
Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

Integrated Modeling of Tokamak Experiments with OMFIT∗)

Orso MENEGHINI and Lang LAO1)

Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
1)General Atomics, San Diego, California, USA

(Received 8 December 2012 / Accepted 11 January 2013)

One Modeling Framework for Integrated Tasks (OMFIT) is a framework that allows data to be easily ex-
changed among different codes by providing a unifying data structure. The main idea at the base of OMFIT is
to treat files, data and scripts as a uniform collection of objects organized into a tree structure, which provides
a consistent way to access and manipulate such collection of heterogeneous objects, independent of their origin.
Within the OMFIT tree, data can be copied/referred from one node to another and tasks can call each other allow-
ing for complex compound task to be built. A top-level Graphical User Interface (GUI) allowing users to manage
tree objects, carry out simulations and analyze the data either interactively or in batch. OMFIT supports many
scientific data formats and when a file is loaded into the framework, its data populates the tree structure, automat-
ically endowing it with many potential uses. Furthermore, seamless integration with experimental management
systems allows direct manipulation of their data. In OMFIT modeling tasks are organized into modules, which
can be easily combined to create arbitrarily-large multi-physics simulations. Modules inter-dependencies are
seamlessly defined by variables referencing tree locations among them. Creation of new modules and customiza-
tion of existing ones is encouraged by graphical tools for their management and an online repository. High level
Application Programmer Interfaces (APIs) enable users to execute their codes on remote servers and creation
application-specific GUIs. Finally, within OMFIT it is possible to visualize experimental and modeling data for
both quick analysis and publication purposes. Examples of application to the DIII-D tokamak are presented.

c© 2013 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: simulation, plasma, transport, workflow

DOI: 10.1585/pfr.8.2403009

1. Introduction
Integrating existing stand-alone numerical codes into

a unified self-consistent simulation is an important way to
improving the fidelity of a physical model, or capturing
the complex interplay that different physical processes can
have, often over a broad range of space and time scales. In
the science of magnetic nuclear fusion, integrated numeri-
cal simulations routinely find their application in the anal-
ysis and interpretation of existing experiments, the pre-
diction of future ones (experiments preparation, scenario
and sub-system design, extrapolation to future devices) and
testing of theoretical models.

From a researcher’s point of view, integrated model-
ing entails running many different codes for pre- and post-
processing, in addition to the ones required by the model-
ing of the physics itself. All the codes that comprise the
end-to-end modeling system must be run in a very specific
order with complex interdependencies, and managing their
execution is often difficult even for a single run. If one also
considers that a large number of runs that are often needed
to get the sought results, then it becomes clear that manag-
ing these simulations manually is not a viable solution.

author’s e-mail: meneghini@fusion.gat.com
∗) This article is based on the presentation at the 22nd International Toki
Conference (ITC22).

Hence, the magnetic fusion modeling community has
been at work to develop software frameworks aiming
at progressively integrating the available physics models.
However, this is not a simple task, since these projects are
faced with the challenge of enabling the inter-operation
of programs which were originally developed to be self-
contained units, aimed at solving only a specific problems.
These programs are “self-centric”, meaning that they come
in many flavors and variations, each using different sys-
tem requirements, programming languages, conventions,
file formats, units and numerical grids. To make the inte-
gration problem even harder, these programs also tend to
evolve rapidly and their number is rapidly growing.

The conventional wisdom to deal with this challenge,
has been to enforce a rigid set of protocols and formats
that the standalone codes must comply to. In this paper
we introduce the One Modeling Framework for Integrated
Tasks (OMFIT) integrated modeling framework, tackles
this problem by treating files, data and scripts as a uni-
form collection of objects organized into a single, self-
descriptive, hierarchical structure (the OMFIT tree struc-
ture). Through this unifying structure, data is easily ex-
changed among different components of the framework.
This approach does not require third-party codes to com-
ply to standard data structures, nor does it define a priori

c© 2013 The Japan Society of Plasma
Science and Nuclear Fusion Research

2403009-1



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

what codes can interact and how.
This manuscript is organized as follows: Section 2

overviews the state of the art of integrated modeling in
the field of magnetic fusion energy. Section 3 presents
the design strategy and implementation details of the OM-
FIT framework. Section 4 briefly describes few applica-
tion examples of OMFIT to tokamak experiments, with a
special focus on the DIII-D experiment. Conclusions and
prospects for future developments are outlined in Sec. 5.

