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For the MHD equilibrium reconstruction of a reverse field pinch device, it is a big issue to identify accurately
the strong eddy current flow on the shell. In the present work, boundary integrals of the eddy current along the
shell are added to the conventional Cauchy-condition surface method formulation. The eddy current profile is
unknown in advance but straightforwardly identified using only the signals from magnetic sensors located outside
the plasma. Two ideas are introduced to overcome the numerical difficulties encountered in the problem. One
is an accurate boundary integral scheme to damp out the near singularity occurring at the sensor position very
close to the shell. The other is the modified truncated singular value decomposition technique to solve an ill-
conditioned matrix equation when a large number of nodal points exist on the shell. The capability of the new
method is demonstrated for a test problem modeling the RELAX device.
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1. Introduction
The identification of the MHD equilibrium configura-

tion is important for the energy confinement and the stabil-
ity of fusion plasma from both operating control and ana-
lytical points of view. To identify the equilibrium configu-
ration, the magnetic field or flux profile outside the plasma
and hence the plasma boundary shape are highly impor-
tant. Such information should be deduced from signals of
magnetic sensors located outside the plasma, since the di-
rect measurement of physical quantities inside the plasma
is usually difficult.

The Cauchy condition surface (CCS) method [1, 2] is
one such idea for reconstructing the magnetic flux distri-
butions around the boundary of the plasma, whose MHD
configuration is originally assumed to be axisymmetric in
the toroidal direction. The method has already been es-
tablished for operating control and diagnosis of JT-60U,
a tokamak-type device. Furthermore, Itagaki et al. re-
cently developed the 3D CCS method [3–5] to reconstruct
the 3D magnetic field profile outside the non-axisymmetric
plasma in the Large Helical Device (LHD). In these meth-
ods, the CCS, where both the Dirichlet and the Neumann
conditions are unknown, is hypothetically placed in a do-
main that can be supposed to be inside the plasma. The
CCS plays the same role as the plasma current in causing
the field outside the plasma.
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In all the above analyses, however, the eddy current
generated on the vacuum vessel was neglected. In a reverse
field pinch (RFP) device such as the RELAX [6] at Kyoto
Institute of Technology, a strong eddy current is generated
on the shell (vacuum vessel) wall, which is closely related
to local MHD equilibrium. For example, the eddy current
flow is modified at port holes to produce localized field
errors which have strong influence on the edge magnetic
structure and edge transport, because the toroidal field is
rather weak in comparison with the poloidal field at the
edge in the RFP configuration.

Even in tokamaks the behavior of the eddy current in
case of a plasma disruption is important from the viewpoint
of the plasma position and shape control. The eddy current
also plays an important part in the so-called RWM (resis-
tive wall mode) event [7–9]. The electric circuit model has
been often adopted for an estimation of the eddy current
profile, but it is not a straightforward way based upon only
a magnetic measurement. In these situations, one possi-
ble idea is that the eddy current effect is incorporated into
the original CCS method algorithm for a reliable recon-
struction of magnetic field/flux structure. However, the
number of such eddy current adjusted reconstruction anal-
yses is very limited. In the idea by Kurihara et al. for
the JT-60U [10], the eddy current effect is considered as
a forward problem. That is, the vacuum vessel is sim-
ulated by multiple one-turn filament coils, and then the
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eddy current results are taken into the inverse analysis us-
ing a CCS method code. Nakamura et al. proposed an im-
proved CCS technique [11] to identify the plasma shape in
the spherical tokamak QUEST at Kyushu University. In
their method the vacuum vessel is divided into 8 parts, in
each of which filaments are assumed to represent the eddy
currents, so that these eddy current contributions are added
to each boundary integral equation as a new term in the
CCS method formulation.

In the present paper the authors propose a more ad-
vanced CCS method where the eddy current term is given
by a boundary integral along the shell in the poloidal di-
rection. It should be noticed here that the eddy current
profile on the shell is not given in advance but completely
unknown before one starts the analysis. The main pur-
pose of this work is to identify the eddy current profile
straightforwardly using only the signals from magnetic
sensors located outside the plasma. That is, one solves the
Cauchy conditions and the eddy current profile simultane-
ously. Kurihara et al. reported in Ref. [10] that they had
faced an ill-posed problem in their attempt similar to the
authors’ work. In the present work the authors introduce
two ideas to overcome this difficulty. One is an accurate
boundary integral scheme to damp out the near singularity
occurring at the sensor position very close to the shell. The
other is the modified truncated singular value decomposi-
tion (MTSVD) technique to solve an ill-conditioned matrix
equation when a large number of nodal points exist on the
shell. The capability of the new method is demonstrated
for a test problem modeling the RELAX device.

