL

a and this force induces particle and heat flux in
the perpendicular direction. In the case of the electrostatic
fluctuation, the poloidal force acting on electrons can be
expresses in the toroidal coordinate (r, θ, φ) as [27, 28]

FQL
eθ = eBφneDe

[
− 1

ne

∂ne

∂r
+

e
Te

Er −
〈
ω

m

〉
e

r
eBφ
Te

−
(
μe

De
− 1

2

)
1
Te

∂Te

∂r

]
, (21)

where ω and m are the mode frequency and poloidal mode
number respectively, and 〈ω/m〉 denotes the spectrum av-
erage of the phase velocity in the poloidal direction. In
the above expression, we have assumed a symmetric wave
spectrum with respect to k‖ and weak velocity shear. The
factor De is proportional to the square of the wave am-
plitude and corresponds to the ordinary diffusion coeffi-
cient. If the momentum is conserved between charged par-
ticles, the particle flux is intrinsically ambipolar. This par-
ticle transport model has been successfully implemented in
the TASK/TX code [7]. The momentum and heat flux can
be similarly implemented. The parallel component of the
turbulence-induced force is neglected for simplicity, since
the neoclassical term is considered to be dominant in the
parallel direction.

In Eq. (15), the expression of internal energy source
S pa differs from the ordinary expression S pa ≡ S Ea −
1
2 mau2

aS na, since S pa in Eq. (15) includes contributions
from not only particle source S na but also momentum
source Sma. Note that the EW Lorentz force which is the
first term in RHS of Eq. (11) and the EW total stress ten-
sor (16) have been simplified to the extent that they keep
consistency with the neoclassical theory.

The viscosity tensor
↔
πa, the heat viscosity tensor

↔
θ a,

the friction force Fa, and the heat friction force Ha must
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be modeled in order to complete the multi-fluid equations.
According to the moment approach, the lowest order fric-
tion force Fa and heat friction force Ha can be expressed
in terms of flows

Fa =
∑

b

(
lab
11ub − lab

12

2qb

5pb

)
, (22)

Ha =
∑

b

(
−lab

21ub + lab
22

2qb

5pb

)
, (23)

where the coefficients lab
i j can be expressed in terms of the

Braginskii’s matrix elements of the collision operator [12].
In the lowest order of the drift ordering O(δ), the vis-

cosity tensor
↔
πa and the heat viscosity tensor

↔
θ a are in the

CGL form as

↔
πa = π‖a

(
e‖e‖ − 1

3

↔
I

)
+ O(δ2), (24)

↔
θ a = θ‖a

(
e‖e‖ − 1

3

↔
I

)
+ O(δ2), (25)

where e‖ ≡ B/B is the unit vector in the parallel direc-
tion. In this paper, we define the parallel viscosities π‖a
and θ‖a in terms of the neoclassical parallel viscosity co-
efficients μai and the parallel-parallel components of the
rate-of-strain tensors Wua

zz and Wqa
zz as[

π‖a
θ‖a

]
= −3

2

[
μa1 μa2

μa2 μa3

] [
Wua

zz

Wqa
zz

]
, (26)

where

Wua
zz = 2

(∇‖ua‖ − ua · κ) , (27)

Wqa
zz = 2

(
∇‖

(
2qa‖
5pa

)
− 2qa

5pa
· κ

)
. (28)

In Eqs. (27) and (28), the incompressibility of flows,
∇ · ua = 0 and ∇ · (2qa/5pa) = 0, have been assumed for
simplicity and κ = e‖ · ∇e‖ is the magnetic curvature. It is
easily shown that Eq. (26) is equivalent to the Hirshman-
type parallel viscosities inside the LCFS in the sense of the

flux averaged viscous forces
〈
B · ∇ · ↔πa

〉
and

〈
B · ∇ · ↔θ a

〉
and also equivalent to the Braginskii-type parallel viscosity
outside the LCFS [29].

In the above discussion, the neoclassical parallel coef-
ficients μai obtained from the bounce-averaged drift kinetic
equation are assumed, which means that μai in Eq. (26) are
flux functions and lose their poloidal dependence. In the
core region, the equilibrium return flows are formed and
transport is essentially reduced to one-dimensional prob-
lem. Therefore the poloidal dependence of μai is assumed
to be small enough to be negligible. In the edge region
where the plasma is weakly collisional, μai should have
weak poloidal dependence. We assume, however, that the
effect of the poloidal non-uniformity of the plasma den-
sity and temperature on the viscosity is small and use the
bounce averaged μai as an approximation. In the peripheral
region where the plasma is collisional, Eq. (26) is reduce to
the Braginskii’s expression [12, 29] so that Eq. (26) recov-
ers its poloidal dependence.