2. Integrated Modeling Frameworks
for Magnetic Fusion Research
In the field of magnetic nuclear fusion, existing inte-

grated modeling frameworks could be categorized in many
different ways (e.g. first principle vs experimental ori-
ented; high performance computing vs general operation).
In the following, we categorize frameworks depending
on their different organizational structures and techniques
with which standalone codes are coupled to one another.
We have identified two main categories: transport-based
and workflow-based frameworks.

2.1 Transport-based frameworks
Transport-based frameworks are organized around a

core transport code which solves a set of 1D radial trans-
port equations for current, energy, particles and toroidal
momentum. These softwares are usually modular in na-
ture, as they rely on existing codes to calculate the plasma
equilibrium and the sources, sinks and fluxes which are
part of the transport equations. The coupling between the
core transport solver and the external components usually
occurs at memory level in view of the frequent calls that the
core solver has to make to its modules while integrating the
transport equations in time. A non-exhaustive list of these
codes are ONETWO [1,2], TRANSP/PTRANSP [3], TOP-
ICS [4], ASTRA [5], CRONOS [6], CORSICA [7], FAS-
TRAN [8], FACETS [9].

Generally speaking, coupling programs at memory
level is a difficult and time consuming endeavor, since it
requires substantial coding on the framework side and ac-
cess to and understanding of the source code of the com-
ponents. The level of code reuse offered by this approach
is also low. All of this makes it very hard to incorporate
new methods into the framework and, therefore, stifles the
researcher’s creativity. Finally, this approach often leads to
large monolithic codes that are difficult to compile, main-
tain, extend and debug.

2.2 Workflow-based frameworks
Workflow managers assume that the main physics

of intests has already been expressed in other standalone
codes and their task is to allow data to “flow” through these
components. To put things in perspective, in a workflow-
based software a transport solver is just another component
of the framework.

In contrast with the transport solvers approach, these
types of frameworks generally rely on a loose, file-based
coupling, assuming that only a modest amount of data (in
frequency and volume) needs to be exchanged among its
components. A non-exhaustive list of examples are the
ITM-TF [10] (with Kepler [11]), FSP [12], SWIM [13] and
TASK [14].

In workflow-based frameworks, the conventional
strategy adopted to enable data inter-communication
among components, is to require these to comply to stan-
dard data structures and protocols. This has the double
advantage of allowing data to be accessed in a unified way
across the framework, and of uniquely defining the loca-
tion of the data and its properties across the framework.
Consequently, the effort of coordinating the work of many
people working across many institutions is simplified and
in principle multiple implementations of the same type of
physics could be easily interchanged.

However, these benefits come with additional com-
plexities, costs and limitations. First , such an approach
requires the creation of a large number of bi-directional
interfaces, at least one for each standalone code. These
need to be as simple as possible, while being general and
flexible enough to accomodate the needs of all of the com-
ponents and their future amendments. In addition to these
non-trivial technical and software engineering difficulties,
it is often the case that the human and organizational as-
pects are even more challenging. Definition and imple-
mentation of rules (standards and protocols) require unan-
imous agreement among the interested parties. Experience
shows that for most IM frameworks a lot of time and re-
sources can be spent on this process [10, 12], before the
framework itself can be built and physics results delivered.

To further complicate things, at a community level
there is not a general agreement about which standard to
adopt and many different data structures have been devel-
oped, one for each framework. To name a few, the SWIM
plasma state file (which is different from the ONETWO
plasma state file) or the Consistent Physical Object [15]
used by the ITM-TF, or the BPSD used in TASK. Such
complications add more work to the developers of stan-
dalone codes, since it prevents reusing the work done in
one framework for another. It is likely that the fusion com-
munity will eventually agree on a unique set of standards
and protocols when ITER formally chooses one for its sim-
ulations.

A special note must be said about the different ap-
proach followed by the TASK software, which has been
developed at the Kyoto University. The TASK framework
circumvents the problem of imposing third party software
to adhere to a standard data structure by developing all
of its components “in-house”. Although this approach re-
quires a significant amount of resources and time to be in-
vested in developing and validating each of the framework
components, TASK has proven to be extremely successful
and to date it is one of the frameworks which has the most

2403009-2



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

complete set of physics components.