This paper is arranged as follows. Section 2.1 reviews
the original CCS method previously reported in Ref. [1].
Section 2.2 describes how the boundary integral of the
eddy current density is newly incorporated into the CCS
method formulation. The set of boundary integral equa-
tions is converted to a matrix equation form as described
in Sec. 2.3. An algorithm is introduced in Sec. 2.4 to elimi-
nate the singularity in the boundary integral along the shell,
which is caused by the sensor locations very close to the
shell. The MTSVD technique is introduced in Sec. 2.5 to
solve an ill-conditioned matrix equation.

A numerical demonstration for the RELAX device is
given in Sec. 3. Sections 3.2 and 3.3 describe the recon-
struction results of the eddy current density profile and the
magnetic flux profile, respectively. Section 3.4 reports the
influence of the sensor signal noise to the reconstructed
solutions.

2. Method
The Cauchy-condition surface (CCS) method [1] is an

inverse analytic technique to identify the plasma boundary
shape. In this section, one describes how the effect of the
eddy current on the shell is incorporated into the original
CCS method. It should be noted that in the present work
the eddy current distribution on the shell, in the same way

as all other physical quantities, is assumed to be axisym-
metric in the toroidal direction.

2.1 Outline of the original CCS method
The Cauchy-condition surface (CCS), where both the

Dirichlet and the Neumann conditions (i.e., the magnetic
flux function ψ and its normal derivative ∂ψ/∂n) are un-
known, is hypothetically placed in a domain that can be
supposed to be inside the plasma. In the analysis, no
plasma current is assumed outside this CCS, where in re-
ality plasma current does exist. Instead, the CCS plays the
same role as the plasma current in causing the field outside
the plasma.

For an axisymmetric (r, z) system, the differential
form of Ampere’s law μ0 j = ∇ × B can be reduced to
a partial differential equation

−Δ∗ψ ≡ −
{

r
∂

∂r

(
1
r
∂

∂r

)
+
∂2

∂z2

}
ψ

= μ0r( jPl + jCoil + jEddy), (1)

in terms of magnetic flux function ψ. Here, jPl, jCoil, and
jEddy denote the toroidal components of the plasma current,
the external coil current and the eddy current respectively.
The quantity μ0 is the permeability of a vacuum. In the
following formulation one uses the magnetic flux ψ̃ = 2πψ
[Wb] instead of the magnetic flux function ψ [Wb/rad] be-
cause the physical quantity directly measured is the mag-
netic flux. Also, instead of the magnetic field signal B,
a quantity B̃ = 2πB is defined.

To evaluate ψ̃ and ∂ψ̃/∂n at several points along the
CCS (ΓCCS), three types of boundary integral equations
(BIEs) for the vacuum field can be given using the sen-
sor signals and the external poloidal coil current data, as
shown below.

(i) For the magnetic ‘flux’ signal ψ̃i located at points i:

ψ̃i − W̃ψ
i =

∫
ΓCCS

(
ψ∗

r
∂ψ̃

∂n
− ψ̃

r
∂ψ∗

∂n

)
dΓ. (2a)

(ii) For the magnetic ‘field’ signal Bi located at points i:

B̃i − W̃B
i =

∫
ΓCCS

(
B∗

r
∂ψ̃

∂n
− ψ̃

r
∂B∗

∂n

)
dΓ, (2b)

using the quantity B̃i = 2πBi, where Bi = −n0 ·∇ψi/ri,
B∗ = −n0 · ∇ψ∗/r with n0 being the assigned vector
normal to the direction of the ‘magnetic probe’ lo-
cated at the point i.

(iii) For points i on the Cauchy condition surface:

1
2
ψ̃i − W̃C

i =

∫
ΓCCS

(
ψ∗

r
∂ψ̃

∂n
− ψ̃

r
∂ψ∗

∂n

)
dΓ. (2c)

In Eqs. (2a)-(2c), W̃ψ
i , W̃B

i and W̃C
i are the contribu-

tions of the external coil currents to the point i. In each
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equation, ψ∗ denotes the fundamental solution which satis-
fies a subsidiary equation

−
{

r
∂

∂r

(
1
r
∂

∂r

)
+
∂2

∂z2

}
ψ∗ = rδi, (3)

where Dirac’s delta function δi means δ(r − a)δ(z− b) with
the spike at the point i, where i is defined as having the
coordinates (a, b). Physically Eq. (3) describes the mag-
netic flux function for an arbitrary field point (r, z) caused
by a unit toroidal current located at the point (a, b). The
detailed form of ψ∗ is given by [1, 2]

ψ∗ =
√

ar
πk

[(
1 − k2

2

)
K(k) − E(k)

]
, (4)

with

k2 =
4ar

(r + a)2 + (z − b)2
, (5)

where K(k) and E(k) are the complete elliptic integrals of
the first and the second kind, respectively. In the original
CCS method, Eqs. (2a), (2b) and (2c) are discretized and
coupled and can be expressed in a matrix form. Once all
the values of ∂ψ̃/∂n and ψ̃ along the CCS have been given
by solving the matrix equation in a least square sense,
the distribution of magnetic flux ψ̃i can be calculated us-
ing Eq. (2a) for arbitrary points ‘i’. Thus, the outermost
magnetic flux surface can be found by drawing contours of
magnetic flux.

