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Stability of Double Tearing Mode in the Presence of Shear Flows™
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The stability of two eigen states of double tearing mode (DTM) with symmetric or antisymmetric islands
in the presence of shear flows is numerically simulated based on a reduced MHD model in slab geometry. For
given antisymmetric flow profile, a degenerated state is observed at a critical flow amplitude v.. Below v, the
shear flow stabilizes the DTM with antisymmetric islands and destabilizes the other one through distorting the
magnetic flux mainly governed by the global effect of flow profile. Above v., the degenerated state bifurcates
into two eigen states with the same growth rate but opposed propagating direction. These two eigen modes show
single tearing mode structure due to one of two islands is prevented by the Alfvén resonance (AR). However,
the AR can destabilize the DTMs through enhancing the inflow to the X-point of the remaining island, then
competing with the stabilization of local flow shear, leading to distinctive features of DTM eigen states.
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1. Introduction

Recently, the evolution of the double tearing mode
(DTM), which is a very violent current driven resistive
magnetohydrodynamics (MHD) instability, has received
much attention since it may be responsible for the fast re-
connection in the astrophysical plasmas and the major dis-
ruption in magnetic fusion plasmas. Theoretical investiga-
tions show that the DTM consists of two different island
states with antisymmetric or symmetric islands located on
each current sheet, corresponding to eigen states with even
or odd parity of magnetic perturbations [1], which are re-
ferred to as even or odd DTM. Generally, the even DTM
is more unstable than the odd one which is usually ignored
in previous studies. The explosive growth phase during
the nonlinear evolution of the DTM, leading to the dete-
rioration of global equilibrium and confinement, has been
explained as a new type of secondary instability [2—4]. On
the other hand, the off-axis sawtooth crashes caused by the
nonlinear DTM reconnection have been observed in toka-
mak experiments [5]. In order to suppress such events,
sheared plasma flows/rotations have been considered to be
one of plausible candidates. It has been observed that the
shear flow between two current sheets can decouple the
two islands, then suppress the island growth effectively [6].
More recently, a new mechanism, namely, Alfvén reso-
nance (AR), has been proposed to understand the stabi-
lization effect of the shear flow on the DTM in cylinder
geometry [7]. Thus, understanding the role of the shear
flow in suppressing the DTM instability is of significant
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importance. Particularly, for the linear DTM in the pres-
ence of antisymmetric poloidal shear flow, Voslion et al.
have simulated the evolution of the DTM as an initial-value
problem [8]. It has been observed that weak shear flow un-
der a critical value v, stabilizes the DTM. In this paper, we
focus on the fluctuation characteristics of both even and
odd DTM eigen states with different external shear flow,
as well as the role of local flow shear and AR in the stabi-
lization/destabilization process.

2. Physical Model and Analysis
Method

The evolution of the DTM in the presence of shear
flows can be numerically simulated based on a reduced re-
sistive MHD (RMHD) model in slab geometry [9]. The
linearized RMHD equations,
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govern the linear behavior of the magnetic flux, ¢, and
electric potential, ¢. They are subject to the magnetic field
and flow through B = ByZ+ZXx Vi and v = Z2x V¢, where By
is a strong constant guiding magnetic field and Z is the unit
vector in z direction. In these equations, the coordinates
x and y, magnetic field B, velocity v, and time ¢ are nor-
malized by a, By, va and 7, where a is the scale length of
equilibrium magnetic field, vao = By/ /4npp is the Alfvén
velocity and 74 = a/va is the Alfvén time. The resistiv-
ity 77 is normalized as 1/vaa. For the equilibrium magnetic
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Fig. 1 Equilibrium magnetic field B.q(x) with x; = 0.8 (solid
curves) and shear flow profiles veq(x) = votanh(x(x + 6x))
with 6x = {0, 0.4, 0.8} (dashed curves).