5. Derivation of Two-Dimensional
Transport Equations
In this section, we derive the two-dimensional trans-

port modeling equations composed of the equations for
particle density, momentum in the three direction (radial,
parallel and toroidal), internal energy, and total heat flux
in the three direction (radial, parallel and toroidal) for
each species, and Maxwell’s equations for electromagnetic
field. Since the toroidal symmetry is assumed, the spatial
variation of quantities are two-dimensional, in the radial
and poloidal directions. Since the parallel flows have great
influence on tokamak transport, we consider three compo-
nents of vector quantities, (ρ, ‖, ζ) in the radial, the paral-
lel to the field line, and the toroidal, rather than those of
MSCS (ρ, χ, ζ).

5.1 Equation for particle density
In this paper the equation of continuity (8) is em-

ployed as the equation for particle density,

∂na

∂t

∣∣∣∣∣
x
+ ∇ · (naua) = S na. (29)

5.2 Equation of motion in the parallel direc-
tion

We formulate the evolution equation for the parallel
momentum by taking a scalar product of the equation of
motion (9) and B:

∂

∂t
(
manaua‖B

)∣∣∣
x
+ B · ∇ · (manauaua)

+ B∇‖pa + B · ∇ · ↔πa

= eanaBE‖ + Fa‖B + FQL
a‖ B + S ma‖B. (30)

The time derivative term in Eq. (30) is reduced, since
the time variation of magnetic field is much slower than
that of momentum, where we have evaluated ua ∼ O(δ),
∂B/∂t|x ∼ O(δ2) and ∂(manaua‖B)/∂t|x ∼ O(δ2). Though
the inertial force driven by the drift of the flux surfaces ug
included in the time derivative term in Eq. (30) isO(δ3), we
retain it from the aspect of volume conservation.

Next, we evaluate the inertial force in the parallel di-
rection. To obtain a simple expression, we split the flow ve-
locity into the parallel and the perpendicular components,
ua = ua‖ + ua⊥. The inertial stress tensor manauaua now
is split into 4 terms and we keep terms up to O(δ2) in our
transport model:

manauaua = manaua‖ua‖ + O(δ3). (31)

Therefore the inertial force in the parallel direction F ine
ua‖ is

rewritten in a simple form:

F ine
ua‖B = B · ∇ · (manaua‖ua‖

)
= B∇‖ (manaua‖ua‖

) − manaua‖ua‖∇‖B, (32)

where we have used the following relation

B · ∇ · ( f e‖e‖
)
= B∇‖ f − f∇‖B. (33)
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The viscous force in the parallel direction Fvis
ua‖ can be

written as

Fvis
ua‖B = B · ∇ · ↔πa = −π‖a∇‖B + 2

3
B∇‖π‖a, (34)

since the parallel viscosity tensor is in the CGL form.
From Eq. (30), the force due to the pressure gradient in

the parallel direction F∇p
ua‖, the Lorentz force in the parallel

direction FLor
ua‖ and the friction force in the parallel direction

Ffri
ua‖ can be written respectively as

F∇p
ua‖B = B∇‖pa, (35)

FLor
ua‖B = eanaE‖B, (36)

Ffri
ua‖B =

∑
b

(
lab
11ub‖ − lab

12

2qb‖
5pb

)
B. (37)

Therefore the equation for the parallel momentum is
obtained as

∂

∂t
(
manaua‖B

)∣∣∣∣∣
x
+ F ine

ua‖B + F∇p
ua‖B + Fvis

ua‖B

= FLor
ua‖B + Ffri

ua‖B + FQL
a‖ B + S ma‖B. (38)

5.3 Equation of motion in the toroidal direc-
tion

Taking the scalar product of the equation of motion
(9) and the covariant toroidal basis eζ , we obtain

∂

∂t

(
manauaζ

)∣∣∣∣∣
x
+ ∇ ·

(
eζ ·

↔
Pa

)

= eana

(
Eζ + ψ

′uρa
)
+ Faζ + FQL

aζ + S maζ , (39)

where ζ is defined geometrically so that its time derivative
is identically zero and ψ′ indicates the derivative of ψ with
respect to ρ.

