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We analyzed energy transfer processes induced by triad mode interactions in homogeneous, isotropic tur-
bulence in magnetohydrodynamic (MHD) and Hall magnetohydrodynamic (HMHD) media. In particular, we
analyzed the Fourier spectra of the energy transfers using geometric-series shell-partitioning methods, analogous
to dyadic wavelet analysis. Snapshot datasets were collected once the MHD and HMHD turbulences had suffi-
ciently developed. Graphs of all energy spectra were well collapsed after the normalization using the dissipation
rates and the diffusion coefficients, i.e. they showed good self-similarity. Despite such self-similarity of energy
spectra, the transfer due to mode interactions between the fluid advection and Hall term was reduced over time,
while those due to the Lorentz force and induction remained rather stationary in regions of higher wave number.
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1. Introduction
Magnetohydrodynamics (MHD) turbulence is rele-

vant to a wide range of research topics, including astro-
physics and fusion plasma studies. In recent years, exten-
sions of MHD equations to two-fluid effects have attracted
much attention [1].

A simple fluid model incorporating a two-fluid effect
is the Hall MHD (HMHD) system. The MHD and HMHD
systems differ significantly in their energy dissipation ten-
dencies, structure formation processes, and profiles of the
generated coherent structures [2]. It appears that the Hall
term maintains large-scale spatial structures in fully devel-
oped turbulence, which is important for plasma confine-
ment.

We also compared the wavelet-scale spectra of the en-
ergy exchange generated by the induction term in a snap-
shot dataset. Local energy transfer dominated the ex-
change, and energy transfer to small scales was observed
in both cases [3]. By analyzing several serial snapshot
datasets, we also found that the Hall term induces nonlin-
ear energy transfer over large scales, a phenomenon that
is intrinsic to HMHD dynamics [4]. In particular, nonlo-
cal interactions between the modes of a magnetic field are
crucial to back scattering phenomena.

Despite these advances, how the nonlocal interaction
of the Hall term affects the energy transfer processes in
HMHD and MHD systems is yet to be clarified. In the
present study, we investigate the temporal dynamics of the
energy transfer processes in HMHD and compare them
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with those of MHD over longer time intervals than in our
previous studies.

2. Basic Equations and Numerical
Simulation
To exclude forcing influences, we analyze a freely de-

caying, homogeneous, isotropic turbulence in an incom-
pressible HMHD system. The incompressible HMHD
equations are given by

∂u
∂t
+ (u · ∇)u = −∇P + j × b + ν∇2u, (1)

∂b
∂t
= ∇ × ((u − ε j) × b) + η∇2b, (2)

where the bulk velocity field u satisfies ∇ · u = 0, b is the
magnetic field, j := ∇ × b is the current density field, P is
the total pressure, ν is the kinematic viscosity, η is the re-
sistivity, and ε is parameter specifying the relative strength
of the Hall term. The numerical schemes are detailed in
[2].

The parameters are set to ν = η = 1 × 10−3 and
ε = 0.05. In a comparison simulation, we set ε = 0l Cal-
culations were performed on N3 = 5123 grid points. We
adopted the pseudospectral method with a 2/3 dealiasing
rule (kmax = 170). To elucidate the effects of the Hall term
on the solutions, both simulations were conducted under
the same initial conditions.

3. Analysis Method
Since a freely decaying turbulence was imposed, the

amplitudes and characteristic scales of turbulent velocity
and magnetic fields gradually altered over time. To quan-
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Fig. 1 Profile of filtering function ψ(r).

titatively capture the universal features, we must normal-
ize the datasets and apply an appropriate filtering method.
In the present study, we quantitatively compared the inter-
scale energy transfer budget due to triad mode interactions
between the snapshots collected at different times using a
combination of analysis techniques.

First, each set of field data was normalized by the re-
sistivity coefficient η and the dissipation rate of the mag-
netic energy εB(t). As shown in [4], the amplitudes of the
energy spectra and the energy transfer spectra are of com-
parable order among the different time snapshots.