3. OMFIT: One Modeling Frame-
work for Integrated Tasks
Conventional integrated-modeling frameworks are de-

signed around well-defined physics or technical goals,
such as simulating an experiment from startup to ramp-
down, coupling core and edge transport with very com-
prehensive edge physics, or use peta-scale computers. Al-
though these frameworks have been successful at reach-
ing their original goals, the case is that in the science of
magnetic fusion, most researchers still manually integrate
standalone codes.

The cause of this must be sought in the disconnect
between the goals around which conventional frameworks
are built and the everyday practical needs of most fusion
theorists and experimentalists. In general, we have found
that the “top-down” approach embraced by conventional
frameworks inherently constrains the users and limits the
overall scope of the framework.

To be attractive to a general audience of (fusion) re-
searchers, a modeling framework should first of all be
generic and flexible, since each researcher has specific
requirements in terms of what codes need to be inte-
grated and how (including pre-processing, execution, post-
processing and analysis). Second, a framework should
strive at maximizing the user’s efficiency and make the
benefits of adopting the framework worth the time and
effort required when learning a new software. Hence,
a framework should be capable of integrating and reuse
“custom-made” codes, widgets, tools and scripts which
have been developed over many years of research. In this
context, one should consider that for most purposes only
few codes need to be loosely-coupled, and requiring all of
the outputs to comply to standard data structures is often
not justified. Lastly, to promote the validation process and
be experimentalist-friendly, a framework should allow di-
rect access and manipulation of experimental data.

With these considerations in mind, we developed a
new integrated modeling framework named OMFIT. OM-
FIT belongs to the class of workflow-based frameworks. In
OMFIT, task inter-communication occurs through a uni-
fying data structure and usage of a high-level language,
which serves as a glue to tie modules and components to-
gether to rapidly create specialized applications. In some
sense, the language becomes a scripting framework allow-
ing fast prototyping of new applications.

Since the control of the simulation’s workflow and
data exchange is delegated to the users, we name this
approach a bottom-up paradigm as opposed to a top-
down paradigm, typical of conventional integrated mod-
eling frameworks. The design and implementation details
of the main components in the OMFIT framework are dis-
cussed in the following paragraphs.

3.1 The OMFIT tree data structure
OMFIT is a workflow manager which allows data to

be easily exchanged among different components of the
framework, without requiring each component to comply
to a pre-defined data structure. This is accomplished by
treating files, data and scripts as a uniform collection of
objects organized into a single, self-descriptive, hierarchi-
cal structure (the OMFIT tree structure).

Objects residing in the tree are automatically endowed
with different attributes and methods, depending on their
type (e.g. files have a name, strings have a length, arrays
can be plotted, scripts can be executed). Within OMFIT,
the object-oriented programming concepts of (sub-/super-
)classing, (multiple-)inheritance and polymorphism are
used to effectively and consistently assign attributes and
methods to different objects (e.g. a FORTRAN namelist is
an ASCII file, that is a file that is an object).

When an object is loaded into OMFIT, its data is inter-
preted and populates the OMFIT tree structure. As an ex-
ample, when loading a FORTRAN namelist file, this will
become an object within the OMFIT tree, containing the
FORTRAN namelist names and variables organized in a
hierarchical (subtree) fashion. Figure 1 shows how a sam-
ple FORTRAN namelist is loaded into the OMFIT tree and
appear in its Graphical User Interface (GUI).

The same concept is applied to many other scientific
data formats (FORTRAN namelists, NetCDF files [16],
IDL [17] save files, MATLAB [18] save files, to name a
few). By supporting few scientific data formats, a great
number of codes can be directly integrated into the OM-
FIT tree without the need to specify a priori from which
codes the data comes.

In the limited number of cases when non-standard file-
formats are used, it is often the case that tools have been
developed over the years to translate these files into stan-
dard ones. Also worth pointing out is, while the OM-
FIT approach does not require the use of standard data
structures, it does not exclude the possibility of using one
(any) upon which other integrated modeling frameworks
are based.