field, a double Harris current sheet configuration [10],
Beg = 1 = (1 + b)sech({x), 3)

is employed as shown in Fig. 1, where b, is chosen to keep
the local magnetic shear § = ng(xs) = m/2, { is taken to
satisfy sech({xs) = 1/(1 + b.). Here two current sheets,
flowing oppositely along the z direction, exist at +x;. The
shear flow, veq(x), is expressed as

Veq = Votanh[k(x + 6x)], 4

also shown in Fig. 1. Here vy is the amplitude of the shear
flow, k determines the flow shear and dx is used to modify
the local flow shear on x = —x;, left current sheet. In the
following, x; = 0.8, 7 = 5x 107, k = 2 and 6x = [0, 0.8]
are set. In this work, the RMHD Egs. (1) and (2) are solved
by employing the eigenvalue analysis using an eigenvalue
solver. Note that usually the DTM with the lowest mode
number, m = 1, is most unstable, which is also responsible
to the magnetic island formation. Hence, the m = 1 mode
is mainly discussed in this work.

3. Results of Eigenvalue Analysis

An eigenvalue solver is developed to solve the lin-
earized RMHD Egs. (1) and (2). Figure 2 plots the linear
growth rates and real frequencies of two branches of the
DTM as a function of the flow amplitude vy with 6x = 0
as a typical case. Note that in this case a degenerated state
of two DTMs is observed at a critical flow amplitude v,
below and above which the behavior of the eigen modes
is totally different. To elucidate the influence of the shear
flow, in Fig. 3 we pictorialize the magnetic islands struc-
tures of the two DTM branches for cases with the flow am-
plitude below and above v., corresponding to the points
A-D marked in Fig. 2. Below the critical value v, the even
and odd DTM structures can still be traced. We label the
two branches to the even and odd DTMs in terms of the
structure in the case without external flow. In this region,
the even DTM is more unstable than the odd one [1], but
they all keep static with zero real frequency as shown in the
inset of Fig.2 (b). Interestingly, the odd DTM is destabi-
lized by the shear flow. The stabilization or destabilization
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Fig. 2 Linear growth rates (a) and real frequencies (b) of the
even and odd DTMs as a function of the flow amplitude
Vg for 6x = 0. The dot-dashed lines are reference lines in
terms of the Doppler shift frequency w = kv(+x;).
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Fig. 3 Contour plots of the island structures corresponding to
the cases A~D marked in Fig.2. The marks X and O
represent the X-point and O-point of the island.

of the even or odd DTM by weak antisymmetric shear flow
results from the distortion of the magnetic islands, which
is represented by the relative shift of two islands along the
direction of the flow as shown in Fig.3 (cases A and B
with vy = 0.01). And the island deformation between two
current sheets due to the relative shift can also be observed.

As the flow increases further, above v, the growth
rates of two eigen modes become the same. And the real
frequencies have the same value but opposed sign, which
are consistent with the Doppler shift frequency in the cur-
rent sheets, w = kv(+x;), where v(+x;) are the flow am-
plitude in the current sheets, as shown in Fig. 2 (b) by the
dot-dashed lines. We can not trace the even and odd DTMs
anymore due to the existence of the degenerated state at
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Fig. 4 The island structures (left panel) and corresponding
plasma flow patterns (right panel) for different flow am-
plitude (a) vy = 0.1, (b) vy = 0.4.