To evaluate the shell-averaged energy budget imposed
by mode interactions, each field was decomposed into
band-pass-filtered components as

f (�x, t) =
∑

f j(�x, t), (3)

where f incorporates the velocity and magnetic fields and
j is the scale index of the filtered field. Each filtered com-
ponent is the sum of the Fourier modes on a spherical shell
in the wavenumber space:

f j(�x, t) :=
kη/
√

2 j−1∑
∣∣∣∣�k∣∣∣∣=kη/

√
2 j

f̂ (�k, t) exp
(
2πi�k · �x/L

)
,

where kη(t) := 4
√
εB(t)/η3 is the characteristic wavenumber

of the dissipation range and L is the system size. The char-
acteristic oscillation wave length λ j and the envelope scale
of f j (also known as the window width of the band pass
filter) Δ j obey the following scaling relations

λ j ∝
√

2 j, Δ j ∝
√

2 j.

Alternatively, geometric series shell partitioning in Fourier
space is achieved by convolution with a mollifier:

f j(�x, t) =

(
kη√

2

)3 ∫
ψ

⎛⎜⎜⎜⎜⎜⎝kη
∣∣∣�y∣∣∣√
2 j

⎞⎟⎟⎟⎟⎟⎠ f (�x − �y, t) d3�y,

where the mollifier ψ is given by

ψ(r) =
4π
r3

[
r cos r − sin r − √2r cos

√
2r + sin

√
2r

]
(see Fig. 1). We remark that this decomposition is analo-

gous to “dyadic wavelet” analysis [5].
In the present study, we analyzed the energy budget

in the band-pass-filtered representation. The energy bud-
get of MHD and HMHD turbulence was analyzed as de-
scribed in [3], except that the wavelet scale decomposition
was replaced with the

√
2-adic scale decomposition given

by Eq. (3).

d
dt

E(u)
j =

∑
k,m

〈
u j

∣∣∣um

∣∣∣uk
〉

adv +
∑
k,m

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor + Dj,

(4)
d
dt

E(b)
k =

∑
j,m

〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind +
∑
j,m

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall + Rk,

(5)

where

E(u)
j :=

1
2

∫ ∣∣∣u j

∣∣∣2 d3�x, Dj := −ν
∫ ∣∣∣∇ × u j

∣∣∣2 d3�x,

(6)

E(b)
k :=

1
2

∫
|bk |2 d3�x, Rk := −η

∫
|∇ × bk |2 d3�x,

(7)〈
u j

∣∣∣um

∣∣∣uk
〉

adv := −
∫ (

(um · ∇)uk
) · u j d3�x, (8)

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor :=
∫ (

jk × bm
) · u j d3�x, (9)

〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind :=
∫ (∇ × (u j × bm)

) · bk d3�x, (10)

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall := −ε
∫ (∇ × ( jk × bm)) · b j d3�x.

(11)

The integrant in the RHS of Eqs. (8)-(11) were carefully
chosen to satisfy covariance under arbitrary changes of the
coordinate system (see [6]) and the following reciprocal
relations:〈

u j

∣∣∣um

∣∣∣uk
〉

adv = −
〈
uk

∣∣∣um

∣∣∣u j
〉

adv, (12)〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor = −
〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind, (13)〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall = −
〈
b j

∣∣∣bm

∣∣∣bk
〉

Hall. (14)

4. Numerical Results
We analyzed snapshot datasets collected between t =

1.0 and 5.0 with time increment 0.5. The selected time
interval is sufficiently beyond the time of maximum vor-
ticity and current density fields. As shown in Fig. 2, the
temporal development of the Taylor microscale Reynolds
number and its magnetic counterpart, defined by

Re :=

√
10
3νε

E(u), Rem :=

√
10

3ηεB
E(b),

become settled at t �1.0. The magnetic Reynolds num-
bers are approximately twice the Reynolds number. This
implies that, in the present solutions, the magnetic field
is more energetic than the fluid motion, independent of
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Fig. 2 Time development of the Taylor microscale Reynolds
number and its magnetic counterpart.

the Hall term effect. The characteristics of these snap-
shot datasets probably reflect self-similar features of spon-
taneously generated MHD and HMHD turbulence.

Throughout the analyzed time period, each functional
form of the normalized Fourier spectra collapsed into a sin-
gle form, indicating that the turbulent MHD and HMHD
fields both exist in self-similar states (see Fig. 3).