The tree-structure approach shares many similarities
with a conventional filesystem or the MDS+ software [19],
which has proven to be very successful system for the ag-
gregation of heterogeneous experimental data and its man-
agement. Like these systems, the OMFIT tree is an ab-

Fig. 1 Sample FORTRAN namelist and corresponding hierar-
chical structure within the OMFIT tree structure.

2403009-3



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

straction that allows access to the data and the metadata
of the objects, independently of the objects’ origin or their
low-level storage details. This is why we say that all data
objects residing in the tree data structure are accessed in
a unified way. Worth remembering is that a conventional
framework achieves this same functionality by imposing a
standard data structure.

Certainly, the OMFIT approach most-likely implies
dealing with a high level of diversity in data structures,
units and numerical grids topologies and sizes. However,
this must be put into context. First, many of the codes
which researchers want to integrate already understand
each others data (for example, most stability codes would
accept as input the files generated by the EFIT [20] equi-
librium code). Second, when data has to be exchanged in
most cases, the required coupling is loose, meaning that a
small volume of data is shared among standalone codes.
And lastly, the OMFIT framework is designed to simplify
this task by relieving the users of the burden to manage and
access data from individual files or different sources.

In addition to editing, management and visualization
functionalities, OMFIT has the ability to compare and se-
lectively merge any two branches of the tree and provide a
description of the objects in the tree by exploiting the con-
text that the hierarchical structure inherently defines. Fi-
nally, when an OMFIT tree is saved (into what is called an
OMFIT project), scripts, data and settings are saved into a
single file, thus, easing the problem of tracing back in time
how a certain output was obtained.

3.2 Direct access to experimental data
Data from experimental data management systems,

such as MDS+ or SQL relational databases, is seamlessly
integrated in the OMFIT tree. This means that within OM-
FIT there is no distinction between the data which was
originally stored into a file on the local filesystem or a re-
mote data management system, as both are accessed and
manipulated in the same manner.

Such transparency facilitates modeling-experiment in-
teraction and makes the framework especially appealing
for validation purposes or developing experiment analysis
tools. This functionality is especially crucial for automat-
ing simulations, for quick analysis (e.g. control room) of
the experiments and for creating large experimental data-
sets to be pre-processed to run simulations.

3.3 Modules and their management
In OMFIT modeling tasks are organized into “mod-

ules”, which can be easily combined (also hierarchically)
to create arbitrarily-large multi-physics simulations.

Although the scope of each module is arbitrary, in
general this tends to coincide with the set of data and
scripts which allows the execution of a standalone code.
Module structure is also chosen by the users, but it is usu-
ally organized into sub-branches each containing the rele-

vant files, scripts, GUIs, plots and settings. Typically, in
the “settings” sub-branch a set of entries defines the exe-
cution of the code, such as the location of the executable,
the working directory and on which remote machine the
execution should occur.

Tools that support the creation of new modules and
customization of existing ones are available within OM-
FIT. The creation of new moules in their basic function-
alities (remote execution and data management) is easy,
especially if the data formats used by the standalone codes
are already supported.

Sharing of modules among different users is encour-
aged and supported by an online modules repository, where
users can download and upload new modules and updates
of existing ones. The idea is to create a cooperative en-
vironment in which the components of the framework can
grow in an grassroots fashion based on the specific prob-
lems which are of interest to the OMFIT user commu-
nity. In this context, OMFIT comes with GUI tools that
facilitate the import/export and merge from/to the modules
repository.

In the OMFIT framework philosophy, users roughly
fall into three classes distributed in a pyramid. At the top
are the framework programmers who take charge to sup-
port more data formats and expanding the functionalities
of OMFIT. The second and larger class of users, are those
who produce their own OMFIT modules. Typically, these
are experts of each of the standalone codes (though not
necessarily the code developers). The third and largest
class of users are those who combine existing modules for
their own (integrated) modeling purposes.

3.4 Simulation workflow at user-level
In OMFIT, the control of the simulation workflow is

delegated to user-level tasks, rather than being built into
the framework. For this purpose, OMFIT makes use of an
interpreted programming language to create a dynamic en-
vironment in which components can be tied together at a
high level. This choice does not restrain the user’s possi-
bilities to a pre-defined set of operations.