2.2 Incorporation of the eddy current effect
into the CCS method formulation

Now one considers the case where the eddy current on
the shell cannot be neglected. In this case the BIEs (2a),
(2b) and (2c) can be modified as follows.

(i) For the magnetic ‘flux’ signal ψ̃i at points i:

ψ̃i − W̃ψ
i =

∫
ΓCCS

(
ψ∗

r
∂ψ̃

∂n
− ψ̃

r
∂ψ∗

∂n

)
dΓ

+ 2πμ0

∫
ΓShell

jS (rs)ψ
∗(rs → ri) dΓ(rs).

(6a)

(ii) For the magnetic ‘field’ signal Bi at points i:

B̃i − W̃B
i =

∫
ΓCCS

(
B∗

r
∂ψ̃

∂n
− ψ̃

r
∂B∗

∂n

)
dΓ

+ 2πμ0

∫
ΓShell

jS (rs)B
∗(rs → ri) dΓ(rs).

(6b)

(iii) For points i on the Cauchy condition surface:

1
2
ψ̃i − W̃C

i =

∫
ΓCCS

(
ψ∗

r
∂ψ̃

∂n
− ψ̃

r
∂ψ∗

∂n

)
dΓ

+ 2πμ0

∫
ΓShell

jS (rs)ψ
∗(rs → ri) dΓ(rs).

(6c)

The second term on the RHS in each of Eqs. (6a), (6b) and
(6c) describes the effect of the eddy current on the shell.
The fundamental solution ψ∗(rs → ri) is exactly the same
as Eq. (4), but rs means an arbitrary point on the shell. The
quantity jS (rs) denotes the linear density [MA/m] distribu-
tion of the eddy current on the shell, which is integrated in
the poloidal direction along the shell (ΓShell).

Only the second integral term on the RHS in each of
Eqs. (6a)-(6c) includes the permeability of a vacuum μ0.
With the value of μ0 = 4π×10−7 [Wb/(A ·m)], the numeri-
cal integrals along the shell have extremely small values in
comparison with the corresponding integrals (not includ-
ing μ0) for the CCS. This causes a very large condition
number of the resultant matrix and hence inaccurate solu-
tion results. To avoid such a problem, the value of μ0 is set
to be 0.4π. This means that the eddy current density results
directly given by the computation have a unit of not [A/m]
but [MA/m], although it is easily converted into any unit.

2.3 Discretization
One here introduces the quadratic boundary elements

[12] for the CCS in such a way that each element has three
nodes and hence a total of NC nodal points are located
along the CCS (Note that the number of elements is NC/2).
In the same manner, one places NS eddy current nodes and
NS /2 elements on the shell, as illustrated in Fig. 1. That is,
the coordinates (rs, zs) and the linear eddy current density

Fig. 1 Quadratic element model for the eddy current distribution
on the shell. In this example, 5 elements, i.e., 10 eddy
current nodes are placed on the shell.
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jS (rs, zs) on the shell are given by

rs = φ1r1 + φ2r2 + φ3r3, zs = φ1z1 + φ2z2 + φ3z3,

(7a)

and

jS (rs, zs) = φ1 jS ,1 + φ2 jS ,2 + φ3 jS ,3, (7b)

respectively, using the three adjacent coordinates and cur-
rent density values. Here the interpolation functions are

φ1 = ξ(ξ − 1)/2, φ2 = (1 − ξ)(1 + ξ)
and φ3 = ξ(1 + ξ)/2, (8)

which are functions of the dimensionless local coordinate ξ
(−1 ≤ ξ ≤ 1).

Let one consider for instance the second integral term
on the RHS of Eq. (6a). The integral for the ‘ j’th element
on the shell can be transformed as

μ0

∫
ΓShell,j

jSψ
∗dΓ =

∫
ΓShell,j

μ0[φ1, φ2, φ3]ψ∗dΓ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
jS ,1
jS ,2
jS ,3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

[
h j

1, h
j
2, h

j
3

] ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
jS ,1
jS ,2
jS ,3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (9)

where

h j
1 =

∫
ΓShell,j

μ0φ1ψ
∗dΓ, h j

2 =

∫
ΓShell,j

μ0φ2ψ
∗dΓ

and h j
3 =

∫
ΓShell,j

μ0φ3ψ
∗dΓ. (10)

The above technique is exactly the same as that adopted
for the CCS when the singular point i is not located on
a boundary element [13, 14]. For an element on the CCS
which includes the singularity, the integration is performed
sophisticatedly with the aid of the logarithmic Gaussian
quadrature formula [12].