Fig. 5 Radial structures of the perturbed current of the DTM
(J = V%) with negative frequency (left panel) and the
corresponding Alfvén resonance condition (right panel)
(a) vo = 0.1, (b) vo = 0.6.

v = V.. Thus, in this region, the two branches of DTM are
referred to as the positive and negative frequency DTMs
according to the eigenvalue of each branch. Interestingly,
eigenvalue analysis shows that the DTMs are characterized
by a destabilized parameter window, 0.3 < vy < 0.55, then
are sharply stabilized. This is identified to result from an
so-called AR occurring at one side of the DTM. As the
DTM islands start to propagate when the flow amplitude
above v, each eigen mode may suffer from AR around
one current sheet through the relation (w — wy)* — w% =0.
Here wy = kveq and wa = kva are the Doppler shift fre-
quency and Alfvén frequency, respectively. In the sense,
the DTM is mainly characterized by a single tearing mode
structure (STM-type DTM) since one island is prevented
by the AR, as shown in Figs. 3 (C) and (D). Although the
AR can suppress the local island to stabilize the DTMs, the
appearance of two resonance layers at x = x4; and x = x5,
as shown in Fig. 5 (a), produces a new fluctuation struc-
ture like a global mode, which may destabilize the DTMs.
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Fig. 6 Growth rates of the DTMs as a function of ¢v,s for 6x =
{0, 0.4, 0.8} with weak flow.

Most importantly, the plasma flow is amplified around the
AR layers as shown in Fig. 4, which may provide an addi-
tional inflow to the X-point of the remaining island of the
STM-type DTM. The inside AR layer supplies the addi-
tional flow to the X-point and the outside one gives sus-
tainment effect for the inside AR layer. This process may
be similar to the so-called forced reconnection in thecolli-
sionless tearing mode theory [11], in which the additional
flow can enhance the magnetic reconnection process at the
X-point. As increasing the shear flow, the inside AR layer
shifts inwards approaching the remaining island, supplying
stronger enhancement. And the outside AR layer moves
outwards until it disappears, as shown in Fig. 5 (b). In this
case, the plasma flow loops lose the sustainment from the
outside. As a result, the additional inflow to the X-point of
the remaining island dramatically decreases, correspond-
ing to a sharp reduction of the growth rate of the DTMs, as
shown in Fig. 2.

So far, we have discussed the antisymmetric external
flow in respect to the surface x = 0, which means almost
no flow shear near the current sheets and the characteristics
of the DTM affected by the local flow shear can not be
specifically revealed. However, the flow shear is one of the
most important effects of the shear flow. To examine the
role of the local flow shear on the DTM stability, we shift
the flow shear layer to approach one current sheet through
adjusting the parameter 0x in Eq. (4). Bordered on vy = v,
we analyze the influence of the flow shear separately.

Firstly, weak flow with vy < v, is considered. Gen-
erally speaking, the shear flow can evidently deform the
magnetic island structure of the tearing mode through lo-
cal flow shear near the current sheet [12], then stabilize it.
However, it is noticed here that for the DTMs, the global
effect of the shear flow seems to be more relevant to the
stabilization or destabilization of the DTMs. Such global
effect is represented by the difference of the shear flow am-
plitude between two current sheets, 0v,s = v(xg) — V(—Xxg),
which determines the relative shift between two islands.
For the DTMs, the relative shift between two islands makes
the inflow to the X-point on one current sheet weakened
for the even DTM and enhanced for the odd one, leading
to the stabilization or destabilization. Such observations
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Fig. 7 Growth rates of the DTMs as a function of flow amplitude
vo for dx = {0, 0.4, 0.8}.

may show that the island distortion of the DTMs due to
the relative shift between two islands is much more effec-
tive than that due to the local flow shear around the current
sheet [13]. To further examine this notion, Fig. 6 shows
the growth rates of the even and odd DTMs as a function
of 6v,s for three cases dx = {0, 0.4, 0.8} in the region of
vo < v.. The observation with almost the same growth rates
shows that the local flow shear around the current sheet,
X = —X;, does not significantly contribute to the stabilizing
or destabilizing mechanism for weak flow.