Tasks are programmed in Python [21], a high-level,
object-oriented scripting language which features the
strong community support and offers basic facilities for
interactive work and a comprehensive library on which
more sophisticated systems can be built. Compared to
other scripting languages, Python offers several advan-
tages which are key to a successful component integra-
tion. These include its being cross-platform, open-source
and modular. Also, Python has profiling, debugging, re-
flection, introspection and self-documentation capabilities.
It’s concise and almost pseudocode-like syntax which pro-
motes code readability and thus maintainability. Finally,
Python is an excellent ”steering” language for scientific
codes written in other languages, which ultimately enable
OMFIT users to reuse the numerical tools which they have

2403009-4



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

developed over many years.
The typical script for the execution of a single stan-

dalone code requires only a few lines of Python program-
ming and can be conceptually divided into tree parts: de-
ployment of tree objects to a working directory (e.g. write
namelist), execution of the standalone code, and inser-
tion of the simulation results in the OMFIT tree (e.g read
NetCDF). The same operations apply if the code execu-
tion is remote (Sec. 3.6). These operations correspond to
nothing less than the “initialize()”, “step()” and “finalize()”
actions which are typical of conventional workflow man-
agers.

Within the OMFIT framework, tasks which are stored
in the OMFIT tree can call each other to create complex
workflows. In OMFIT, the problem of inter-module de-
pendencies is resolved by variables which can be defined
and used by users within the scope of a module to point to
any location within the OMFIT tree. In their scripts, users
can access tree nodes by their absolute location from the
OMFIT tree root or by their relative location from the root
of the modules the scripts belong to. This feature allows
user scripts to work within a module, independently to the
locations of the scripts within a module and of the mod-
ules within the OMFIT tree. Also, a special type of object,
named dynamic expression, can be used to reference and
dynamically calculate quantities across the tree while en-
suring data self-consistency.

In OMFIT, user-level scripts are completely indepen-
dent from the framework itself. This has the advantage
that tasks can be developed within the framework with-
out the need to restart OMFIT every time a script is edited
and re-executed. This and the ability to quickly inspect
data within the OMFIT tree greatly expedites the debug-
ging process.

3.5 Top-level graphical user interface
In OMFIT, a top-level GUI is available to the users to

manage the data structure, carry out simulations and ana-
lyze the data interactively. This feature would not be pos-
sible without the unified data access which is provided by
the OMFIT tree data structure.

The GUI is a key element of the framework as it en-
ables fast prototyping. With it, users can selectively de-
velop, execute and debug each step in their workflow be-
fore running them in batch. This interactive environment
quickly accommodates the experimentation that is often re-
quired to arrive at effective solutions. Figure 2 shows a
snapshot of the GUI, with some of the key elements high-
lighted.

The “tree browser” allows interactive manipulation of
the OMFIT tree, tabbed browsing provides multiple simul-
taneous views of OMFIT tree. Within the OMFIT tree
browser, all the relevant data and tasks are at reach for be-
ing edited, managed, inspected or executed. Objects in the
OMFIT tree can be edited by a mouse double-click; addi-

Fig. 2 The main graphical user interface of OMFIT with the key
components highlighted.

tional functionalities (e.g. copy, paste, compare, plot) can
be accessed by a mouse right-click. Hot-keys allow users
to plot and over-plot numerical arrays, edit scripts in the
text editor chosen by the users or execute them.

The “navigation bar” provides the path to the selected
tree location and allows quick-search within the selected
location. The “command box” is a sandbox for interact-
ing with the OMFIT tree and for prototyping scripts. The
“console” provides real-time feedback (output and error)
from scripts and standalone execution.

3.6 High-level API for remote execution,
data management & generation of user-
level GUIs

To simplify and streamline the development of its
scripts, OMFIT comes with a set of services for task ex-
ecution, data management, and inter-component commu-
nication. Of these, worth highlighting is the Application
Programmer Interface (API) which allows remote code ex-
ecution and data transfer on a remote host via Secure SHell
(SSH), a workhorse in scientific computing. Instead of re-
quiring that all standalone codes are executed on the same
system where the framework resides, OMFIT (which could
be running on a notebook) can spawn processes on differ-
ent remote workstations or powerful servers (even if these
are behind gateway hosts). Not only does this relieve scien-
tists of the burden of dealing with remote connections, but
it also eliminates the need to compile (a notoriously diffi-
cult and painful process) codes which are already available
and working properly on workstations in the network. Ser-
vices for concurrent execution of codes on multiple remote
systems are also available. Figure 3 summarizes the func-
tionalities provided by the APIs for remote execution.