In this way, Eqs. (6a), (6b) and (6c) are discretized,
coupled and can be expressed in a matrix form

Dp = g, (11)

where D is an m × n matrix. Note here that the solution
vector p contains NS nodal points of linear eddy current
density ( jS ) on the shell as well as the set of NC flux func-
tions (ψ) and their NC normal derivatives (∂ψ/∂n) on the
CCS. That is, the total number of unknowns is

n = 2NC + NS , (12)

while the number of BIEs is given by

m = Nψ + NB + NC , (13)

with Nψ and NB being the numbers of flux loops and field
sensors, respectively. The quantities, ψi−Wψ

i and Bi−WB
i ,

where the external coil effects are subtracted from the sen-
sor signals, are stored in the right-hand side vector g in
Eq. (11).

The matrix Eq. (11) is solved using the singular value
decomposition (SVD) technique [15] in such a way that the
least square norm ‖Dp − g‖ is minimized. The m × n ma-
trix D is decomposed as D = UΛVT, where U and VT are
orthogonal matrices and Λ is a diagonal matrix with pos-
itive singular values or zero components. The solution in
this case is given by

p = VΛ−1UTg. (14)

As the number of unknowns on the CCS is 12, the total
number of unknowns given by Eq. (12) becomes n = 12 +
NS .

Once all the values of the Cauchy conditions on the
CCS and the linear eddy current densities on the shell
nodes are known, the magnetic flux ψ̃i for arbitrary points
outside the CCS can be calculated using Eq. (6a).

2.4 Accurate computation of boundary inte-
grals along the shell

The boundary integrals along the shell (the second
term on the RHS in each of Eqs. (6a), (6b) and (6c))
should be performed very carefully. Since the distance
ε =

√
(r − a)2 + (z − b)2 between the sensor position (a, b)

and an integration point (r, z) on the shell is very short, the
following singularities [14]

ψ∗ → − a
2π

log ε, (15)

∂ψ∗

∂a
→ − 1

4π
log ε +

a(r − a)
2π

· 1
ε2
, (16)

and

∂ψ∗

∂b
→ a(z − b)

2π
· 1
ε2
, (17)

arise in the integration kernels when ε→ 0.
The following ‘subtraction technique’ is often used to

eliminate these singularities in a boundary integral [14]. In
a boundary element (ΓShell, j) along the shell, one here uses
the notations G(ξ) and φ(ξ) for the Jacobian of the coordi-
nate transformation and one of the interpolation functions
given by Eq. (8), respectively. Suppose that B∗(ξ) is the
fundamental solution or its derivative, while FS (ξ) denotes
the corresponding asymptotic function, i.e., Eqs. (15), (16)
or (17). In this case the general form of the boundary inte-
gral over ΓShell, j can be rearranged as

∫ 1

−1
φ(ξ)G(ξ)B∗(ξ) dξ

=

∫ 1

−1

{
φ(ξ)G(ξ)B∗(ξ) − φ0G0FS (ξ)

}
dξ

+ φ0G0

∫ 1

−1
FS (ξ) dξ, (18)
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Fig. 2 The minimum distance d0 from the sensor position (a, b)
to a boundary element.

where G0 and φ0 are the values of G(ξ) and φ(ξ) at the po-
sition ξ = ξ0 on the boundary element that is the nearest to
the location of the magnetic sensor i under consideration.
The asymptotic function is subtracted from the original in-
tegrand in the first integral on the RHS of Eq. (18), and this
subtraction is compensated by the analytical integral of the
second integral on the RHS. The total integrand of the first
integral has no singularity and can therefore be evaluated
with the ordinary Gaussian quadrature [12] with 16 inte-
gration points for each boundary element.

Ma and Kamiya [16] proposed the use of an approx-
imated ‘distance function’ for the boundary element adja-
cent to the sensor position (a, b) as

d(ξ) = G0

√
(ξ − ξ0)2 + (d0/G0)2, (19)

where d0 is the minimum distance from the point (a, b)
to the boundary element as shown in Fig. 2, which corre-
sponds to the local coordinate ξ = ξ0. This distance func-
tion agrees with ε in Eqs. (15), (16) and (17) when ξ → ξ0

and d0 → 0.
If one defines the (r, z) coordinates corresponding to

ξ = −1, 0 and 1 on the quadratic boundary element as
(r1, z1), (r2, z2) and (r3, z3), the coordinate at an arbitrary
point on the element can be given by

(r, z) = (p2ξ
2 + p1ξ + r2, q2ξ

2 + q1ξ + z2), (20)

with constants p1, p2, q1 and q2. Then the quantity in
Eq. (16) is rewritten using constants α0, α1 and α2, as,

a(r − a)
2π

· 1
ε2
=

a
2π
· p2ξ

2 + p1ξ + r2 − a

G2
0

{
(ξ − ξ0)2 + (d0/G0)2

}
=

a

2πG2
0

·
[
α0 +

α1(ξ − ξ0)
(ξ − ξ0)2 + (d0/G0)2

+
α2

(ξ − ξ0)2 + (d0/G0)2

]
. (21)