Figures 4 and 5 plot the quadratic terms of the shell-
averaged energy transfers. As expected, normalization ren-
ders the amplitudes of the energy transfer functions com-
parable between different time snapshots in both HMHD
and MHD. Thus, the key physical parameters are the dissi-
pation coefficient and the energy dissipation rate. In other
words, the principal dynamic features are dominated by
those of the dissipation range. Here, the physical quanti-
ties are normalized by the resistivity coefficient and dis-
sipation rate of magnetic energy. However, normalization
by the viscosity coefficient and dissipation rate of kinetic
energy yields qualitatively similar results.

Moreover, the peaks of the transfer functions gen-
erated by the Lorentz force and magnetic induction are
closely spaced in the HMHD and MHD solutions. Peak
values of transfer by the Lorentz force are close to each
other in both systems. The same tendency is seen for the
magnetic induction effect.

In both systems, the energy is overall transferred to
smaller scales, while weak inverse transfer to larger scales
is observed in the fluid advection effect. All the analyzed
snapshots show inverse energy transfer induced by the Hall
term.

In the HMHD simulations (see Fig. 4), the energy
transfer spectra of the Lorentz force and magnetic induc-
tion terms show similar form for k � 0.1kη(t). This sug-
gests that over dissipation range scales, the statistical fea-
tures of the mode interaction between the normalized mag-
netic and velocity fields rapidly converge to the equilib-
rium state.

On the contrary, although the normalized spectra are
of comparable amplitude, the energy transfers induced by

Fig. 3 Time series of the normalized kinetic and magnetic en-
ergy spectra; from top to bottom: E(u)

j of HMHD simula-

tion, E(b)
j of HMHD simulation, E(u)

j of MHD simulation,

and E(b)
j of MHD simulation, where the superscripts u and

b denote kinetic and magnetic energy, respectively.

fluid advection and the Hall term, which rearrange the ki-
netic and magnetic energy distribution, vary more slowly
than those induced by their mutual interactions.
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Fig. 4 Time series of normalized energy transfer in the HMHD
simulation; from top to bottom: advection

〈
u j

∣∣∣u∣∣∣u〉
adv,

Lorentz force
〈
u j

∣∣∣b∣∣∣b〉Lor, magnetic induction
〈
b j

∣∣∣b∣∣∣u〉
Ind,

and the Hall term effect
〈
b j

∣∣∣b∣∣∣b〉Hall.

An interesting feature of these systems is that although
the energy transfers induced by the Lorentz force effect and
the Hall term both involve the j×b field in their integrands,

Fig. 5 Time series of normalized energy flux in the MHD simu-
lation: from top to bottom: advection

〈
u j

∣∣∣u∣∣∣u〉
adv, Lorentz

force
〈
u j

∣∣∣b∣∣∣b〉Lor, and magnetic induction
〈
b j

∣∣∣b∣∣∣u〉
Ind.

they converge to the stationary state at very different time
scales.

In the MHD medium, energy transfer induced by the
Lorentz force and magnetic induction is rapid and more ef-
fective than in the HMHD medium. The amplitude of the
energy transfer due to fluid advection converges slightly
more slowly than that of the other transfers. However, sig-
nificant reduction in energy transfer, highly obvious in the
HMHD medium, is not observed in the MHD medium.

5. Discussion
We compared the time series of the Fourier band-pass

filtered spectra of the energies and the quadratic terms in
the energy transfers in simulated MHD and HMHD sys-
tems. Although the normalized energy spectra converge
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to particular profiles, the amplitude of the energy transfers
changes in time. The transfers related to mode interac-
tions between the magnetic and velocity fields converges
relatively quickly over dissipation range scales, while the
amplitudes of nonlinear terms (fluid advection and the Hall
term effect) relax relatively slowly. The relaxation times of
both terms are prolonged in HMHD medium, suggesting
that slow dynamical modes exist in the decay process.

This slow relaxation following convergence of the en-
ergy spectra seems to be related to the so-called “depres-
sion of nonlinearity” in fully developed turbulence. This
phenomenon has aroused great interest among turbulence
researchers and has been investigated in both neutral fluids
(e.g. Refs.[7] and [8]) and magnetohydrodynamic (MHD)
fluids [9]. The authors of these studies compared turbulent
fields with phase randomized fields. In the present study,
we found selective depression of triad mode interactions in
HMHD turbulence by directly comparing the normalized
triad interactions.

Since the amplitudes of the magnetic and velocity
fields are normalized, the datasets collected at different
times differ principally in the topological features of their
vector fields. At present, we are investigating the physical
reasons for this novel selective reduction phenomenon.
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