GUIs can be very useful to hide underlying complex-
ities to inexperienced users and ease streamline analysis.
However, most scientists do not use GUIs to interact with
their own programs because these can be relatively hard
and time consuming to program. In OMFIT this task has
been simplified to its minimum. Thanks to some high level
APIs, programmers can create application-specific GUIs

2403009-5



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

Fig. 3 High-level APIs available within the OMFIT framework
enable scientists to execute standalone codes remotely
(and concurrently) and to manage remote data.

Fig. 4 Example of user-level GUI for the ONETWO transport
code. User-level GUIs are easily built by defining each
element in the GUI (type of graphical element, the tree
location) to be edited and a description. As the user in-
teracts with the GUI, the corresponding variables in the
OMFIT tree are updated.

for their modules. The idea is that to each element that
composes a GUI, the programmers have to specify only a
description and a location in the OMFIT tree which will
store the input from the user. With the same ease, mul-
tiple user-level GUIs from different modules can be com-
bined in a hierarchical way to create larger and more com-
plex GUIs, while ensuring self-consistency for those GUIs
which access data across different modules. Since the low-
level implementation details of the GUIs are hidden to the
programmers, it is not even necessary to know how to do
event programming - which is how typical GUIs are usu-
ally developed. As an example, Fig. 4 shows the user-level
GUIs developed for the ONETWO transport code.

3.7 Post-processing & visualization of mod-
eling & experimental data, comparison
& merging

The process of data analysis is increased by quick vi-
sualization of 1D and 2D data arrays which reside in the
OMFIT tree. Within the main GUI, this can simply be ac-
complished by the push of a button. The plots generated
are objects that become part of the OMFIT tree themselves
and that can be edited or saved for later reference.

More articulated plots can be generated using the Mat-
plotlib [22] plotting library. Users can generate plots, his-
tograms, power spectra, bar charts, error-charts, scatter-
plots, contour-plots, etc, with just a few lines of code. Mat-
plotlib can be used in the user-level Python scripts or inter-
actively (ala MATLAB) in the OMFIT command box (see
Sec. 3.5).

Within OMFIT, users can add custom attributes and
methods to any object by sub-classing. With this method,
custom plot commands can be associated to specific files
(such as the output files of a code), thus allowing users
to inspect multiple results of their simulations by simply
selecting the output file objects and pressing the plotting
or over-plotting hot-keys in the OMFIT master GUI.

Finally, all figures which are generated in the OMFIT
environment can be viewed (zoom, pan), edited (copy,
paste, change line attributes, etc) and saved (in a variety
of hardcopy formats) in an interactive way.

3.8 Portability
For the purpose of easing the installation and max-

imizing the portability of the framework, the Python li-
braries upon which the framework depends on are all pub-
lic, well-supported, and their number has been minimized.
The numpy library allows the efficient storage and manip-
ulation of large amounts of numerical data [23], SciPy [24]
provides a vast collection of scientific algorithms, Tkin-
ter [25] is used for the GUIs, and Matplotlib provides inter-
active plotting functionalities. These choices do not limit
the freedom of OMFIT users, which in their scripts can use
any Python libraries available on their system.

4. Examples of Application
The OMFIT framework has been used for the analysis

of several physical processes of DIII-D discharges and, for
this purpose, many OMFIT modules have been developed.
These include modules for equilibrium (EFIT), MHD sta-
bility (GATO [26], PEST-3 [27]), transport (ONETWO
and GCNMP [28]), ray-tracing (GENRAY [29]) and tur-
bulent stability (GSK [30], TGLF [31]).