Since the total stress tensor
↔
Pa is symmetric, the fol-

lowing useful identity of the second-rank symmetric tensor
↔
S has been used in taking the toroidal projection of total

stress eζ · ∇ ·
↔
Pa:

eζ · ∇ ·
↔
S = ∇ ·

(
eζ ·

↔
S
)
. (40)

The inertial force in the toroidal direction F ine
uaζ and the vis-

cous force in the toroidal direction Fvis
uaζ therefore can be

expressed as

F ine
uaζ = ∇ ·

(
manauaζua

)
, (41)

Fvis
uaζ = B∇‖

( I
B2
π‖a

)
. (42)

Note that the parallel viscous force in the toroidal direction
may not vanish in two-dimensional transport modeling in
contrast to the traditional one-dimensional transport mod-
eling. It is easily confirmed that the flux-surface-averaged
value of Eq. (42) vanishes as 〈B · ∇ f 〉 = 0, which is con-
sistent with the one-dimensional transport theory.

The Lorentz force in the toroidal direction FLor
uaζ and

the friction force in the toroidal direction Ffri
uaζ can be writ-

ten as

FLor
uaζ = eanaEζ + eanaψ

′uρa, (43)

Ffri
uaζ =

∑
b

(
lab
11ubζ − lab

12

2qbζ

5pb

)
. (44)

Therefore, the equation for the toroidal momentum is
obtained as follows:

∂

∂t

(
manauaζ

)∣∣∣∣∣
x
+ F ine

uaζ + Fvis
uaζ

= FLor
uaζ + Ffri

uaζ + FQL
aζ + S maζ . (45)

5.4 Equation of radial force balance
Since the time derivative of the radial momentum is

O(δ3) and small enough to be negligible, we assume the
lowest order O(1) force balance in the radial direction for
simplicity:

∇ρ · ∇pa = eanaEρ + ∇ρ · (eanaua × B) . (46)

From Eq. (46), the force due to the pressure gradient in the
radial direction F∇p ρ and the Lorentz force in the radial
direction FLor ρ

ua can be written as

F∇p ρ
ua = gρρ

∂pa

∂ρ
+ gρχ

∂pa

∂χ
, (47)

FLor ρ
ua = eanaEρ

a + ea
IB
ψ′

naua‖ − ea
B2

ψ′
nauaζ , (48)

where the following relation have been used in Eq. (48):

∇ρ · ( f × B) =
IB
ψ′

f‖ − B2

ψ′
fζ . (49)

Therefore, we obtain the equation of the force balance in
the radial direction:

F∇p ρ
ua = FLor ρ

ua . (50)

5.5 Equation for energy transport
The energy transport equation for internal energy does

not change from Eq. (10), since the equation for total heat
flux Qa is solved simultaneously. We substitute Eq. (13)
into Eq. (10), however, in order to evaluate the terms in
Eq. (10) in terms of δ

∂

∂t

(
3
2

pa

)∣∣∣∣∣∣
x

+ ∇ ·
(
qa +

5
2

paua +
↔
πa · ua

)

= ua · ∇pa + ua · ∇ · ↔πa + S pa. (51)

Moreover, Eq. (51) can be transformed to the expression
for the adiabatic entropy

√
g5/3 pa. All terms in Eq. (51)

are O(δ2) in the equilibrium state.
The viscous heating term by the parallel viscous force

Qvis
a ≡ ua · ∇ · ↔πa can be written as

Qvis
a = B∇‖

(ua‖π‖a
B

)

− π‖a (∇‖ua‖ − ua · κ) − 1
3

ua · ∇π‖a, (52)
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since
↔
πa is in the CGL form. Now we will show that

Eq. (52) is consistent with the result of one-dimensional
modeling. Substituting the equilibrium return flows,

ūa ≡ ωuaR2∇ζ + LuaB, (53)

q̄a ≡ ωqaR2∇ζ + LqaB, (54)

into Eq. (52) and averaging it over the flux surfaces, we
obtain

〈
Qvis

a

〉
= Lua

〈
B · ∇ · ↔πa

〉
, (55)

where ωua and ωqa are the toroidal angular frequencies
and Lua and Lqa are quantities related to the equilibrium
poloidal flows. We have used 〈B · ∇ f 〉 = 0 in the deriva-
tion of Eq. (55). Equation (55) is consistent with the vis-
cous heating term in the one-dimensional transport model-
ing [30].