Similarly, the quantity in Eq. (17) is rewritten as,

a(z − b)
2π

· 1
ε2
=

a

2πG2
0

·
[
β0 +

β1(ξ − ξ0)
(ξ − ξ0)2 + (d0/G0)2

+
β2

(ξ − ξ0)2 + (d0/G0)2

]
. (22)

The terms having near singularities in Eqs. (21) and (22)
can be integrated analytically as,

1

G2
0

∫ 1

−1

(ξ − ξ0)
(ξ − ξ0)2 + (d0/G0)2

dξ

=
1

G2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎣log

√
(1 − ξ0)2 +

(
d0

G0

)2

− log

√
(1 + ξ0)2 +

(
d0

G0

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (23)

and

1

G2
0

∫ 1

−1

dξ
(ξ − ξ0)2 + (d0/G0)2

=
1

G0d0

[
tan−1

{
G0

d0
(1 − ξ0)

}
+ tan−1

{
G0

d0
(1 + ξ0)

}]
.

(24)

Also, the integral of the logarithmic function found in
Eqs. (15) and (16) is given analytically by∫ 1

−1
log ε dξ =

∫ 1

−1
log G0

√
(ξ − ξ0)2 + (d0/G0)2 dξ

= (1 − ξ0) log
{
G0

√
(1 − ξ0)2 + (d0/G0)2

}
+ (1 + ξ0) log

{
G0

√
(1 + ξ0)2 + (d0/G0)2

}

+
d0

G0

[
tan−1

{
G0

d0
(1 − ξ0)

}
+ tan−1

{
G0

d0
(1 + ξ0)

}]
− 2. (25)

Figure 3 compares the integrands in terms of ∂ψ∗/∂b
with φ2 = (1 − ξ)(1 + ξ) before and after damping out the
singularity for a case where 20 eddy current nodes, i.e.,
only 10 boundary elements are used along the shell. The
integrand behavior in Fig. 3 (a) is an example for a bound-
ary element with ξ0 = 0.0 and d0 = 8 mm, while Fig. 3 (b)
is for an element with ξ0 = 0.5 and d0 = 2 mm. The shape
of the original integrand in Fig. 3 (a) is mainly the contribu-
tion of the 3rd term in the bracket of Eq. (22). In contrast,
the 2nd term in the bracket is dominant to form the shape
in Fig. 3 (b). In both figures the strong singularity is effi-
ciently damped out. Notice that the modified integrand in
Fig. 3 (b) still has a small edge at ξ0 = 0.5. In order not
to reduce the accuracy, it is recommended that the first in-
tegral on the RHS of Eq. (18) is divided into two integral
intervals, [−1, ξ0] and [ξ0,+1] as long as ξ0 � ±1.

2.5 Solving an ill-conditioned matrix equa-
tion – the MTSVD method

Figure 4 shows the behavior of the singular val-
ues which appeared in the singular value decomposition
process for various numbers of assumed eddy current
nodes, NS . They are the results of the RELAX test problem
that will be described in Sec. 3. The vertical axis represents
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Fig. 3 Behaviors of integrands before and after damping out the singularity.

Fig. 4 Behavior of the singular values with the number of eddy
current nodes (NS ).

the singular values whose maximum value is normalized
to unity. The smallest singular value decreases with the
increase in NS , and it becomes less than 10−3 when NS is
greater than 40. A gap is commonly observed in the vicin-
ity of 10−3 of the normalized singular values. It is interest-
ing to point out that the number of singular values larger
than the gap threshold is 52 (= 2NC + Nψ = 2NC + NB) in
all cases where NS is over 40 (see the calculation condi-
tions described in Sec. 3.1). When the number of current
nodes NS exceeds 40, the condition number (the ratio of
the largest to the smallest singular values; the reciprocal of
the normalized singular value) jumps up to over 104.

Figures 5 (a) and 5 (b) illustrate the behaviors of some
columns of the orthogonal matrix V in Eq. (14) when
60 eddy current nodes are used. These columns are of-
ten called the ‘right singular vectors’, which play an im-
portant role in forming the solution vector. Figure 5 (a)
shows the 48th to the 52nd right singular vectors, while
Fig. 5 (b) shows the 53rd to the 57th vectors. In each fig-
ure the abscissa indicates the component numbers in each
vector. The 1st to the 12th components are related to the
Cauchy conditions, while the numbers larger than 12 cor-
respond to the eddy current node values.