A notable example is the kinetic-EFIT module that
enables realistic magnetic equilibrium reconstruction us-
ing kinetic pressure constraints and motional Stark effect
(MSE) measurements. This procedure entails iterating be-
tween the equilibrium reconstruction code EFIT and the
transport code ONETWO, since the kinetic profiles and

2403009-6



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

Fig. 5 Schematic showing data flow across different compo-
nents in the OMFIT frameworks for a kinetic-constrained
equilibrium reconstruction.

the auxiliary heating schemes deposition profiles (most im-
portantly the fast-ions pressure which are generated by the
neutral beams) are updated based on the magnetic equilib-
rium calculated at the previous step. Changes in the mag-
netic equilibrium also influence the reconstruction of den-
sity, temperatures, Zeff and radiation profiles, which need
to be updated at each step of the iteration. To speed this
type step, we have developed a module which is dedicated
to the problem of retrieving and managing the DIII-D ex-
perimental plasma profiles. Overall workflow of the ki-
netic constrained equilibrium reconstruction is shown in
Fig. 5. Finally, a user-level GUI oversees all steps in the
reconstruction and is used to assist users to streamline their
analyses. Figure 6 shows the comparison of an equilibrium
reconstruction from an MSE constrained kinetic-EFIT and
an EFIT which only uses magnetic and MSE data.

The flexibility and the potential of this tool, used in
conjunction with the TGLF modules, was demonstrated by
the execution of kinetic-equilibrium reconstructions and
the analysis of turbulent growth rates as a function of
wavenumber and radius during DIII-D operations. In that
case, multiple local linear stability simulations were run
in parallel on different remote machines to obtain faster
results and to deliver quick guidance to the experiment
session-leader.

Most recently, the OMFIT framework is being used
to compare the predictions of the resonant magnetic
perturbation-induced magnetic flutter model and the Neo-
classical Toroidal Viscosity model [32] with the tempera-
ture and toroidal rotation profiles measured in DIII-D ex-
periments. These works required the interaction among
multiple OMFIT modules (including kinetic and MSE con-
strained equilibrium reconstructions, transport and non-
axisymmetric MHD calculations) as well as direct manip-

Fig. 6 Comparison of equilibrium reconstruction for DIII-D
shot 147634 at 4965 ms with (red) and without (blue) ki-
netic pressure constraint as calculated by the workflow
depicted in Fig. 5. The total pressure constraint (green)
includes the neutral beam fast ion pressure contribution.

ulation of the experimental data. For both models the re-
sponse to non-axisymmetric fields is provided by the two-
fluid MHD code M3D-C1 [33].

Finally, a workflow has been setup to study the inter-
dependence between plasma equilibrium, turbulent trans-
port, MHD stability, heating and current drive in a self-
consistent way. This workflow will be used to optimize the
performance of DIII-D advanced tokamak discharges and
to support the design of the Fusion Development Facility
(FDF) [34] experiment.

5. Conclusion
The OMFIT framework adopts a new paradigm to en-

able the integration of existing modeling tools, without
specifying a priori what codes are to be coupled and how.
Instead, the framework provides the users with the tools to
manage the data flow and the codes execution. The con-
trol of the simulations workflow is delegated to user-level
tasks which are programmed in Python, and the OMFIT
tree data structure (a pivotal concept) allows users to seam-
lessly concentrate, manage and exchange the data gathered
from different sources, including experimental data man-
agement systems.

Within the OMFIT framework, scientists are encour-
aged to write modules instead of stand-alone programs and
scripts. This concept and the ability to share modules
among users promotes code reuse and ultimately leads to
rapid prototyping.

The OMFIT approach has a lot of strengths and ben-
efits, as we have already witnessed a dramatic increase in
our productivity, as well as a high level of code reuse. This
is attested by the broad range of application modules which
have been developed in support to the DIII-D research,
since its development has started, less than a year ago. The
spectrum of application ranges from processing of exper-

2403009-7



Plasma and Fusion Research: Regular Articles Volume 8, 2403009 (2013)

imental data for analysis and support of experiments, to
prediction of discharge evolution and the implementation
and validation of new physics models.

Finally, although the OMFIT design has been driven
by the needs of the magnetic fusion community, its ap-
proach is so general and versatile that it could also serve
the needs of a broader scientific community.

6. Acknowledgments
This work was supported in part by the US Depart-

ment of Energy under under DE-FG02-95ER54309. The
authors wish to thank S.P. Smith, C. Paz-Soldan, G. Li,
P. Raum, and A. McCubbin for contributions in develop-
ing some of the OMFIT modules and H.E. St John, A.M.
Garofalo, J. Candy, V.S. Chan, N.W. Ferraro, J.M. Park,
G.M. Staebler, R. Prater, A.D. Turnbull, and S. Shiraiwa
for their insights and support.