Therefore, the equation for internal energy is

3
2
∂pa

∂t

∣∣∣∣∣
x
+ ∇ ·

(
Qa −

1
2

manau2
aua

)

= ua · ∇pa + Qvis
a + QΔa + S pa. (56)

5.6 Equations for total heat flux
The equations for total heat flux can be derived by

analogy with the derivation of the equation for momentum.
Taking a scalar product of the equation for total heat

flux (11) and B, we obtain the equation for total heat flux
in the parallel direction

∂

∂t
(
Qa‖B

)∣∣∣∣∣
x
+ F ine

qa‖B + F∇p
qa‖B + Fvis

qa‖B

= FLor
qa‖B + Ffri

qa‖B +GQL
a‖ B + S qa‖B, (57)

where F ine
qa‖, F∇p

qa‖, Fvis
qa‖, FLor

qa‖ and Ffri
qa‖ are the EW inertial

force, the EW force due to the EW pressure gradient, the
EW viscous force, the EW Lorentz force and the EW fric-
tion force in the parallel direction respectively and defined
as

F ine
qa‖B ≡ B∇‖

([[
Qaua

]]
zz −

3
2

paua‖ua‖
)

−
([[

Qaua
]]

zz −
3
2

paua‖ua‖
)
∇‖B, (58)

F∇p
qa‖B ≡ B∇‖

(
5Ta

2ma
pa

)
, (59)

Fvis
qa‖B ≡ −r‖a∇‖B + 2

3
B∇‖r‖a, (60)

FLor
qa‖B ≡

ea

ma

(
5
2

pa +
2
3
πa‖

)
E‖B, (61)

Ffri
qa‖B ≡

5Ta

2ma

∑
b

(
lab
11ua‖ − lab

12

2qb‖
5pb

)
B

+
Ta

ma

∑
b

(
−lab

21ua‖ + lab
22

2qb‖
5pb

)
B, (62)

where r‖a is the EW parallel viscosity,

r‖a ≡ Ta

ma

(
5
2
π‖a + θ‖a

)
. (63)

Taking a scalar product of the equation for total heat
flux (11) and eζ , we obtain the equation for total heat flux
in the toroidal direction,

∂Qaζ

∂t

∣∣∣∣∣∣
x

+ F ine
qaζ + Fvis

qaζ

= FLor
qaζ + Ffri

qaζ +GQL
aζ + S qaζ , (64)

where F ine
qaζ , Fvis

qaζ , FLor
qaζ and Ffri

qaζ are the EW inertial force,
the EW viscous force, the EW Lorentz force and the EW
friction force in the toroidal direction respectively and de-
fined as

F ine
qaζ ≡ ∇ ·

(
eζ · [[Qaua

]] − 3
2

pauaζua

)
, (65)

Fvis
qaζ ≡ B∇‖

( I
B2

ra‖
)
, (66)

FLor
qaζ ≡

ea

ma

[(
5
2

pa − 1
3
πa‖

)
Eζ +

I
B
πa‖E‖ + ψ′Q

ρ
a

]
,

(67)

Ffri
qaζ ≡

5Ta

2ma

∑
b

(
lab
11uaζ − lab

12

2qbζ

5pb

)

+
Ta

ma

∑
b

(
−lab

21uaζ + lab
22

2qbζ

5pb

)
. (68)

The equation for total heat flux in the radial direction
in the lowest order is given by

F∇p ρ
qa = FLor ρ

qa , (69)

where F∇p ρ
qa and FLor ρ

qa are the force due to the EW pres-
sure gradient and the EW Lorentz force in the radial direc-
tion respectively and defined as

F∇p ρ
qa ≡ gρρ ∂

∂ρ

(
5Ta

2ma
pa

)
+ gρχ

∂

∂χ

(
5Ta

2ma
pa

)
, (70)

FLor ρ
qa ≡ 5

2
Ta

ma
eanaEρ +

ea

ma

IB
ψ′

Qa‖ − ea

ma

B2

ψ′
Qaζ .