Although there are local fine structures, as shown in
Fig. 5 (a), each of the right singular vectors up to the 52nd
maintains a gentle waveform as a whole. However, in
Fig. 5 (b) for the vectors whose column numbers are larger
than 52, the appearance changes suddenly, i.e., high fre-
quency oscillations are observed in the eddy-current re-
lated part of each vector. Note that these right singular vec-
tors correspond to the singular values smaller than the gap
threshold found in Fig. 4. These oscillations become more
marked and their magnitude increases rapidly with further
increase in the column number. This means that the sin-
gular values smaller than the gap threshold cause numer-
ical oscillations of the reconstructed eddy current density
profile.

To cut out the high frequent mode, the so-called trun-
cated singular value decomposition (TSVD) technique [15]
is often used. In this technique, the regularized solution is
given by

pk = VΛ−1
k UTg. (26)

Here Λk means that the singular values smaller than λk in Λ
are omitted so that the condition number is not larger than
a certain value. If one truncates the singular values smaller
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Fig. 5 Behavior of the right singular vectors.

than the gap threshold observed in Fig. 4, the improved
condition numbers are around 6 × 102 in all cases.

Even with this TSVD technique, however, a numeri-
cal oscillation of pk is observed when the smallest singu-
lar value is smaller than the gap threshold. One idea to
suppress such an oscillation is to introduce a constraint,
min ‖Lp‖, in addition to min ‖Dp − g‖, where L means
a differential operator. Elden [17] showed that the solution
in this case can be written formally as

pL,k = (I − (L(I − D+D))+L)D+g, (27)

where I is an identity matrix and D+ means a Moore-
Penrose pseudoinverse [18] of the matrix D. One can here
use the equations

D+ = VΛ−1
k UT, (28)

and

pk = D+g = VΛ−1
k UTg, (29)

since Eq. (28) as a pseudoinverse of D = UΛVT satisfies
all of the Penrose conditions [18]

DD+D = D, D+DD+ = D+,

(DD+)T = DD+ and (D+D)T = D+D. (30)

Substituting Eq. (28) into Eq. (27), Hansen et al. [19] de-
rived the modified TSVD (MTSVD) solution

pL,k = pk − Vk(LVk)+Lpk = pk − Vk zk, (31)

where Vk = [Vk+1, · · · ,Vn] and zk is the solution of

(LVk)zk = Lpk. (32)

Although there are many possible choices of L, in this
work one uses the following (n − 6) × n matrix for a to-
tal of n unknowns:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
L(N) 0 0

0 L(D) 0
0 0 L(E)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (33)

Fig. 6 Subtraction of correction vector from the original current
density solution.

In Eq. (33), L(N), L(D) and L(E) are discrete approximations
to the second derivative operator applied to the Neumann
conditions on the CCS, the Dirichlet conditions on the CCS
and the current density solution on the shell surface, re-
spectively, each of which has the tridiagonal form

L(E) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

to obtain a smooth solution.
Figure 6 illustrates the effectiveness of the MTSVD
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method when applied to one of the RELAX test cases de-
scribed in Sec. 3. The black curve that oscillates at high
frequency is the original solution (pk) that is produced us-
ing the ordinary TSVD technique. The number of peaks
in this curve, 60, agrees with the number of eddy current
nodes adopted for the test case. The green curve depicts
the correction vector that is given as Vk zk in Eq. (31). Sub-
tracting the green curve from the black curve, i.e., follow-
ing Eq. (31), one obtains the red curve where the numerical
oscillation has been drastically damped out (this resultant
curve is exactly the same as Fig. 8 (d) that will be shown in
Sec. 3.2). Although there are slight ripples in the red cor-
rected curve, it is worth mentioning that the number of rip-
ples agrees not with the number of current nodes any more
but with the number of sensor locations (= 40), which are
the singular points, i, indicated in Eqs. (6a) and (6b).

3. Numerical Tests for the RELAX
One here considers a problem to model a limiter con-

figuration of the RELAX device [6], as an example of a re-
versed field pinch device.

3.1 Problem specifications
The shell (vacuum vessel) is regarded as axisymmetric

in the toroidal direction and its cross section is a circle with
radius 0.25 m, which is centered at (r, z) = (0.51 m, 0.51 m)
as shown in Fig. 7. One assumes that a ‘limiter’ hav-
ing a length of 1 cm is located at the position (r, z) =
(0.75 m, 0.51 m) on the inner wall of the shell. The refer-
ence distributions of magnetic flux inside the shell and the
eddy current on the shell were analyzed beforehand using
the RELAX-Fit code [20,21]. The signals of magnetic sen-
sors were also known before the present inverse analyses.
The reconstructed results described below are compared
with the reference solutions.

The sensor locations are also illustrated in Fig. 7.
One assumes 40 sensor positions around two circles with
a common center at (r, z) = (0.51 m, 0.51 m) inside the
shell: 20 points are around the circle with a radius of
0.242 m at even intervals, while the other 20 are at a dis-
tance of 0.248 m from the center. Each position is 8 mm
and 2 mm away from the shell, respectively. One here
hypothetically assumes that both a toroidal flux loop and
a tangential probe are located at each of the 40 positions.
That is, a total of 80 magnetic sensors are assumed. The
tangential probe detects the magnetic field component that
is tangential to the shell surface in the poloidal direction.