[1] W.W. Pfeiffer et al., “ONETWO: A computer code for
modeling plasma transport in tokamaks” Nuclear Fusion 1
(1980).

[2] H. St John et al., Presented at the 15th International Conf.
on Plasma Physics and Controlled Nuclear Fusion Re-
search, Seville, Spain, 1994, 1 (1994).

[3] integrated modeling code, http://w3.pppl.gov/transp/
[4] H. Shirai et al., Plasma Phys. Control. Fusion 42, 1193

(2000).
[5] G. Pereverzev and P.N. Yushmanov, “ASTRA automated

system for transport analysis in a tokamak” Max-Planck-
Institut fuer Plasmaphysik, Garching, Germany (2002).

[6] J.F. Artaud et al., Nucl. Fusion 50, 043001 (2010).
[7] J.A. Crotinger, L. LoDestro, L.D. Pearlstein, A. Tarditi,

T.A. Casper and E.B. Hooper, “Corsica: A comprehensive
simulation of toroidal magnetic-fusion devices,” Lawrence
Livermore National Laboratory Report, Livermore, CA
USA (1997).

[8] M. Murakami et al., Nucl. Fusion 51, 103006 (2011).
[9] J.R. Cary et al., J. Physics: Conference Series 78, 012086

(2007).
[10] A. Bécoulet et al., Comput. Phys. Comm. 177, 55 (2007).
[11] B. Ludäscher et al., Concurrency and Computation: Prac-

tice and Experience 18, 1039 (2006).
[12] Jill Dahlburg et al., J. Fusion Energy 20, 135 (2001).
[13] W.R. Elwasif et al., in Parallel, Distributed and Network-

Based Processing (PDP), 2010 18th Euromicro Interna-
tional Conf. on, Institute of Electrical and Electronics En-
gineers (IEEE), pages 419427 (2010).

[14] A. Fukuyama et al., in Proc. 20th Fusion Energy Conf.,
Villamoura, Portugal (2004).

[15] B. Guillerminet et al., Fusion Eng. Des. 83, 442 (2008).
[16] R. Rew and G. Davis, IEEE Comput. Graph. Appl. 10, 76

(1990).
[17] EXELIS, “DL. Exelis Visual Information Solutions,” Boul-

der, Colorado.
[18] MATLAB, The MathWorks Inc., Natick, Massachusetts.
[19] J.A. Stillerman et al., Rev. Sci. Instrum. 68, 939 (1997).
[20] L.L. Lao et al., Nucl. Fusion 25, 1611 (1985).
[21] M.F. Sanner et al., J. Mol. Graph. Model. 17, 57 (1999).
[22] J.D. Hunter, Comput. in Science & Engineering (IEEE

Computer Soc., 2007) pp.90–95.
[23] T.E. Oliphant, A Guide to NumPy 1 (Trelgol Publishing

USA, 2006).
[24] E. Jones, T. Oliphant and P. Peterson, “SciPy: Open source

scientic tools for Python,” http://www.scipy.org/ (2001).
[25] F. Lundh, “An introduction to tkinter,” URL: www.

pythonware.com/library/tkinter/introduction/index.htm
(1999).

[26] L.C. Bernard, F.J. Helton and R.W. Moore, Comput. Phys.
Comm. 24, 377 (1981).

[27] A. Pletzer, A. Bondeson and R.L. Dewar, J. Comput. Phys.
115, 530 (1994).

[28] Holger St John, “Globally Convergent Newton Method Par-
allel (GCNMP) solver,” under development, private com-
munication.

[29] A.P. Smirnov and R.W. Harvey, “The GENRAY ray tracing
code,” CompX Report CompX-2000-01 (2001).

[30] Mike Kotschenreuther, G. Rewoldt and W.M. Tang, Com-
put. Phys. Comm. 88, 128 (1995).

[31] G.M. Staebler, J.E. Kinsey and R.E. Waltz, Phys. Plasmas
14, 055909 (2007).

[32] J.D. Callen, A.J. Cole and C.C. Hegna, Phys. Plasmas 19,
112505 (2012).

[33] N.M. Ferraro, Phys. Plasmas 19, 056105 (2012).
[34] V.S. Chan et al., Nucl. Fusion 51, 083019 (2011).

2403009-8