(71)

5.7 Consistency with the conventional neo-
classical transport theory

We will show that our two-dimensional transport
model is consistent with the ordinary flux-surface-
averaged neoclassical transport theory [11, 12]. Assuming
the equilibrium state inside of the LCFS and the force bal-
ance up to O(δ) in Eq. (38) and averaging on the flux sur-
faces, we obtain

〈
F∇p

ua‖B
〉
+
〈
Fvis

ua‖B
〉
=

〈
FLor

ua‖B
〉
+
〈
Ffri

ua‖B
〉
. (72)
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Substituting Eqs. (53) and (54) into Eq. (72), we obtain

〈
3(∇‖B)2

〉 (
μa1Lua + μa2

2Lqa

5pa

)

=
∑

b

(
lab
11

〈
ub‖B

〉 − lab
12

〈
qb‖B

〉)

+ eana
〈
E‖B

〉
, (73)

where we have used 〈B · ∇ f 〉 = 0. The flux-surface-
averaged parallel force balance up to O(δ) in Eq. (57) also
becomes

〈
F∇p

qa B
〉
+
〈
Fvis

qa‖B
〉
=

〈
FLor

qa‖B
〉
+
〈
Ffri

qa‖B
〉
, (74)

and we obtain

〈
3(∇‖B)2

〉 (
μa2Lua + μa3

2Lqa

5pa

)

=
∑

b

(
−lab

21
〈
ub‖B

〉
+ lab

22
〈
qb‖B

〉)
, (75)

where we have used 〈B · ∇ f 〉 = 0 and Eq. (73). The flux-
surface-averaged parallel flows

〈
ua‖B

〉
and

〈
qa‖B

〉
are de-

composed by the use of Eqs. (53) and (54)

〈
ua‖B

〉
= V1aB + Lua

〈
B2

〉
, V1a ≡ I

B
ωua, (76)

〈
qa‖B

〉
= V2aB +

2Lqa

5pa

〈
B2

〉
, V2a ≡ I

B
ωqa. (77)

Substituting Eqs. (76) and (77) into Eqs. (73) and (75), the
equations for poloidal rotations in the conventional neo-
classical theory is obtained as

〈
3
(∇‖B)2

〉 ( μ1a μ2a

μ2a μ3a

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Lua

2Lqa

5pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

b

(
lab
11 −lab

12

−lab
21 lab

22

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
V1bB + Lub

〈
B2

〉
V2bB +

2Lqb

5pb

〈
B2

〉
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

(
eana

〈
E‖B

〉
0

)
. (78)

6. Derivation of Electromagnetic
Equations
In this section, the electromagnetic equations are de-

rived from Maxwell’s equations:

∂B
∂t

∣∣∣∣∣
x
+ ∇ × E = 0, (79)

1
c2

∂E
∂t

∣∣∣∣∣
x
− ∇ × B + μ0 j = 0, (80)

∇ · B = 0, (81)

∇ · E = σ

ε0
, (82)

where σ is the electric charge density. Gauss’s law
for magnetism (81) has already been taken into account
through the expression of the equilibrium magnetic field.

Variables used to describe the electromagnetic field
are chosen as follows. For the magnetic field B, the con-
travariant poloidal component Bχ(= ψ′ √g−1) and the co-
variant toroidal component Bζ(= I) are suitable for de-
scribing the magnetic field B in Eq. (1). For the electric
field E, the covariant components are suitable for taking a
scalar product of E and B. We should note that the dis-
tinction between the covariant and the contravariant com-
ponents is not essential in the toroidal direction in MSCS
owing to its orthogonality in the toroidal direction. There-
fore, the following five variables are employed to describe
the evolution of the electromagnetic field, ψ′, I, Eρ, Eχ and
Eζ .

Since the existence of magnetic surfaces is assumed,
ψ′ and I are the flux functions. From Faraday’s law, Eζ is
also the flux function as is shown later. Taking account of
the consistency with these properties, we introduce flux-
surface-average for some of electromagnetic field equa-
tions. This approximation is necessary for the compati-
bility of the two-dimensional transport analysis with the
existence of magnetic surfaces. The validity of this ap-
proximation has to be examined a posteriori.

For Faraday’s law (79), the contravariant poloidal di-
rection ∇χ and the toroidal direction ∇ζ are chosen for
the direction of projection, since there is no contravari-
ant radial component of the magnetic field in MSCS. For
Ampère’s law (80), the projection in the parallel direction
B and the toroidal direction ∇ζ are used owing to the com-
patibility with the direction of the current density j derived
from the equation of motion. Instead of the contravariant
radial component of Ampère’s law, we solve Gauss’s law
(82) which is the time integral of the divergence of Am-
père’s law.