However, for strong flow, the DTMs are mainly char-
acterized by STM-type island structure due to one of two
islands is prevented by the AR. The local flow shear near
the current sheet of the remaining island can distort the
magnetic island directly to stabilize it, competing with the
destabilizing effect of the AR at opposite side. Figure 7
plots the growth rates and real frequencies of two DTM
branches as a function of the flow amplitude v for three
cases ox = {0, 0.4, 0.8}. Obviously different from the case
0x = 0, the DTMs in cases dx = {0.4, 0.8} show differ-
ent characteristics, i.e. no degenerated state so that we can
still trace the even and odd DTMs. Meanwhile, they all
propagate with a Dopper shift frequency. Let’s discuss two
DTM branches one by one.

The branch corresponding to the even DTM in
Fig.7 (a) shows a strong stabilizing tendency as the local
flow shear increases in the current sheet of the remaining
island (x = —x;), e.g. 6x = 0.8. In this case, the flow
shear layer is located on the same side of the remaining
island, i.e. opposed side of the AR layers, so that the lo-
cal flow shear can directly distort the island, leading to a
strong stabilization. On the other hand, the branch corre-
sponding to the odd DTM in Fig. 7 (b) shows a destabiliz-
ing trend quite similar to the case with dx = 0. For this
branch, the flow shear layer is located on the opposite side
of remaining island (x = x;), i.e. the same side of AR lay-
ers. As a result, the local flow shear become difficult to
influence the island. Hence, this STM-type DTM branch
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Fig. 8 Comparison between the growth rates of the odd DTM
branch in Fig. 7 (b) and the position of the inside Alfvén
resonance layer as function of dx for vy = 0.47.

is mainly destabilized due to the plasma flow enhanced by
the ARs. And the slight stabilization between three cases
observed in Fig. 7 (b) may be due to the integrated effect of
all stabilizing and destabilizing mechanisms. As referred
before, the inside AR current sheet could enhance the in-
flow to the X-point of the remaining island on opposite
side, thereby destabilizing the STM-type DTM. So the dis-
tance between the inside AR layer and the remaining island
may quantify this destabilizing mechanisms. To examine
this notion, Fig. 8 gives comparison between the growth
rates of the branch corresponding to the odd DTM with the
remanding island is located at x = x; = 0.8, in Fig.7 (b)
and the position of the corresponding inside AR current
sheet as a function 6x = [0 0.8] for vy = 0.47. The similar
tendency may evidence the importance of the inside AR
layer, especially its position. In addition, it is noted that
from Figs.7 (a) and (b) the branch corresponding to even
DTM is stabilized and the one corresponding to odd DTM
is destabilized to become most unstable mode by such kind
of asymmetric shear flow. This may imply an importance
of the odd DTM eigen state in the nonlinear dynamics of
the DTM fluctuation, which was almost neglected in pre-
vious studies due to less unstable characteristics.

4. Summary

In this work, we have systematically revisited the
DTM instabilities in the presence of shear flows. Eigen-
value analysis has been carried out based on reduced resis-
tive MHD model in slab geometry. The eigenmode char-
acteristics of the DTMs in the presence of shear flows are
specified. For a given weak shear flow below v, at which
a degenerated DTM eigen state is observed, the even (or
odd) DTM is stabilized (or destabilized) by the distortion
of magnetic islands mainly due to the relative shift of two
islands in the direction of flow around the current sheets.
In this case, the local flow shear play a less important role.
As the shear flow increases, vy > v, the degenerated DTM
eigen state bifurcates into two eigen modes with STM-
type island structure. Most importantly, the DTMs can be
destabilized in a parameter window. It is identified that
the Alfvén resonance can separate one equilibrium cur-
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rent sheet into two resonance current sheets, and the inside
one may provide an additional enhanced inflow to the X-
point of the remaining island on the opposite side. Mean-
while, the local flow shear plays a remarkable stabilizing
role when it can distort the island directly, competing with
the destabilizing mechanism of the Alfvén resonance. In
addition, it is testified that the odd DTM can become the
most unstable one when the stabilization of flow shear be-
come dominant, which may imply an importance of the
odd DTM eigen state in the nonlinear dynamics of DTM
fluctuations.
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