In the present work the CCS approximates a cir-
cle having a radius of 0.125 m and center (r, z) =

(0.51 m, 0.51 m), as also shown in Fig. 7. The circle is di-
vided into 3 continuous quadratic boundary elements (see
Fig. 1), so that the total number of nodes is 6 (and the num-
ber of unknowns on the CCS becomes 12).

Fig. 7 Image of the RELAX limiter configuration.

3.2 Reconstruction of the eddy current den-
sity profile

The reconstructed eddy current density in units of
[kA/m] was calculated so as to be continuously distributed
in the poloidal direction along the shell. On the other
hand, in the reference calculation 157 filament currents
are assumed to be discretely and equidistantly located in
the poloidal direction on the shell. For the convenience of
comparison, the reference discrete current value IRef [kA]
is converted to a current density value, as

jRef =
157

2πRShell
IRef [kA/m], (35)

with the radius of the shell, RShell (= 0.25 m).
Figures 8 (a)-(d) show the variation in the eddy cur-

rent density on the shell surface for the cases assuming 20,
30, 40 and 60 eddy current nodes, respectively. In each fig-
ure the vertical axis denotes the current density, while the
abscissa means the poloidal angle θ that varies in the clock-
wise direction whose starting point (θ = 0) on the shell is
at the top (r, z) = (0.51 m, 0.76 m). The black and the red
curves in Fig. 8 denote the reference and the reconstructed
variation in the eddy current density, respectively.

Figure 9 shows the tendencies of the maximum and
the average relative errors of the reconstructed eddy cur-
rent density as a function of the number of eddy current
nodes. Note here that the MTSVD technique is applied in
cases where one truncates the singular values smaller than
the gap threshold shown in Fig. 4, i.e., the cases where the
number of current nodes (NS ) is greater than 40.

The reconstructed current profiles in Fig. 8 tend to be-
come smoother as the number of eddy current nodes de-
creases. However, Fig. 9 indicates that, when the number
of nodes is smaller than 14, the reconstructed profiles show
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Fig. 8 Reconstruction of the eddy current profile. Figure 8 (d) is the result when using the MTSVD technique.

large errors. This is because the current profiles are ex-
tremely flattened so that they are totally different from the
reference profile. In Fig. 9, the long plateau of the aver-
age error curve exists where the number of current nodes
is larger than 44. The solution is still stable even for the
case of 74 current nodes where the number of unknowns,
86 (= 74 current nodes + 12 conditions on the CCS) agrees
exactly with the number of equations, 86 (2 × 40 magnetic
sensors + 6 nodes on the CCS).

It is observed in Figs. 8 (c) and (d) for the cases of
40 and 60 current nodes that there are slight ripples in the
reconstructed profiles. It should be pointed out that the
number of ripples in Fig. 8 (d) agrees not with the num-
ber of current nodes but with the number of sensor loca-
tions (= 40), which are the singular points, i, indicated in
Eqs. (6a) and (6b). As shown in Fig. 7, the sensors are lo-
cated alternately at a distance of 8 mm and at the shorter
distance of 2 mm from the shell. This is a possible reason
for the appearance of the ripples, if the reduction in the sin-
gularity in the boundary integrals (introduced in Sec. 2.4)

is still not quite sufficient. This hypothesis is supported by
the results of other test calculations where all sensors are
assumed to be equidistant from the shell with 60 current
nodes. Figures 10 (a) and (b) show the reconstructed cur-
rent density profiles assuming distances of 8 mm and 2 mm
respectively. The 40 ripples found in Figs. 8 (c) and (d) are
no longer conspicuous in Figs. 10 (a) and 10 (b).

3.3 Reconstruction of magnetic flux profile
The magnetic flux distributions were also recon-

structed for various assumed numbers of eddy current
nodes, NS . In the following discussion, the flux distribu-
tion means that caused by only the plasma current and the
eddy current on the shell; the external coil current effect
(Wψ

i in Eq. (6a)) is excluded in the formation of the flux
distribution.

Figures 11 (a)-(d) show the reconstructed flux pro-
files for different numbers of current nodes. In each fig-
ure the black dashed contours show the reference solution
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obtained using the RELAX-Fit code, while the red solid
contours indicate the reconstructed solution.

In an ordinary CCS method analysis, the reconstructed
flux solution is inaccurate in the domain where the plasma
current exists. However, in the present analyses, accu-
rate reconstructions can be observed even deep inside the
plasma region. This is because the eddy current effect is
dominant over the plasma current effect for the formation
of the flux distribution in the RELAX device. The MTSVD
method is used when the number of current nodes is greater
than 40.