6.1 Equations for magnetic field
In this section, we will derive the equations for ψ′

and I from Faraday’s law (79). Substituting Eq. (1) into
Faraday’s law (79), we obtain

∂ψ′

∂t

∣∣∣∣∣
x
∇ζ × ∇ρ + ∂I

∂t

∣∣∣∣∣
x

eζ + ∇ × E = 0. (83)

Taking a scalar product of (83) and ∇χ, we obtain the
equation for ψ′

∂ψ′

∂t

∣∣∣∣∣
x
− ∂Eζ

∂ρ
= 0. (84)

Since ψ′ is the flux function, Eζ is also the flux function.
Since the covariant toroidal magnetic field Bζ(= I) is

the flux function, we take a scalar product of (83) and eζ
and the ∇ × E term is averaged over the flux surfaces to
obtain

∂I
∂t

∣∣∣∣∣
x
+

〈
R2

√
g

(
∂Eχ

∂ρ
− ∂Eρ

∂χ

)〉
= 0. (85)
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6.2 Equations for electric field
In this section the equations for the covariant toroidal

electric field Eζ and the covariant poloidal electric field Eχ

are derived from Ampère’s law and the equation for the
covariant radial electric field Eρ from Gauss’s law. The
rotation of the magnetic field can be expressed as

∇ × B = ∇ × (∇ζ × ∇ψ + I∇ζ)

= ∇ · (∇ψ∇ζ − ∇ζ∇ψ) + ∇I × ∇ζ
= ∇ ·

(
1

R2
∇ψ

)
R2∇ζ + ∇I × ∇ζ, (86)

where ∇ψ∇ζ − ∇ζ∇ψ is a 2nd-rank antisymmetric tensor
and the following tensor identities for any vectors f and

g and any second-rank antisymmetric tensor
↔
A have been

employed:

∇ × ( f × g) = ∇ · (g f − fg) , (87)

∇ · ↔A =
∑

ξi=ρ,χ,ζ

∇ ·
(↔
A · eξi

)
eξi , (88)

Substituting Eq. (86) into Eq. (80), we obtain the equation
for the electric field in the axisymmetric system,

1
c2

∂E
∂t

∣∣∣∣∣
x
− ∇ ·

(
1

R2
∇ψ

)
R2∇ζ
− ∇I × ∇ζ + μ0 j = 0. (89)

Taking a scalar product of Eq. (89) and eζ , we obtain
the equation for the covariant toroidal electric field Eζ ,

1
c2

∂Eζ

∂t

∣∣∣∣∣∣
x

− R2∇ ·
(

1
R2
∇ψ

)
+ μ0 jζ = 0. (90)

This equation reduces to the Grad-Shafranov equation in a
stationary state. Since Eζ is the flux function, we employ
the flux-surface-average of the second and the third terms
to obtain,

1
c2

∂Eζ

∂t

∣∣∣∣∣∣
x

−
〈
R2∇ ·

(
ψ′

R2
∇ρ

)〉
+ μ0

〈
jζ
〉
= 0. (91)

This equation corresponds to the flux-surface-averaged
Grad-Shafranov equation employed in the Flux Conserv-
ing Tokamak (FCT) scheme [31–33].

Taking a scalar product of Eq. (89) and B, we obtain

1
c2

(
ψ′√
g

∂Eχ

∂t

∣∣∣∣∣∣
x

+ I
∂Eζ

∂t

∣∣∣∣∣∣
x

)
− ∇ ·

(
1

R2
∇ψ

)
I

+
gρρ

R2
ψ′

dI
dρ
+ μ0 j‖B = 0. (92)

Substituting Eq. (90) into Eq. (92), we obtain the equation
for the covariant poloidal electric field Eχ,

1
c2

∂Eχ

∂t

∣∣∣∣∣∣
x

+
gχχ√
g

dI
dρ
+ μ0

√
g
(

j‖B − jζ I
)

ψ′
= 0. (93)

Finally the covariant radial electric field Eρ is obtained
by solving Gauss’s law,

1√
g

∂

∂ρ

[√
g
(
gρρEρ + g

ρχEχ

)]

+
1√
g

∂

∂χ

[√
g
(
gχρEρ + g

χχEχ

)]
=
σ

ε0
. (94)

7. Connection between Transport and
Equilibrium Solver
In this section we briefly describe the procedure for

coupling the transport solver with an equilibrium solver.
At the beginning, MSCS is calculated by solving the Grad-
Shafranov equation for initial profiles.

At the first step, in the transport solver, the set of
transport equations, Eqs. (29), (38), (45), (50), (56), (57),
(64) and (69), and the set of electromagnetic equations,
Eqs. (84), (85), (91), (93) and (94) are solved simultane-
ously in MSCS in an implicit way. Since the transport
coefficients and the source terms depend on the plasma
quantities, densities, temperatures, and flows, this proce-
dure has to be repeated until the solutions are converged.

At the second step, the two-dimensional toroidal
current density profile jζ(ρ, χ) and the toroidal compo-
nent of the displacement current density profile jdc

ζ (ρ) =

1/(μ0c2)∂Eζ/∂t|x calculated by the transport solver in
MSCS, are converted to the two-dimensional profiles
jζ(R,Z) and jdc

ζ (R,Z) in the cylindrical coordinate system
(R, ϕ,Z) and sent to the free-boundary equilibrium solver.

At the third step, in the free-boundary equilibrium
solver, Eq. (90) is solved with given jζ(R,Z) and jdc

ζ (R,Z)
to calculate ψ(R,Z),

1
R
∂

∂R

(
1
R
∂ψ

∂R

)
+

1
R2

∂2ψ

∂Z2
=
μ0

R2

(
jζ + jdc

ζ

)
. (95)

In this recalculation of the equilibrium magnetic field, we
employ the FCT scheme [31–33] in which the toroidal and
poloidal fluxes are conserved; therefore q(ρ) is unchanged.
The particle density, the momentum, the pressure and the
heat flux are also changed adiabatically according to the
change of volume. In order to obtain the equilibrium sat-
isfying these constrains, Eqs. (91) and (95) are solved iter-
atively. In the 1.5D transport modeling, Eq. (91) without
the displacement current is solved for fixed q(ρ) and p(ρ)
with adiabatic constraint to obtain I(ρ), which is related to
the plasma volume as well as the toroidal magnetic field.
In the present 2D transport modeling, the safety factor q(ρ)
or ψ′(ρ) and the toroidal current density jζ(ρ, χ) are fixed
in solving Eq. (91) to calculate the derivative of the vol-
ume dV/dρ. This quantity is used to calculate jζ(R,Z) from
jζ(ρ, χ) before solving Eq. (95)

8. Summary and Discussion
The set of equations describing the two-dimensional

transport in a whole tokamak plasma has been derived in
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MSCS from the multi-fluid equations and Maxwell’s equa-
tions, where the flux-surface-average has been applied on
Eq. (85) and Eq. (91) in order to meet the constraint for
the existence of the magnetic surface. The set of the fluid
equations consists of the equation for the particle density
na (29), the parallel momentum manaua‖ (38), the toroidal
momentum manauaζ (45), the radial momentum manauρa
(50), the pressure pa (56), the parallel total heat flux Qa‖
(57), the toroidal total heat flux Qaζ (64) and the radial to-
tal heat flux Qρ

a (69) for each particle species. The set of
equations for electromagnetic field includes the poloidal
magnetic field ψ′ (84), the toroidal magnetic field I (85),
the toroidal electric field Eζ (91), the poloidal electric field
Eχ (93) and the radial electric field Eρ (94).

The neoclassical parallel viscosity and heat viscosity
have been rewritten in order to be applicable in the open
field region outside the LCFS. We have shown that our
parallel viscosity is consistent with the Hirshman-type par-
allel viscosity inside the LCFS and the Braginskii-type one
outside the LCFS.

We have shown that our fluid equations are consistent
with the neoclassical transport theory by yielding the neo-
classical force balance equations from the equations for the
parallel momentum and the parallel total heat flux. These
equations are expected to provide a better description of
the time evolution of the tokamak plasma, especially that
of the poloidal and toroidal rotation.

We have emphasized the extension of the neoclassical
transport in this article. The turbulent transport induced
by the interaction with wave fluctuations will be included
similarly as discussed in [7].

We are currently developing a new two-dimensional
transport code TASK/T2 based on this model. The pro-
cedure for coupling the transport code with the equilib-
rium code has been described briefly in Sec. 7, where the
FCT scheme is employed in order to keep the safety factor
unchanged during the calculation of the two-dimensional
equilibrium magnetic field. Numerical results with the fi-
nite element method and a full-implicit solver will be re-
ported in near future.
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