Figure 12 shows the tendencies of the maximum and

Fig. 9 Error of the reconstructed eddy current density as a func-
tion of the number of eddy current nodes (NS ).

Fig. 10 The eddy current profile reconstructed assuming all sensors to be equidistant from the shell.

the average relative errors of the reconstructed flux as
a function of the number of eddy current nodes, NS . The
relative error is defined using values of the ‘reconstructed’
flux and the ‘reference’ flux obtained using the RELAX-Fit
code, as

ε(%) = 100.0

× ∣∣∣(Reconstructed−Reference)/Reference
∣∣∣,

(36)

for sampling points within the range 0.20 m ≤ r ≤ 0.25 m
of a doughnut area with the center (r, z) = (0.51 m, 0.51 m),
i.e., the area inside the shell but a little outside the CCS
(r = 0.125 m).

3.4 Influence of the sensor signal noise
The effect of measurement errors on the reconstruc-

tion was also studied. Noise was numerically generated
using normal (Gaussian) random numbers and added to all
magnetic field and flux loop signals. The relationship be-
tween a noise-added signal b̃ j and its original signal b j is
given by b̃ j = b j(1+σ·G), where G denotes a unit Gaussian
random number, while σ is the standard deviation of the
Gaussian noise.

Without sensor signal noise, the reconstructed current
density profile shown in Fig. 8 (a) under the adoption of 20
current nodes seems to be in good agreement with the ref-
erence profile. However, it is premature to make a conclu-
sion that the best choice is this number of current nodes.
Figure 13 shows the relative errors of reconstructed flux
and eddy current density as functions of the number of
current nodes under the assumption of 3% σ noise. Un-
fortunately the solutions are sensitive to the signal noise if
the number of current nodes is less than 40.

In Fig. 13, the curve in blue indicates the variation in
the condition number multiplied by 3.0%, which is the
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Fig. 11 Reconstruction of the magnetic flux profile. Figure 11 (d) is the result when using the MTSVD technique.

Fig. 12 Relative error of the reconstructed flux as a function of
the number of eddy current nodes (NS ).

Fig. 13 Influence of the sensor signal noise when 3%σ noise is
imposed.
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Fig. 14 Influence of the sensor signal noise when 40 eddy cur-
rent nodes are assumed.

theoretical maximum of the error caused by the 3% σ

noise. (The condition numbers with over 40 current nodes
mean the results after truncating the small singular val-
ues.) It should be noticed that, in spite of the compara-
tively small condition numbers, the observed errors with
fewer than 40 nodes are much larger than those with over
40 nodes. Accordingly, this phenomenon cannot be ex-
plained by the magnitude of the condition number. Rather,
it is suggested that this is caused by the lack of information
as a constraint in the inverse analysis. One should adopt
a number of current nodes which is large enough to ensure
that all singular values larger than the gap threshold, which
have meaningful physical information, are taken into ac-
count in the analysis for obtaining a robust solution.

The use of 40 current nodes is an exceptional case.
This case includes all singular values larger than the gap
threshold, but with no need to apply the MTSVD technique
because there are no singular values smaller than the gap
threshold. Figure 14 indicates the variations in the maxi-
mum and the average relative errors in the flux and eddy
current profiles as functions of σ for this 40 current node
case. The errors increase with the increase in the noise.
However, if one assumes that the signal error is no more
than a few percent, it would not adversely influence the re-
constructed solutions. Similar tendencies can be observed
in the cases where the number of current nodes is more
than 40.

4. Conclusion
The boundary integrals of the eddy current density

along the shell have been added to the boundary integral
equations in the conventional CCS method formulation.
This new method enables one to identify accurately not

only the magnetic flux profile outside the plasma but the
eddy current distribution itself. Through the test calcu-
lations for the RELAX device the following conclusions
have been arrived at:

(1) As the magnetic sensors are closely adjacent to the
shell, the near singular boundary integrals along the
shell should be accurately evaluated. This near sin-
gularity is damped out effectively with the algorithm
based on the approximated distance function, as de-
scribed in Sec. 2.4.

(2) To obtain a solution stable against sensor signal noise,
it is important to adopt a number of eddy current
nodes which is large enough to ensure that all singu-
lar values larger than the gap threshold are taken into
account.

(3) If the smallest singular value is smaller than the gap
threshold, a numerical oscillation of the eddy current
profile is observed when using the ordinary TSVD
method. However, this oscillation is eliminated ef-
fectively by applying the modified TSVD technique
of Hansen et al.

The test calculations in Sec. 3 were made assuming
40 tangential probes and 40 flux loops. However, the same
results can be expected with only 20 tangential probes and
20 flux loops, taking into account the up-down symmetry
of the RELAX plasma.

The test calculations are limited to some cases in the
REALX device; however, the authors believe that the tech-
niques introduced in the present work are applicable to the
problem of eddy current flow in a conductor located close
to a magnetic sensor in many other devices.
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